
Efficient Estimators for Generalized Additive Models

Adam Kalai

TTI-Chicago

http://people.cs.uchicago.edu/∼kalai

December 16, 2005

Abstract

Generalized additive models are a powerful generalization of linear and logistic

regression models. In this paper we show that a natural regression graph learning

algorithm efficiently learns generalized additive models. Efficiency is proven in two

senses: the estimator’s future prediction accuracy approaches optimality at rate

inverse polynomial in the size of the training data, and its runtime is polynomial

in the size of the training data. Furthermore, the guarantees are nearly linear in

terms of the dimensionality (number of regressors) of the problem, and hence the

algorithm does not suffer from the “curse of dimensionality.” The algorithm is

a simple generalization of Mansour and McAllester’s classification algorithm that

generates decision graphs, i.e., decision trees with merges.

Our analysis is also viewed as defining a natural extension of the original clas-

sification boosting theorems (Schapire, 1990) to the regression setting. Loosely

speaking, we define a weak correlator to be a real-valued predictor that has a cor-

relation coefficient with the target function that is bounded from zero. We show

how to efficiently boost weak correlators to get predictions with correlation arbi-

trarily close to 1 (error arbitrarily close to 0). Our boosting analysis is a natural

extension of the classification boosting analysis of Kearns and Mansour (1999) and

Mansour and McAllester (2002).

1 Introduction

Generalized Additive Models (see, e.g., Hastie and Tibshirani, 1990), are an expres-

sive generalization of linear and logistic regression models. In a Generalized Additive

Model (GAM) there are random variables (X, Y), where X = (X1, X2, . . . , Xd) is a d-

dimensional real vector, and Y is one-dimensional. Our goal is to predict the function

1

f : X → R, where f is defined by f(x) , E[Y |X = x]. A GAM stipulates that,

f(x) = E[Y |X = x] = u (v1(x1) + v2(x2) + . . . + vd(xd)) , (1)

where u : R → R is nondecreasing, vi : [0, 1] → R, and xi denotes the ith component

of vector x. For simplicity, we make the normalizing assumption that X ∈ X ⊆ [0, 1]d

and Y ∈ Y ⊆ [0, 1]. For the purposes of the introduction, we further assume that u

and each vi have bounded derivatives (in Section 4 we present more general results for

Lipschitz-continuous u the vi’s of bounded variation). It is easy to see that this is a

generalization of linear and logistic regression, where the vi’s are linear. In terms of

classification, where Y, f(X) ∈ {0, 1}, this also generalizes a linear threshold function

with a margin that is inversely proportional to the bound on the derivative.

As an example, Hastie and Tibshirani (1990) consider the problem of predicting

whether an individual will develop diabetes, based on several real-valued regressors

X1, X2, . . . , Xd, such as weight, age, etc. In this case, Y = {0, 1} and f(X) is the

probability that an individual with attributes X will develop diabetes. The advantage

of restricting f(X) to be of the form (1) is that it allows for avoiding the curse of

dimensionality. Without some such assumption, any provably successful learning algo-

rithm would have exponential dependence on the number of regressors d, as, even for

X = {0, 1}d, one would have to learn f(X) on 2d potentially unrelated inputs, requiring

prohibitively many training examples.

A learning algorithm receives as input training data Z =
〈
(X1, Y 1), . . . , (Xn, Y n)

〉

consisting of n independent samples distributed identically to the random variable

(X, Y). Our goal is to output a function h : X → [0, 1] that will predict f(X) well

on future, unseen examples, as measured by E[(h(X)− Y)2] or E[(h(X)− f(X))2].

Theorem 1. Let (X, Y) ∈ X × Y ⊆ [0, 1]d × [0, 1] be random variables distributed

according to a GAM f(x) = E[Y |X = x] = u
(∑d

i=1 vi(xi)
)

with nondecreasing differ-

entiable u : R → [0, 1] and arbitrary differentiable vi : [0, 1] → R, where |u′(a)| ≤ α

and |v′i(b)| ≤ β for all a ∈ R, b ∈ [0, 1], and 1 ≤ i ≤ d. For any δ > 0, with prob-

ability 1 − δ over a training data Z =
〈
(X1, Y 1), . . . , (Xn, Y n)

〉
of n i.i.d. samples of

(X, Y), the regression-graph learning algorithm of Section 3 outputs a regression graph

G : X → [0, 1] with,

E[(G(X)− Y)2] ≤ E[(f(X)− Y)2] +
3(1 + αβd) ln(5nd/δ)

n1/7
.

The runtime of the algorithm is O(dn10/7 log n).

For f = E[Y |X = x], a useful elementary identity is the following, for any function

h : X → R,

E[(h(X)− Y)2] = E[(h(X)− f(X))2] + E[(f(X)− Y)2]. (2)

2

Let us define three types of error of a function h : X → [0, 1],

ε(h) , E[(h(X)− Y)2] (generalization error)

ε(h,Z) , 1
n

n∑

i=1

(h(Xi)− Y i)2 (training error)

ξ(h) , E[(h(X)− f(X))2] (true error)

In these terms, equation (2) states that ε(h) = ξ(h) + ε(f). Since ξ(h) ≥ 0, ε(f) is the

minimum possible generalization error.

Theorem 1 thus states that the future error rate of the algorithms predictions on

unseen examples, i.e., the generalization error ε(G), approaches the optimal value ε(f)

(equivalently ξ(G) approaches 0) at an inverse polynomial rate. Moreover, the algorithm

is computationally efficient. Also essential is the fact that the above guarantee has very

good dependence on the dimensionality d, i.e., the number of regressors. Thus, in both

the convergence rate and computation time, we have avoided the curse of dimensionality.

For the class of GAMs defined above, this algorithm meets the computationally efficient

definition of “probabilistic-concept learner” of Kearns and Schapire (1994).

The algorithm we describe generates simple regression graphs with axis-parallel splits

(of the form xi < θ). The algorithm is a generalization of that of Mansour and McAllester

(2002) (hereinafter MM) and Kearns and Mansour (1999) (hereinafter KM) to the re-

gression setting. Each split is shown to reduce the error of the regression graph. We

show that this can be extended to a general boosting procedure, for combining predictors

with slight positively correlations with Y , to achieve a near optimal hypothesis.

1.1 Correlation boosting

More generally, the regression graph learning can be viewed as a boosting procedure,

which can be used to attempt to improve the performance of any regression algorithm.

Boosting is especially natural in the regression framework. For example, various predic-

tors are known correlate with diabetes, and new predictors continue to be discovered.

One would like to somehow combine these results to get very accurate predictions.

Clearly, this is impossible in general as all the studies may be uncovering the same fac-

tors. What we show here is that if these studies are done in a divide (and merge) and

conquer fashion, then as long as they achieve positive correlation with the data, the

error of the combined estimator will decrease.

In particular, suppose that one has a weak regression algorithm that can do reason-

ably well at estimating f(X), say it outputs h : X → [0, 1] with positive correlation

cor(h(X), f(X)) > 0. Then we can find a split of the form h(X) < θ for some θ ∈ [0, 1]

3

and use it in constructing a regression graph. Using recursion, we prove that a suit-

ably good weak correlator can be boosted to achieve a hypothesis of arbitrarily good

accuracy.

In binary classification, Kearns and Valiant (1988) suggested the idea that a weak

learner, one that guarantees error bounded below 1/2, can be used to build a strong

learner, with error arbitrarily close to 0. Schapire (1990) proved that this is possi-

ble via an efficient tree-like algorithm, and boosting is now a practical and popular

technique. Kearns and Mansour (1999) showed how to view decision tree learners as

a boosting procedure and Mansour and McAllester (2002) showed that decision graph

learners are efficient boosters. What we do here is the natural analog of these earlier

theorems. We define a weak correlator as an algorithm that is guaranteed to output h

with cor(h(X), f(X)) ≥ ρ (provided var(f(X)) > σ2) for some ρ, σ > 0, and we prove a

regression boosting theorem in the spirit of Schapire’s theorem.

1.2 Related work

KM and MM designed classification boosting algorithms using decision trees (also called

classification trees) and decision graphs, respectively. Our algorithm and boosting re-

sults are a generalization of theirs. The idea of decision graphs has independently been

suggested by practitioners, as well (Kohavi, 1995; Oliver, 1993). Related computation-

ally efficient algorithms for classification of noisy halfspaces (Blum et al., 1997) and other

interesting classes of functions have been considered. Perhaps most related, Bylander

(1993) considers an arbitrary GLM u(
∑

wixi) where u can be arbitrary and monotonic

but must be symmetric, u(0) = 1/2 and u(x) + u(−x) = 1.

The idea of boosting in a regression setting as opposed to a classification setting is

very natural, as evidenced by a large body of work on the subject (see, e.g., Buhlmann

and Yu, 2003). While much of this work is experimental, some of it is theoretical.

However, to the best of our knowledge, none of the prior work has, in the sense that we

do, provided theoretical guarantees relating weak to strong learning in the same spirit

as Schapire’s original boosting theorem.

Much work has been done on estimating GAM’s using other approaches. To the

best of our knowledge, none of this prior work has been proven to have avoid the curse

of dimensionality and have an inverse polynomial convergence rate, like our algorithm.

Recently, Horowitz and Mammen (2004) have given an efficient algorithm for learning

GAMs in with known link function, i.e., if u were known in advance. Their algorithm

does not suffer from the curse of dimensionality and has impressive optimal convergence

rates. Horowitz and Mammen also give a thorough summary of known results for other

procedures, such as backfitting.

4

x1>½

x2>½ x2>½

x3>½ x3>½ x3>½

x4>½ x4>½ x4>½ x4>½

0 0.25 0.50 0.75 1

Figure 1: A regression-graph representation of f(x) =
∑d

i=1 xi/d over the Boolean

hypercube X = {0, 1}d, for d = 4. The size of the regression graph, for general d, is

O(d2) but any regression tree requires a complete tree of size 2d+1 − 1, because every

attribute must be tested on every path from root to leaf.

While our algorithm does not have optimal convergence rates, the ability to learn

with an unknown link function is, of course, an interesting generalization. We believe

that the inverse polynomial guarantees from an computationally efficient algorithm are

somewhat surprising. This is especially so in light of the fact that removing any of

the assumptions in our main theorem most likely make the problem computationally

intractable, as argued in the next section.

2 GAMs and the curse of dimensionality

It is well-known that regression trees suffer from the curse of dimensionality. Figure 1

illustrates how a very simple GAM can be implemented by a regression graph (regression

graphs are formally defined in the next section). Even for this trivial d-dimensional

Generalized Linear Model, a regression graph of size O(2d) can represent the function,

while a regression tree would require size exponential in d. (It would require size Ω(2d)

even to approximate it to accuracy 1/d over the uniform distribution on {0, 1}d.) To

learn such a large regression tree would require a number of training examples and

computational complexity exponential in d.

Conversely, in low dimension, one can use more obvious approaches to learn GAMs.

For example, for small d, one can discretize the cube [0, 1]d into b blocks in each dimen-

sion. For each little cube, one computes the sample mean of those examples that lie in

that cube. Due to the bounded derivatives, the function cannot change significantly in

any block, for large enough b. Hence, for appropriate choice of b, simply estimating the

sample mean of the examples each blocks and outputting the corresponding piecewise

5

constant can be shown to be achieve an error rate that decreases to 0 at a rate that is

inversely polynomial in n, but exponential in d.

We now point out some inherent computational limitations of learning GAMs. There

are two assumptions in our main theorem that one might hope to remove. Unfortunately,

under standard assumptions, removing either of these assumptions would require super-

polynomial time in d. The first is the standard assumption that u is monotonically

nondecreasing. One would like to learn non-monotonic GAMs (removing the monotonic

assumption on u) as well. The second is the requirement that the data be truly of the

GAM form; it would be more natural to attempt to learn as well as the best GAM

without restricting f(x) = E[Y |X = x] to be a GAM. In other words, one would like to

achieve error ε(f∗αβ) for any random variables (X,Y) ∈ X × Y, where f∗αβ is a minimal

error GAM with derivatives bounded by α and β. We refer to this as learning as well

as the best GAM.

A classic learning problem is that of learning parity with noise. While the noiseless

version of this problem is efficiently solved using Gaussian elimination, the noisy version

has been conjectured to be computationally intractable in the number of dimensions

d, i.e., requiring time larger than any fixed polynomial in d. Moreover, it has been

proposed as the basis of cryptographic systems (Blum et al., 1994; Regev, 2005). The

fastest currently known algorithm for this problem has very poor runtime dependence

on d, namely 2O(d/ log d) (Blum et al., 2003). In Appendix A, we define the hardness

of learning parity with noise assumption, and observe that it implies the difficulty of

removing either of the two assumptions:

Observation 1. Efficiently learning GAMs without the monotonicity assumption is at

least as difficult as learning parity with noise. Similarly, learning as well as the best

GAM is at least as difficult as learning parity with noise.

3 Regression Graphs: Definitions and Learning

A regression graph is a function G : X → [0, 1]. With a slight abuse of notation, we let

G also denote its representation as an annotated graph. It is a directed acyclic graph

with a root node. The size of G, |G|, is defined to be the number of nodes in the graph.

A leaf is a node with no outgoing edges. Each leaf ` is annotated with a prediction value

p` ∈ [0, 1]. Each internal node v has exactly two outgoing edges, labeled 0 and 1, and

is annotated with a binary split predicate Pv : X → {0, 1}. Each x ∈ X is mapped to

a leaf, by beginning at the root, and at internal node v, following the edge labeled by

Pv(x), until a leaf is reached. We define the set X` ⊆ X to be the set of x that are

mapped to leaf `. Hence G naturally partitions X into sets X`. Finally, G(x) = p` for

6

G ∈ G A regression graph from the set G of regression graphs.

|G| ∈ N The size (number of nodes) of regression graph G ∈ G.

G(x) ∈ [0, 1] The prediction of regression graph G on x ∈ X .

X` ⊆ X The subset of X that is mapped to leaf `.

(X`, Y`) The random variables (X, Y) conditioned on X ∈ X`.

p` The leaf prediction value of leaf `, i.e. G(x) = p` for all x ∈ X`.

w` The weight of leaf ` (for sample Z), w` =
∣∣{i | Xi ∈ X`}

∣∣ /n.

Figure 2: Regression graph notation.

the unique leaf ` such that x ∈ X`.

In the regression graph in Figure 1, the 0-labeled edges are those going left and

the 1-labeled edges are those going right. The split predicates are indicator functions

I [xi > 1/2], which is 1 if xi > 1/2 (equivalently xi = 1), and 0 otherwise.

Define a data-calibrated regression graph G to be one where for each leaf `, p` is the

empirical mean of the samples Y i such that Xi ∈ X`. The algorithm will generate a

data-calibrated graph. Define an axis-parallel split to be one of the form xi < θ for some

i ∈ [d] and θ ∈ [0, 1]. The algorithm will employ only axis-parallel splits. Moreover,

for each split, it will greedily choose an axis-parallel split that minimizes the empirical

error of the resulting data-calibrated regression graph. For simplicity, the algorithm’s

splits will all be of the form xi < Xj
i for some Xj from the data set. The algorithm is

presented in Figure 3.

To merge two leaves, we simply remove one from the graph and move all incoming

edges from that leaf to the remaining one, and reset the new leaf’s prediction value to

maintain the data-calibration property. Hence, the merger of two leaves reduces the size

of the graph by 1. Each iteration t = 1, 2, . . . , increases the size of the graph by at most

one. Furthermore, by design it also does not increase the empirical error on the sample.

This is because the first step cannot increase the empirical error and the second step

increases the empirical error by an amount no larger than (one third of) the decrease

achieved by the first step.

We note that the algorithm described in Figure 3 differs from that of MM in a few

ways. First, MM uses a slightly different splitting criterion. Second, our algorithm is

designed for regression, outputting G : X → [0, 1]. In contrast, MM was concerned

with classification and rounded all predictions to output G : X → {0, 1}. Third, MM

merged based on buckets: 0 = s0 < s1 . . . < sm = 1 were selected ahead of time, and

all leaves with p` in the same interval [si, si+1) were merged together. Our algorithm

performs greedy but adaptive merging like the classification algorithm of Kalai and

Servedio (2003). This has the advantage that we do not need to specify the buckets si,

7

Input: data Z = (X1, Y 1), . . . , (Xn, Y n) ∈ ([0, 1]d × [0, 1])n.

Begin with the trivial one-node graph (X` = X). For each leaf ` created by alg.:

• Compute w` :=
∣∣{i | Xi ∈ X`}

∣∣ /n and p` :=
∑

i:Xi∈X`
Y i/

∣∣{i | Xi ∈ X`}
∣∣.

• For each i ∈ [d], j ∈ [n], compute ∆`,i,j , the decrease in ε(G,Z) (equivalently

in
∑

` w`p`(1−p`)) due to the potential split of leaf ` using predicate xi < Xj
i .

For t := 1, 2, . . . , n3/7 :

1. Split: Let ∆t := max`,i∈[d],j∈[n] ∆`,i,j , and perform the corresponding current

best axis-parallel split of G, i.e., one with maximal ∆`,i,j .

2. Merge(s):

(a) Let ∇t := 0.

(b) Sort leaves so that p`1 ≤ p`2 ≤ For each i, let ∇t
i be the increase in

ε(G,Z) that would result from merging leaves `i and `i+1.

(c) If ∇t + mini∇t
i ≤ ∆t/3 then: for the minimizing i, merge `i and `i+1,

set ∇t := ∇t +∇t
i, and GOTO (b).

Return the resulting graph G after t = n3/7 splits.

Figure 3: The regression graph learning algorithm.

8

whose separation depends on parameters not know in advance. In addition, the merging

follows a greedy approach in the same spirit as the splitting. Lastly, MM consider

abstract classes of splits and not axis-parallel splits in particular.

Note that the empirical error of a data-calibrated G obeys the following identity,

ε(G,Z) +
1
n

n∑

i=1

Y i(1− Y i) =
∑

`

w`p`(1− p`). (3)

This can be shown by verifying that, for any leaf `,

1
n

∑

i:Xi∈X`

(
(Y i − p`)2 + Y i(1− Y i)

)
= w`p`(1− p`).

Equation (3) is simply the sum, over all leaves `, of the above. Hence, a decrease of

∆ in ε(G,Z) is equivalent to a decrease of ∆ in
∑

` w`p`(1 − p`). This latter measure,

known as the “Gini” splitting criterion, is one of the most common in practice. Thus,

the algorithm we propose is very similar to the most common regression tree learning

algorithms, except for the merges and hard stopping rule. Stopping is more commonly

performed by building a complete tree and then pruning using an independent held-

out data set. We chose the fixed-size stopping rule for ease of presentation, though an

analysis with pruning could be performed, as well.

Runtime: Regression tree learning algorithms are known for their speed. However,

one may be concerned that the regression graph algorithm of Figure 3 is significantly

slower due to merging. In this section, we argue that the above algorithm can be

implemented in time O(dn10/7 log n). Each iteration of the loop is extremely fast, and

can be performed in a single pass through the at most n3/7 leaves (as long as the leaves

are maintained in sorted order), thus they contribute at most n6/7 to the runtime. The

expensive step is computing all of the ∆`,i,j for each new leaf ` (the computation of p`

and w` is straightforward in O(n) time). This can be computed in time O(dn log n).

To do this, for each i ∈ [d], we take the ≤ n data that fall into this leaf and sort

them by their ith coordinate, Xj
i , in time O(n log n). We now iterate through the leaf’s

data in this order, maintaining running totals of
∑

Y k and
∑

(Y k)2. From this, it is

straightforward to compute ∆`,i,j for each j. Iterating over i ∈ [d] can be done in time

O(dn log n). Since there are at most 3n3/7 new leaves created (each of the n3/7 splits

creates two new leaves, each merge creates one new leaf, and the number of merges is

less than the number of splits). Hence, the total runtime is O(dn10/7 log n), in the RAM

model of computing where arithmetic operations can be carried out in unit time.

9

4 GAM Analysis

In this section, we prove of the following which, with the above discussion of runtime,

immediately implies Theorem 1.

Theorem 2. Let (X, Y) ∈ X × Y ⊆ [0, 1]d × [0, 1] be random variables distributed

according to a GAM f(x) = E[Y |X = x] = u
(∑d

i=1 vi(xi)
)

with nondecreasing k-

Lipschitz u : R→ [0, 1] and vi : [0, 1] → R of bounded variation Vvi
. For any δ > 0, with

probability 1−δ over a training data Z =
〈
(X1, Y 1), . . . , (Xn, Y n)

〉
of n i.i.d. samples of

(X, Y), the regression-graph learning algorithm of Section 3 outputs a regression graph

G : X → [0, 1] with,

ε(G) ≤ ε(f) +
3(1 + kV) ln(5nd/δ)

n1/7
,

where V =
∑d

i=1 Vvi .

The function u : R → [0, 1] is k-Lipschitz continuous if |u(a)− u(b)| ≤ k |a− b| for

all a, b ∈ R. A Lipschitz function is one that is 1-Lipschitz continuous. A differentiable

function u is α-Lipschitz if |u′(a)| ≤ α for all a ∈ R. The total variation of vi : [0, 1] → R,

Vvi , is defined to be the following maximum over all increasing sequences of ai ∈ R.

Vvi = sup
m∈Z

sup
0=a0<a1<...<am=1

m−1∑

j=0

|vi(aj+1)− vi(aj)|.

For monotonic vi, Vvi = |vi(0) − vi(1)|, and for differentiable vi, Vvi =
∫ 1

0
|v′i(a)|da.

Hence a differentiable function vi with |v′i(a)| ≤ β has Vvi ≤ β. Thus it is clear that

Theorem 2 implies Theorem 1, because k ≤ α and V =
∑d

i=1 Vvi ≤ dβ.

WLOG we can assume that k = 1. This is because we can always replace u(a) with

u(a/k), and vi(a) with kvi(a), without changing f , yet the new functions u and vi are

1-Lipschitz and of bounded variation kVi, respectively. Thus the quantity kV remains

fixed but u has become Lipschitz. For the remainder of the analysis, we refer to a GAM

with parameter V to be one in which u is Lipschitz and V =
∑

Vvi . Also, it may appear

that the definition of a GAM requires X of full support, otherwise E[Y |X = x] is not

well defined. However, we only require that there exists an f of the above form such

that f agrees with E[Y |X = x] where defined.

While the regression graph learning algorithm attempts to minimize empirical error

ε(G,Z), we would like to prove a bound on the generalization error ε(G). To this end, we

show a uniform convergence result, also called a generalization bound: with high prob-

ability, every regression graph (of every size) has empirical error near its generalization

error. More precisely,

10

Theorem 3. For any n ≥ 1, δ > 0,

PZ

[
∃G ∈ G s.t. |ε(G,Z)− ε(G)| > 3.8

√
|G| ln(3dn|G|/δ)

n

]
≤ δ.

We prove the above Theorem in Appendix C. We will use this theorem in combina-

tion with showing that the generalization error decreases rapidly. To this end, we first

bound how much merging affects the empirical error.

Lemma 1. Given a regression graph G ∈ G with N leaves, there exists a merger of

adjacent leaves that increases ε(G,Z) by at most 8/N3.

Proof. Order the leaves `1, `2, . . . , `N so that p`1 ≤ p`2 ≤ . . . ≤ p`N . Imagine merging

leaves p`i
and p`j

into a single leaf. The weight would be w`i
+w`j

and prediction value

(w`ip`i +w`j p`j)/(w`i +w`j). Using the fact from (3) that ε(G,Z) = c−∑
` w`p

2
` , simple

algebra shows that the merger increases ε(G,Z) by,

w`ip
2
`i

+ w`j p
2
`j
− (w`i + w`j)

(
w`ip`i + w`j p`j

w`i + w`j

)2

=
w`iw`j

w`i + w`j

(p`i − p`j)
2 (4)

Since
∑

i w`i = 1, less than half of the leaves can have w`i > 2/N . Similarly, since∑
i |p`i+1 − p`i | ≤ 1, less than half of the leaves have |p`i+1 − p`i | > 2/N . Hence there

must be some leaf `i with both w`i ≤ 2/N and |p`i+1 − p`i | ≤ 2/N .

Thus the amount of the increase is at most:

w`iw`i+1

w`i + w`i+1

(p`i − p`i+1)
2 ≤ (2/N)w`i+1

w`i + w`i+1

(
2
N

)2

≤ 8
N3

.

4.1 Existence of a correlated split

We denote the covariance of random variables A and B by cov(A,B) = E[AB] −
E[A]E[B], the variance by var(A) = cov(A,A), and their correlation coefficient by

cor(A,B) = cov(A,B)/
√

var(A)var(B). We will use the symmetry and bilinearity of

covariance, cov(A,B) = cov(B,A) and cov(A,B + C) = cov(A,B) + cov(A,C). We will

also use the following identity. Let (Â, B̂) be distributed independently and exactly as

(A,B). Then,

E[(A− Â)(B − B̂)] = E[AB] + E[ÂB̂]−E[Â]E[B]−E[A]E[B̂] = 2cov(A,B) (5)

From this, we can see that if A is binary, A ∈ {0, 1}, then,

cov(A,B) =
1
2
E[(A− Â)(B − B̂)] = P[A = 1]P[A = 0](E[B|A = 1]−E[B|A = 0]) (6)

This also implies the usual identity for binary A, var(A) = P[A = 1]P[A = 0].

In this section, we show that, for any GAM, there is an axis-parallel initial split

h : X → {0, 1} that has large covariance cov(h(X), Y) = cov(h(X), f(X)).

11

Lemma 2. Let u : R→ R be any monotonically nondecreasing Lipschitz function, and

Z be any real-valued random variable. Then, cov(u(Z), Z) ≥ var(u(Z)).

Proof. Let t : R → R be defined by t(a) = a − u(a). Note that, since u is Lipschitz,

t is nondecreasing as well. By the bilinearity of covariance, and since var(u(Z)) =

cov(u(Z), u(Z)), the statement of the lemma can be rewritten as cov(u(Z), t(Z)) ≥ 0.

Using (5) with Ẑ distributed independently and exactly as Z,

2cov(u(Z), t(Z)) = E[
(
u(Z)− u(Ẑ)

)(
t(Z)− t(Ẑ)

)
] ≥ 0.

This holds because u(Z)−u(Ẑ) and t(Z)−t(Ẑ) have the same sign, by monotonicity.

Finally, we can state and prove a key property of GAMs.

Lemma 3. Let f : X → R be of the form f(x) = u
(∑d

i=1 vi(xi)
)
, where u : R→ R is

nondecreasing and Liptschitz, each vi : [0, 1] → R is a function of bounded variation Vvi
,

and V =
∑

Vvi . Then, for any random variable X ∈ X , there exists an axis-parallel

split h : X → {0, 1}, such that |cov(h(X), f(X))| ≥ var(f(X))/V.

Proof. The proof is by the probabilistic method. We argue that a random axis-parallel

split drawn from a certain distribution has the desired property, in expectation. Hence,

there must be some axis-parallel split that has the desired property.

A theorem from real analysis states that every function v of bounded variation Vv

can be written as the sum of a monotonically nondecreasing function s : [0, 1] → R
and a monotonically nonincreasing function t : [0, 1] → R with Vv = Vs + Vt (e.g.

Royden, 1988). Hence, we can assume each vi is either monotonically nonincreasing or

monotonically decreasing, by increasing d to d′ = 2d, without changing V . Since the

theorem has no dependence on d, this is without loss of generality.

Also without loss of generality, by monotonicity, we can translate each vi (and u) so

that vi : [0, 1] → [0, Vvi]. Now we argue that a random threshold function of a random

attribute will have large covariance. Observe that for any fixed z ∈ [0, 1] and uniformly

random r ∈ [0, 1], Er∈[0,1][I [z ≥ r]] = z. Then, since vi(xi)/Vvi ∈ [0, 1],

vi(xi)
Vvi

= Er∈[0,1]

[
I
[
vi(xi)
Vvi

≥ r

]]

Choose i ∈ [d′] from the discrete distribution with P (i) = Vvi/V . Then,

Ei←P,r∈[0,1]

[
I
[
vi(xi)
Vvi

≥ r

]]
=

d′∑

i=1

Vvi

V
Er∈[0,1]

[
I
[
vi(xi)
Vvi

≥ r

]]

=
d′∑

i=1

vi(xi)
V

=
1
V

d′∑

i=1

vi(xi).

12

By the bilinearity of covariance, the above, and the fact that covariance is immune to

shifts, for any random variable X ∈ X ,

Ei←P,r∈[0,1] [cov(f(X), I [vi(Xi) ≥ rVi])] = cov(f(X),Ei,r[I [vi(Xi) ≥ rVi]])

= cov(f(X),
1
V

∑
vi(Xi))

=
cov(f(X),

∑
vi(Xi))

V

From Lemma 2, the last quantity is at least var(f(X))/V . Since the above holds in

expectation, there must be an i and r for which it holds instantaneously. Finally, since

WLOG vi is monotonic, I [vi(xi) ≥ rVvi
] is equivalent to an axis-parallel split I [xi ¦ θ]

for some θ ∈ R and ¦ ∈ {<, >,≤,≥}.

The dependence on var(f(X)) in the above lemma is necessary. For example, if

var(f(X)) = 0, then cov(h(X), f(X)) must also be 0 for any h : X → R.

4.2 Reducing generalization error by axis-parallel splits

Analogous to data-calibrated regression graphs, define a calibrated regression graph (with

respect to the distribution over (X,Y)) to be one for which p` = E[Y |X ∈ `] for each

leaf `. We denote the set of calibrated regression graphs by Ḡ ⊂ G. For any graph

G ∈ G, we denote by Ḡ ∈ Ḡ the calibrated version of G, i.e., identical to G except with

leaf predictions p` = E[Y |X ∈ `]. We use overbars to indicate the fact that a graph Ḡ

is calibrated (with respect to the underlying distribution over (X,Y)).

Even though we cannot generate such perfectly calibrated graphs, it will be helpful

to consider them for the purposes of analysis. In this section, we show:

Lemma 4. For any GAM with parameter V and any calibrated regression graph Ḡ ∈ Ḡ,

there is a graph H̄ ∈ Ḡ formed by splitting each leaf of Ḡ once by an axis-parallel split,

with

ε(Ḡ)− ε(H̄) = ξ(Ḡ)− ξ(H̄) ≥ (
2ξ(Ḡ)/V

)2
.

Hence by at most tripling the size of a graph G, we can reduce its generalization

error by (2ξ(Ḡ)/V)2. For any ` ⊆ X , let (X`, Y`) be random variables distributed like

(X, Y) according to the restriction X ∈ `. That is,

P[(X`, Y`) ∈ S] =
P[(X, Y) ∈ S ∧X ∈ `]

P[X ∈ `]
for all S ⊆ X × Y.

(Of course the above should hold for measurable sets S. We remark that, for readability,

we have left off measurability requirements in several places. Readers can easily verify

that the appropriately qualified theorems and arguments hold for measurable functions

13

u and vi. More simply, they hold without further conditions for finite X ⊂ [0, 1] since

each vi and u is determined based on its values at a finite number of points.)

For any calibrated regression graph Ḡ ∈ Ḡ, we can write the quality of a leaf split in

terms of covariance and X`,

Lemma 5. Let h : X → {0, 1} be a binary function and Ḡ ∈ Ḡ be a calibrated regression

graph. The split of leaf ` into (calibrated) leaves by the predicate h : X → {0, 1} reduces

ε(Ḡ) (equivalently ξ(Ḡ)) by P [x ∈ X`](cov(f(X`), h(X`)))2/var(h(X`)).

Proof. In the proof of Lemma 1, eq. (4), we argue that, for data-calibrated graphs,

merging two leaves `i and `j increases ε(G,Z) by,

w`iw`j

w`i
+ w`j

(p`i
− p`j

)2.

By the same argument, merging two leaves in a calibrated graph increases ε(G) by,

P[X ∈ X`i]P[X ∈ X`j]
P[X ∈ X`i] + P[X ∈ X`j]

(
E[Y`i]−E[Y`j]

)2
. (7)

One can also see this by imagining the data set size going to infinity, so that ε(G,Z) →
ε(G), w` → P[X ∈ X`], and p` → E[Y`]. Similarly, splitting a leaf ` into two leaves `i

and `j decreases ε(G) by the same amount above, because a split is exactly the opposite

of a merge.

Suppose that h splits the leaf ` into `0 where h(X) = 0 and `1 where h(X) = 1.

Then, by (6), since h is binary,

cov(h(X`), f(X`)) = P[h(X`) = 1]P[h(X`) = 0](E[f(X`1)]−E[f(X`0)])

=
P[X ∈ X`0]P[X ∈ X`1]

P[X ∈ X`]2
(E[Y`1]−E[Y`0]).

Also, var(h(X`)) = P[X ∈ X`0]P[X ∈ X`1]/P[X ∈ X`]2. Combining these with (7) and

P[X ∈ X`] = P[X ∈ X`0] + P[X ∈ X`1] gives the lemma.

We are now ready to prove Lemma 4.

Proof of Lemma 4. By Lemma 5, the reduction in ε(Ḡ) due to a split h` : X → {0, 1}
on leaf ` is at least 4P [X ∈ X`](cov(f(X`), h`(X`)))2 since the variance of a {0, 1}
random variable is at most 1/4. By Lemma 3, for each leaf `, there is an axis-parallel

split h` : X → {0, 1} with cov(f(X`), h`(X`)) ≥ var(f(X`))/V . This follows from the

fact that the random variables (X`, Y`) are also distributed according to a GAM with

parameter at most V . Hence, there is a way to split each leaf so that the total reduction

14

in ε(Ḡ) is at least,

ξ(Ḡ)− ξ(H̄) ≥
∑

`

4w`(cov(f(X`), h`(X`)))2

≥ 4
V 2

∑

`

w`(var(f(X`)))2

≥ 4
V 2

(∑

`

w`var(f(X`))

)2

(by convexity of x2)

Finally, since Ḡ is calibrated, we have,

ξ(Ḡ) =
∑

`

w`E
[
(f(X)− p`)2|X ∈ `

]
=

∑

`

w`var(f(X`)).

4.3 Proof of Theorem 2

Let q(Z) be,

q(Z) = max
G∈G,|G|≤3n3/7

|ε(G)− ε(G,Z)| (8)

We can now state the progress rate in terms of q(Z).

Lemma 6. Let Gt be the regression graph after t steps. Then, for t ≤ n3/7,

ε(Gt,Z) ≤ ε(f) + q(Z) + (V/2)
√

(2/t)2/3 + 2q(Z). (9)

Proof. Suppose not. Since ε(Gi,Z) is nonincreasing in i, this means that for all 1 ≤ i ≤ t,

ε(Gi,Z) ≥ ε(f) + q(Z) + (V/2)
√

b + 2q(Z), (10)

where b = (2/t)2/3. We first argue that this means that ∆i ≥ b/|Gi|, for each i.

To see this, let Ḡi be the calibrated version of regression graph Gi. Since ε(Ḡi) ≥
ε(Ḡi,Z)− q(Z) ≥ ε(Gi,Z)− q(Z), we have,

ξ(Ḡi) = ε(Ḡi)− ε(f) ≥ ε(Gi,Z)− q(Z)− ε(f) ≥ (V/2)
√

b + 2q(Z).

Let H̄i be the graph formed by splitting each leaf of Ḡi by an axis-parallel split as

guaranteed in Lemma 4, so

ε(H̄i) ≤ ε(Ḡi)− (2ξ(Ḡi)/V)2 ≤ ε(Ḡi)− b− 2q(Z) ≤ ε(Gi)− b− 2q(Z).

Since |H̄i| ≤ 3|Gi| ≤ 3n3/7, we have that both |ε(H̄i)−ε(H̄i,Z)|, |ε(Gi)−ε(Gi,Z)| ≤
q(Z). Together with the above displayed equation, this implies that ε(H̄i,Z) ≤ ε(Gi,Z)−
b. Thus, the total reduction due to at most |Gi| splits is b, there must be one axis-parallel

split that gives a reduction of at least b/|Gi|. Moreover, the algorithm chooses the axis-

parallel split to maximize ∆i, so ∆i ≥ b/|Gi|.

15

On the other hand, we now argue that |Gi| ≤ 5b−1/2, for each 1 ≤ i ≤ t. If not,

then for some i, |Gi| ≤ 5b−1/2 < |Gi+1|, we did a split on graph Gi to get Gi+1 with

|Gi+1| = |Gi| + 1. In other words, we did a split but no merges. Now, by Lemma 1,

there would have been some merger of adjacent nodes in Gi+1 that increases empirical

error by at most 8/|Gi+1|3 < 8/(5b−1/2)3 = 8b3/2/125 < b3/2/15. However, since this

increase is less than ∆i/3 ≥ b/(3|Gi|) ≥ b/(3 · 5b−1/2) = b3/2/15, we would have done a

merger on step i, and we have a contradiction. Thus |Gi| ≤ 5b−1/2 for all 1 ≤ i ≤ t.

Since ∆i ≥ b/|Gi| ≥ b3/2/5, for all i, we have that the decrease ε(Gi,Z)−ε(Gi+1,Z) =

∆i−∇i ≥ (2/3)b3/2/5. By our choice of b = (2/t)2/3, this reduction in empirical error is

at least (2/3)(2/t)/5 ≥ 1/(4t). Hence, if equation (10) held for each 1 ≤ i ≤ t, then we

would have a total reduction in empirical error of 1/4. However, ε(G1,Z) ≤ 1/4, so we

cannot have this large a reduction in empirical error for t steps. Hence, equation (10)

must fail to hold for some i ≤ t and must also fail for i = t.

Theorem 2 now follows simply from the previous Lemma and the bounds on q(Z).

Proof of Theorem 2. The algorithm generates a graph G of size at most |G| ≤ n3/7. By

Theorem 3 and the fact that q(Z) is a maximum over graphs of size 3n3/7, we have that

with probability 1− δ,

q(Z) ≤ 3.8

√
3n3/7 ln(9dn10/7/δ)

n
= 3.8

√
3

n4/7

10
7

ln(n(9d/δ)7/10) ≤ 8n−2/7
√

ln(5nd/δ).

By the previous Lemma, after n3/7 steps,

ε(G) ≤ ε(f) + q(Z) + (V/2)
√

(2n−3/7)2/3 + 2q(Z)

≤ ε(f) + q(Z) + V
√

n−2/7 + q(Z)

≤ ε(f) + (1 + V)
√

n−2/7 + q(Z) (since q(Z) ≤ 1)

≤ ε(f) + (1 + V)
√

9n−2/7
√

ln(5nd/δ).

This completes the proof of the theorem.

5 Correlation boosting

In this section we generalize the previous algorithm and analysis, and adopt the conven-

tions commonly used in PAC learning, which nicely capture the polynomial dependence

on accuracy, sample size, and runtime, as well as the curse of dimensionality. Keeping

Y ⊆ [0, 1], we consider a general set X and a general family F of functions f : X → [0, 1].

In this section, we suppose that the learning algorithm is given an example oracle Z

16

which supplies an unlimited number of examples distributed i.i.d. like (X,Y). This can

be thought of as a button: when the algorithm wants an example (Xi, Y i), it pushes the

Z button and, in unit time, receives examples distributed with f(x) = E[Y |X = x] ∈ F .

The limitation on quantity is solely based on its runtime — the number of examples

it uses is of course no larger than its runtime. Following the definitions of Kearns and

Schapire (1994), we use the following definition for computationally efficient learnability

for a regression problem (analogous to PAC learning for classification).

Definition 1. Algorithm A efficiently learns family F of functions f : X → [0, 1] if,

given inputs ε, δ > 0, and an example oracle, where f(x) = E[Y |X = x] ∈ F , with

probability 1−δ it outputs h : X → [0, 1] such that ε(h) ≤ ε and uses runtime (and hence

number of examples) polynomial in 1/ε and 1/δ.

Put another way, the error rate ε(h) of the algorithm’s output is inverse polynomial

in its runtime and hence in the number of examples it uses, i.e., given n examples, it is

at most c1n
−c2 for c1, c2 > 0. However, it will be more convenient here to operate in the

PAC-style of bounding the number of examples and runtime required to achieve error ε

with probability 1− δ.

For example, we have shown that the class of d-dimensional GAMs of parameter

V is efficiently learnable. To capture the curse of dimensionality, a sequence of sets

Xd ⊆ [0, 1]d and families of functions Fd for d = 1, 2, . . ., algorithms work for every d,

and efficiency requires a polynomial dependence on d as well. For notational simplicity,

we have not included this aspect, though it could easily be added to the model, and we

have shown that learning GAMs is efficient in this sense as well.

In analogy with a γ-weak learner in classification (that achieves accuracy Pr[h(X) =

Y] ≥ 1/2 + γ), we define a ρ-weak correlator. In order to guarantee any positive cor-

relation, we need some dependence on var(f(X)). If var(f(X)) = 0, no correlation is

possible, and in general, more data may be required and smaller correlation may be

guaranteed when var(f(X)) is small.

Definition 2. For ρ : [0, 1] → [0, 1] a ρ-weak correlator for a family of functions F is

an algorithm that takes as input a parameter ε and an example oracle and outputs h :

X → R. For any ε > 0 and distribution over (X, Y) such that f(x) = E[Y |X = x] ∈ F
and var(f(X)) ≥ ε, with probability at least 3/4 over examples from the sample oracle,

it outputs a hypothesis h : X → R such that cor(h(X), f(X)) ≥ ρ(ε).

A weak correlator is efficient if the runtime and 1/ρ(ε) are smaller than some poly-

nomial in 1/ε. For the class of functions F that are GAMs with parameter V , Lemma 3

implies that there is an axis-parallel split that has cor(h(X), f(X)) ≥ cov(h(X), f(X)) ≥
σ2/V . Hence, the algorithm that finds the most correlated split is, ignoring sampling

17

error, a ρ(ε) = ε/V weak-correlator. One may be tempted to more simply define a

V -weak-correlator as one for which cor(h(X), f(X)) ≥ var(f(X))/V . However, as the

example in Section 5.1 illustrates, there are natural examples where the guaranteed

correlation is only polynomial in var(f(X)).

The main theorem of this section is the following.

Theorem 4. There is a boosting algorithm and a polynomial q(·) such that, given as

input a ρ-weak correlator for F , ε, δ > 0, and examples distributed with f(x) = E[Y |X =

x] ∈ F , with probability 1− δ, outputs h such that ε(h) ≤ ε(f)+ ε. The algorithm makes

less than q(1/(δερ(ε))) calls to the weak correlator (with parameter ε/2), and uses at

most an additional q(1/δερ(ε))) runtime and examples.

In order to use the regression graph algorithm, we need binary split predicates, but

the weak correlator outputs h : X → R, a real-valued function. The following lemma is

helpful for this:

Lemma 7. Let S ∈ [0, 1] be a random variable and T ∈ R be a positively correlated

random variable. Then there exists some threshold θ ∈ R such that the indicator random

variable I [T ≥ θ] has correlation near cor(S, T),

cor(S, I [T ≥ θ]) ≥ 1
3

(
log

3
cor(S, T)var(S)

)−1/2

cor(S, T).

Most importantly, the only dependence on T is through cor(S, T) and not var(T) or

bounds on T . We prove Lemma 7 in Appendix B.

For simplicity, KM, MM, and Kalai and Servedio (2003) model their problems as-

suming that they can compute E[Y`] and P[X ∈ X`] exactly. In other words, they have

an idealized model with an infinite data sets on which they can compute these quantities

exactly. This simplifying assumption makes their analysis more understandable, at the

cost of less concrete bounds and algorithms. As they correctly argue, this assumption

does not qualitatively change their results to within a polynomial factor, because each of

these quantities can be estimated to sufficient additive accuracy τ , with probability 1−δ,

with a number of additional examples that is polynomial in 1/τ and log 1/δ. In the GAM

analysis, for completeness, we have gone through the painstaking process of proving a

generalization bound and analyzing the realistic algorithm that cannot compute these

quantities exactly. In this section, we begin by following the precedent of KM and the

others by analyzing a hypothetical algorithm for which p` = E[Y`] and w` = P[X ∈ X`]

and we have an oracle that can compute these quantities for any potential leaf in unit

time. We also assume that we have an idealized ρ-weak correlator, which is an idealized

algorithm that takes random variables (X, Y) as input, and outputs an h : X → R such

that cor(h(X), f(X)) ≥ ρ(var(f(X))). Note that the idealized weak correlator takes the

18

Input: T > 0, an idealized weak correlator for C, and an oracle that computes

w` = P[X ∈ X`] and p` = E[Y`] for any potential leaf `.

Begin with the trivial one-node graph (X` = X). For each leaf ` created by alg.:

• Compute w` := P[X ∈ X`] and p` := E[Y`] using the oracle.

• Run the idealized weak correlator on (X`, Y`) to get h` : X → R. Choose θ`

so as to maximize the decrease in ε(G) (equivalently in
∑

` p`(1− p`)) due to

the best split of leaf ` using predicate h`(x) < θ`, and let ∆` be this decrease.

For t := 1, 2, . . . , T :

1. Split: Let ∆t := max` ∆`, and split the corresponding maximizing `.

2. Merge(s):

(a) Let ∇t := 0.

(b) Sort leaves so that p`1 ≤ p`2 ≤ For each i, let ∇t
i be the increase in

ε(G,Z) that would result from merging leaves `i and `i+1.

(c) If ∇t + mini∇t
i ≤ ∆t/3 then: for the minimizing i, merge `i and `i+1,

set ∇t := ∇t +∇t
i, and GOTO (b).

Figure 4: The idealized correlation boosting algorithm.

distribution itself as input, and it succeeds with probability 1 rather than 3/4. We later

justify why these idealizations suffice to obtain Theorem 4.

Lemma 8. Given an idealized ρ-weak correlator and an oracle for exactly computing

p` = E[Y`] and w` = P[X ∈ X`], if f(x) = E[Y |X = x] ∈ C then the idealized boosting

algorithm of Figure 4 outputs a graph with error at most ε(f) + ε after

t ≥
(

6
√

ln(6/ρ(ε/2)ε)
ρ(ε/2)

√
ε

)3

iterations. The idealized weak correlator is called with parameter ε/2.

Proof. The proof is straightforward given the existing lemmas. Say at step t, ξ(G) > ε

and there are Lt leaves. As shown in Lemma 4, ξ(G) =
∑

` w`var(f(X`)). Then the

sum of w`var(f(X`)) over leaves with var(f(X`)) ≤ ε/2 is at most ε/2. Hence, the sum

over leaves with var(f(X`)) > ε/2 is at least ε/2, and there must be some leaf ` with

var(f(X`)) > ε/2 and w`var(f(X`)) ≥ ε/(2Lt). Consider this leaf `. By definition, the

(ρ, σ)-weak correlator must have output a h` : X → R such that cor(h`(X`), f(X`)) ≥

19

ρ(ε/2). For succinctness, write ρ = ρ(ε/2). By Lemma 7, the binary split P`(x) =

I [h`(x) ≤ θ`] achieves cor(P`(X`), f(X`)) ≥ ρ/(3
√

ln(6/ρε)). By Lemma 5, this split

reduces ε(G) by

∆t ≥ w`
cov(f(X`), P`(X`))2

var(P`(X`))
= w`varf(X`)cor(f(X`), P`(X`))2 ≥ ερ2

18Lt ln(6/ρε)
.

By Lemma 1, there is a merge that increases ε(G) by at most 8/L3
t . Hence if,

1
3

ερ2

18Lt ln(6/ρε)
≥ 8

L3
t

⇐⇒ Lt ≥ 12
ρ
√

ε

√
3 ln(6/ρε),

then we would certainly merge. Thus, as long as ξ(G) > ε, there will never be more

than Lt ≤ 12ρ−1ε−1/2
√

3 ln(6/ρε) leaves. Since the net reduction in each step is at least

(2/3)∆t ≥ ερ2/(27Lt ln(6/ρσ)), and ε(G) ∈ [0, 1/4], then after

1
4

27 ln(6/ρσ)
ερ2

12
ρ
√

ε

√
3 ln(6/ρε) ≤

(
6
√

ln(6/ρσ)
ρ
√

ε

)3

steps, ε(G) ≤ ε.

Finally, it suffices to run the above the algorithm given only estimates of w` and

p` that are accurate to an additive, say, τ = ε4ρ4/10, to be safe. This will guarantee

that we will get the same reduction in ε(G) per step, up to a constant factor. The

number of such estimates that are required is at most O(T). Estimating w` for all of

these is easy, and can be done to accuracy τ using O(log(T/δ)/τ2) samples, with error

probability, say, δ/10. To be safe, one could even use fresh data to estimate each of

the quantities. Estimating p` is more difficult, especially when w` is small. However,

if the weak learner outputs a split with w` very small for one of the leaves, say ≤ 2τ ,

we do not need to estimate p` since we know this split cannot reduce ε(G) significantly.

Furthermore, for w` larger than τ , we can estimate each p` using O(log(T/δ)/τ4) fresh

examples, with error probability δ/10. Furthermore, we can use a non-idealized weak

correlator that has failure probability 1/4. We can run each one O(log(T/δ)) times and

take the best split as measured by O(log(T/δ)/τ4) examples, so that with probability

at least 1 − δ/10, we find a sufficiently good split for each leaf. Finally, there is no

guarantee about what happens when we run the weak-correlator with parameter ε/2

but on a leaf with var(f(X`)) < ε/2. Within the definition, the algorithm might not

even terminate. Hence, we can run each weak correlator for a specified number of steps

(or all in parallel) and abort any that are taking too long. This analysis can, at length,

be formalized to prove Theorem 4, and the parameters and algorithm could of course

be improved. However, the above analysis suffices to quickly see that the polynomial

guarantees apply.

20

x1=1

x2=1 x4=0

x3=0 x3=1

0

0.25

0.41

0.75

0.380.18

Figure 5: An orderly regression tree. The arrows to the right correspond to 1 labeled

edges, which are followed when the predicate holds, and the arrows to the left are

followed when the predicate fails. The leaves are increasing in value from left to right.

Also notice that the function represented is not monotonic in x3.

5.1 Orderly regression trees

In this section, we illustrate the potential applicability of the boosting theorem by

demonstrating that another interesting class of functions is efficiently learnable. Let

X = {0, 1}d, Y = {0, 1}, and take a regression tree with axis parallel splits, i.e., of the

I [xi = 0] or I [xi = 1]. We define an orderly regression tree (ORT) to be a regression tree

whose leaves can be arranged in nondecreasing order of p`. An ORT is one where, for

every node v, and every pair of leaves `0 in the Pv(x) = 0 subtree and `1 in the Pv(x) = 1

subtree, p`0 ≤ p`1 . An example ORT is shown in Figure 5. Despite considerable effort,

there are no known learning algorithms for decision trees that do not suffer from the

curse of dimensionality. Since regression trees are a generalization of decision trees, they

are also unlikely to be efficiently learnable. On the other hand, ORTs are learnable, as

we argue. Moreover they generalize decision lists and the probabilistic decision lists of

Kearns and Schapire (1994).

Observe that orderly regression trees can be non-monotonic in various attributes.

That is, changing xi from 0 to 1 may increase f(x), for some x (with xi = 0), and

decrease f(x) for other x (with xi = 0). This property is not observed in any type of

GAMs nor in most common learnable families of functions (that are efficiently learnable

in d over X = {0, 1}d), with the notable exception of the (noiseless) parity functions.

Another interesting property is that, with d attributes and of size O(d), there may be

no attribute that has correlation with f(X) larger than O(2−d), even when f(X) has

considerable variance. Thus the regression graph algorithm of Figure 3 is not an efficient

learner of this class of functions.

We now argue that ORTs are efficiently learnable by giving an idealized weak cor-

21

Input: variance guarantee ε.

• Let I := ∅.

• While there exist (j, b) ∈ [d]×{0, 1} such that P[Xj = b|X /∈ I] ∈ (
0, ε

8d

]
, let

I := I ∪ {x ∈ X |xj = b}.

• For a, b ∈ {0, 1}, i ∈ [d], let ha,b,i(x) =

a if x ∈ I
b if x /∈ I and xi = 1

1− b if x /∈ I and xi = 0

• Return ha,b,i(x) where a, b, and i are chosen to maximize cov(ha,b,i(X), Y).

Figure 6: An idealized weak correlator for ORTs. The set I can be represented by a list

of pairs (j, b).

relator for them, which can easily (but tediously) be converted to a weak correlator.

Lemma 9. The algorithm in Figure 6 is an idealized ε2/(5d)-weak correlator for the

class of functions representable by ORTs.

Proof. Suppose var(f(X)) ≥ ε. We will show that cov(ha,b,i(X), f(X)) ≥ ε2/(20d) for

the function ha,b,i returned by the algorithm, which suffices since var(ha,b,i) and var(f)

are both at most 1/4. By (5), for X̂ distributed independently but identically to X,

var(f(X)) =
1
2
E

[
(f(X)− f(X̂))2

]
≤ 1

2
E[|f(X)− f(X̂)|] = E[max{f(X)− f(X̂), 0}].

Consider the ORT representing f . After conditioning on X /∈ I, there may be several

predicates in the tree that have become obsolete, where a predicate is obsolete if all

data that reaches that node (conditioned on X /∈ I) has one predicate value. However,

we can descend down the tree through all obsolete predicates (taking the probability

1 path) until we reach node with a non-obsolete predicate. Consider this node and let

L,R ⊂ X represent the data that falls into the left and right subtrees, respectively.

var(f(X)) ≤ E[max{f(X)− f(X̂), 0}]
≤ P[X, X̂ 6∈ I]E[max{f(X)− f(X̂), 0} | X, X̂ /∈ I] + 1−P[X, X̂ 6∈ I]

≤ E[max{f(X)− f(X̂), 0} | X, X̂ /∈ I] + 2P[X ∈ I]

≤ E[max{f(X)− f(X̂), 0} | X ∈ R\I, X̂ ∈ L\I] + 2P[X ∈ I] (11)

= E[f(X)− f(X̂) | X ∈ R\I, X̂ ∈ L\I] + 2P[X ∈ I]

= E[f(X)|X ∈ R\I]−E[f(X)|X ∈ L\I] + 2P[X ∈ I]. (12)

22

In the above, (11) follows from the previous line because conditioning on the expectation

E[max{f(X) − f(X̂), 0} | X, X̂ /∈ I] can be written as a convex combination of four

expectations, depending on whether either of X and X̂ are in L\I or R\I and the

one in (11) is certainly the largest of the four, by the properties of an ORT and the

fact that L and R represent the first non-obsolete split. Without loss of generality, say

P[X ∈ R|X /∈ I] ≥ 1/2. Then consider the function h(x) = I [x ∈ R ∪ I]. By (6) and

basic properties of conditional expectation,

cov(h(X), f(X)) = var(h(X))(E[f(X) | h(X) = 1]−E[f(X) | h(X) = 0])

≥ var(h(X))(E[f(X) | X ∈ R ∪ I]−E[f(X) | X ∈ L\I])

≥ var(h(X))(E[f(X)|X ∈ R\I]−E[f(X)|X ∈ L\I]− 2P[X ∈ I])

≥ var(h(X))(var(f(X))− 4P[X ∈ I]). (13)

The last line follows from (12). Because each of the at most d additions to I remove at

most a 1− ε/8d fraction of the remaining set X \I, P[X /∈ I] ≥ (1− ε/8d)d ≥ 1− ε/8,

and P[X ∈ I] ≤ ε/8. Also, we have that ε ≤ 1/4 and,

var(h(X)) = P[h(X) = 0]P[h(X) = 1] ≥ ε

8d
P[X 6∈ I](1− ε

8d
P[X 6∈ I]) ≥ ε

8d

31
32

31
32
≥ ε

9d
.

Combining these with (13) gives the cov(h(X), f(X),≥)ε2/18d. Since the idealized

algorithm returns the best ha,b,i, it will return an ha,b,i with covariance at least this

large.

6 Conclusions

We have generalized the natural boosting model and decision graph learning algorithms

of KM and MM to the regression setting. We have demonstrated their power by showing

that they efficiently learns GAMs. We have also extended weak-learning/strong-learning

boosting theorems of classification to the regression setting. In this case, it not as clear

what the definition of weak learning should be. We propose a bi-criteria definition based

on correlation and variance, and illustrate its utility through two classes of functions. It is

well-known that, disregarding computation time, classification boosting over X = {0, 1}n

using weak learners Xi = 1 or Xi = 0 is capable of learning exactly the set of linear

threshold functions (halfspaces). However, the extension of this to the real-valued setting

reveals that a much richer class of functions is learnable. In particular, it includes families

of functions that are not monotonic in the base attributes Xi, such as ORTs.

The algorithm we analyze is discrete and tree-like (and most likely suboptimal), like

the original boosting algorithm of Schapire (1990). One would hope that further work

23

will lead to improved boosting algorithms and analyses that are most likely less discrete

and more similar to AdaBoost.

References

Baum, E. (1991). A polynomial time algorithm that learns two hidden unit nets. Neural

Computation 2, 510–522.

Blum, A., Frieze, A., Kannan, R., and Vempala, S. (1997). A polynomial time algorithm

for learning noisy linear threshold functions. Algorithmica, 22, 35–52.

Blum, A., Furst, M., Kearns, M., and Lipton, R.J. (1994). Cryptographic primitives

based on hard learing problems. Lecture Notes in Computer Science: Advances in

cryptology—CRYPTO ’93, 773, 278–291.

Blum, A., Kalai, A., and Wasserman, H. (2003). Noise-tolerant learning, the parity

problem, and the statistical query model. Journal of the ACM, 50, 506–519.

Breiman, L., Friedman, J, Olshen, R., and Stone, C. (1984). Classification and Regres-

sion Trees, Wadsworth International Group.

Buhlmann, P., and Yu, B. (2003). Boosting with the L2 Loss: Regression and Classifi-

cation. J. Amer. Statist. Assoc. 98, 324–340.

Bylander, T. (1993) Polynomial learnability of linear threshold approximations. In Pro-

ceedings of the Sixth Annual ACM Conference on Computational Learning, 297–302.

Hastie, T.J., and Tibshirani, R.J. (1990). Generalized Additive Models, London: Chap-

man and Hall.

Horowitz, J., and Mammen, E. (2004). Nonparametric Estimation of a Generalized

Additive Model with an Unknown Link Function. Annals of Statistics, 32, 24122443.

Kalai, A. (2004). Learning Monotonic Linear Functions. In Lecture Notes in Computer

Science: Proceedings of the 17th Annual Conference on Learning Theory, 3120, 487–

501.

Kalai, A., and Servedio, R. (2003). Boosting in the presence of Noise. In Proceedings

of the thirty-fifth ACM symposium on theory of computing, 195–205. To appear in

Journal of Computer and System Sciences.

Kearns, M., and Mansour, Y. (1999). On the boosting ability of top-down decision tree

learning algorithms. Journal of Computer and System Sciences, 58, 109–128.

24

Kearns, M., and Schapire, R. (1994). Efficient distribution-free learning of probabilistic

concepts. Journal of Computer and Systems Sciences, 48, 464–497.

Kearns, M., and Valiant, L. (1988). Learning boolean formulae or finite automata is as

hard as factoring. Technical Report TR-14-88, Harvard University Aiken Computation

Laboratory.

Kohavi, R. (1995). Wrappers for Performance Enhancement and Oblivious Decision

Graphs. Ph.D. dissertation, Comput. Sci. Depart., Stanford Univ., Stanford, CA,

1995.

Mansour, Y., and McAllester, D. (2002). Boosting using branching programs. Journal

of Computer and System Sciences, 64, 103–112.

Oliver, J. (1993). Decision graphs – an extension of decision trees. In Proceedings of the

Fourth International Workshop on Artificial Intelligence and Statistics, 334–350.

Regev, O. (2005). On lattices, learning with errors, random linear codes, and cryptog-

raphy. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,

84–93.

Royden, H. (1988). Real Analysis, 3rd edition, New York: Macmillan.

Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5, 197–227.

A Learning parity with noise

In the noiseless parity model, X = {0, 1}d, Y = {0, 1} and there is an unknown sub-

set S ⊆ [d] ([d] = {1, 2, . . . , d}) that we must identify from examples (Xi, Y i) drawn

independently from a distribution that is uniform over X and Y =
∑

i∈S Xi (mod 2).

Identifying S in the can be done easily and efficiently from O(d) noiseless examples by

Gaussian elimination.

In the η-noisy parity model, Y ∈ {0, 1} is corrupted (flipping 0 to 1 and 1 to 0) with

probability η, independently for all X, so f(x) = η+(1−η)
(∑

i∈S xi (mod 2)
)
. Even for

small constant η, the fastest currently known algorithm for this problem has very poor

runtime dependence on d, namely 2O(d/ log d) (Blum et al., 2003). This problem over the

uniform distribution on X has been conjectured to be computationally intractable in d,

for all constant η ∈ (0, 1/2), and has been proposed as the basis of cryptographic systems

(Blum et al., 1994; Regev, 2005). An efficient algorithm for learning parity with η noise

would be one that, for all d and S ⊆ [d], outputs S with probability greater than 3/4,

25

given poly(d) independent examples from an η-noisy parity model and runtime that is

poly(d) as well. The hardness of learning parity with noise assumption is that, for every

constant η ∈ (0, 1/2), there is no efficient algorithm for learning parity with η noise.

A non-monotonic GAM is a model in which f(x) = u (
∑

vi(xi)) for u which is not

necessarily monotonic. The noisy parity model can be represented as a non-monotonic

GAM, where vi(xi) = xi for i ∈ S and 0 for i 6∈ S, and u(m) = η for even integers m

and 1− η for odd integers m.

Observation 2. There is no algorithm for estimating non-monotonic GAMs that runs

in time polynomial in d, under the hardness of learning parity with noise assumption.

The parity with η noise model can be also stated as a GAM with η ∈ (0, 1/2),

X = {0, 1}d, Y = {0, 1}, and f(x) = u (
∑

vi(xi)), where (non-monotonic) u : Z→ [0, 1],

and vi : {0, 1} → {0, 1} are defined as follows, for some hidden set S ⊆ [d],

u(m) = η + (1− η)(m mod 2), vi(b) =

{
b if i ∈ S

0 if i 6∈ S
(14)

(While u is only defined on the integers, it can be extended to take real inputs.) The

distribution over X is assumed to be uniform.

To argue this, it suffices to argue that an efficient algorithm for learning non-

monotonic GAMs implies an efficient algorithm for learning parity with noise. Then

this means that one could predict output h : X → [0, 1] with error ξ(h) = E[(h(X) −
f(X))2] ≤ (1/2− η)2/2.

More precisely, to output the hidden set S, it suffices to be able to distinguish the case

of Y being a parity with noise from the case of f(X) = 1/2 for all X, truly random noise.

One could identify the set S by, for each i, removing the attribute Xi and feeding data

of the form (X−i, Y) (where X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xd)) into the algorithm.

Note that, if i ∈ S, then Y is completely independent of X−i, while if i 6∈ S, then it

will remain a parity with noise model. Moreover, it is clear that any good estimator for

non-monotonic GAMs would be able to distinguish these two cases.

As mentioned, the second and more bothersome assumption is that f(X) = E[Y |X]

is a GAM. Ideally, it would be nice to predict as well as the best GAM. Namely, one would

like to allow f(x) to be arbitrary, and simply attempt to output an h : X → [0, 1] that

achieves error approaching ε(f∗αβ), where f∗αβ : X → [0, 1] is the GAM (with monotonic

u) of lowest error and derivatives bounded by α and β. One would like a convergence

rate that is inverse polynomial in n and d. It is not difficult to see, as we explain in

Appendix A, that this too would imply an algorithm for learning parity with noise:

Observation 3. There is no algorithm for predicting as well as the best GAM that runs

in time polynomial in d, under the hardness of learning parity with noise assumption.

26

This follows for similar reasons. Although the parity with noise problem is not a

monotonic GAM, there is a monotonic GAM that has sufficiently less than 1/4, i.e.,

better than the trivial estimate of g(x) = 1/2. For example, take the function h(x) =

u(
∑

fi(xi)) for u such that u(m) = 0 for m ≤ 2 b|S|/4c, and 1 for m ≥ 2 b|S|/4c + 1,

and vi as in (14). It can be shown to have error noticeably less than 1/4. Hence, if

one can efficiently predict as well as the best GAM, then one could distinguish between

a parity with noise model and random noise and thus efficiently solve the parity with

noise learning problem.

B Proof of Lemma 7

In this section, we use the notation σA =
√

var(A), σAB = cov(A,B), and ρAB =

cor(A,B) for random variables A, B ∈ R. Let Tθ = I [T ≥ θ] for any θ ∈ R. Scaling and

shifting T does not affect its correlation with S, so WLOG suppose E[T] = 1/2. We

also scale T so that σ2
T = σST /2, WLOG. We do this so that an “important” part of the

distribution of T is in the range [−1, 1]. The proof, like that of Lemma 3, follows the

probabilistic method. Imagine choosing a random threshold θ uniformly from [−1, 1].

Then, 2Eθ[Tθ] =
∫ 1

−1
I [T ≥ θ] dθ = 1 + T1 where,

T1 =

1 if T ≥ 1

T if T ∈ (−1, 1)

−1 if T ≤ −1

Now, by linearity of expectation and covariance, 2Eθ[σSTθ
] = σST1 . Notice that for

any random variable A ∈ R, since S ∈ [0, 1], |S − µS | ≤ 1 for µS = E[S] and hence

σSA = E[(S − µS)A] ≤ E[|A|]. We can now lower bound the expected covariance,

2Eθ[σSTθ
] = σST1 = σST − σS(T−T1) ≥ σST −E [|T − T1|] .

It is not difficult to see that |T −T1| ≤ T 2, because |T −T1| ≤ |T | and 1 ≤ |T | whenever

|T − T1| 6= 0. Now the point of the assumption that σ2
T = E[T 2] = σST /2 is clear,

2Eθ[σSTθ
] ≥ σST −E

[
T 2

] ≥ σST

2
. (15)

To lower-bound ρSTθ
, we now upper-bound σTθ

, in expectation. Note that since Tθ is

binary, σTθ
=

√
P[T < θ]P[T ≥ θ] and σTθ

≤ 1/2. Hence,

2Eθ[σTθ
] =

∫ 1

−1

σTθ
dθ ≤

∫ −σT

−1

√
P[T < θ]dθ +

∫ σT

−σT

1
2
dθ +

∫ 1

σT

√
P[T ≥ θ]dθ.

Using the fact that
√

a +
√

b ≤
√

2(a + b) for a, b ≥ 0,

2Eθ[σTθ
] ≤ σT +

∫ 1

σT

√
2(P[T < −θ] + P[T ≥ θ])dθ ≤ σT +

∫ 1

σT

√
2P[|T | ≥ θ]dθ.

27

By the Cauchy-Schwartz inequality,

∫ 1

σT

√
P[|T | ≥ θ]dθ =

∫ 1

σT

√
P[|T | ≥ θ]

√
θ · 1√

θ
dt ≤

√∫ 1

σT

P[|T | ≥ θ]θdθ

∫ 1

σT

1
θ
dθ.

Also, we have the identity,

E[T 2] =
∫ ∞

0

P[T 2 ≥ t]dt =
∫ ∞

0

P[T 2 ≥ θ2]2θdθ = 2
∫ ∞

0

P[|T | ≥ θ]θdθ.

In the above we have made the change of variable θ2 = t. Putting the last three equations

together gives,

2Eθ[σTθ
] ≤ σT +

√
2

∫ 1

σT

P[|T | ≥ θ]θdθ

∫ 1

σT

1
θ
dθ ≤ σT + σT

√
log(1/σT). (16)

Putting (15) and (16) together gives,

Eθ[σSTθ
] ≥ σST

2σT (1 +
√

log(1/σT))
Eθ[σTθ

].

Hence there must be some θ for which the above holds instantaneously,

σSTθ
≥ σST

2σT (1 +
√

log(1/σT))
σTθ

ρSTθ
=

σSTθ

σTθ
σS

≥ σST

2σT (1 +
√

log(1/σT))σS

=
ρST

2(1 +
√

log(1/σT))

By our choice of σ2
T = σST /2, we have σT = ρST σS/2. Again using

√
a +

√
b ≤√

2(a + b), we have,

1 +
√

log(1/σT) ≤
√

2 + 2 log(2/ρST σS) =
√

2 log(2e/ρST σS) ≤
√

2 log(e/ρST σ2
S).

Using the fact that e ≤ 3 and 2
√

2 ≤ 3, we are done.

C Generalization bounds for regression graphs

It suffices to consider regression graphs with split predicates of the form xi < θ or xi ≤ θ

(predicates of the form xi > θ or xi ≥ θ can easily be swapped to this form). Next, notice

that to prove Theorem 3, it suffices to consider regression graphs with split predicates

of the form xi < θ only. For, whenever there is some regression graph with the violating

condition |ε(G,Z) − ε(G)| > τ for some τ ≥ 0, we can modify each split of the form

xi ≤ θ to xi < θ + ε for sufficiently small ε, while maintaining the violating condition.

Hereafter, we assume the graph only has “<” splits.

Take a fixed regression graph G ∈ G that is chosen prior to the sample Z. In this

case, the training error is an unbiased estimate of the generalization error, formed by

28

averaging n independent [0, 1] random variables. Hence, by Chernoff bounds (see, e.g.,

Alon and Spencer ?), for any δ ∈ (0, 1],

PZ

[
|ε(G,Z)− ε(G)| >

√
ln(2/δ)

2n

]
≤ δ. (17)

However, we cannot simply take a union bound over all regression graphs, because there

are infinitely many of them.

Instead, define the set of size s regression graphs Gs = {G ∈ G | |G| = s}. Define

G′s ⊂ Gs to be the set of size-s regression graphs where all leaf prediction values are in

{0, 1
n , 2

n , . . . , 1}. Define G′′s ⊂ G′s to be the set of all regression graphs in G′s where all

internal nodes have splits of the form xi < θ for θ = xj
i for some i ∈ [d], j ∈ [n]. (The set

G′′s depends on the sample Z and would be more accurately written G′′s,Z). We will first

argue that with probability 1 − δ/2, all G ∈ G′′s have true error close to their training

error. We will then argue that this implies a similar bound, with probability 1− δ, for

all regression graphs.

Lemma 10. With high probability, over a sample Z of size n, every regression graph

G ∈ G′′s has close training and generalization errors. In particular,

PZ

[
∃G ∈ G′′s s.t. |ε(G,Z)− ε(G)| >

√
s ln(6nds/δ)

n

]
≤ δ

2
.

Proof. Let us describe each regression graph G ∈ G′′s by s 4-tuples, one for each node.

Each 4-tuple will be of the form (i, j, l, r), where i ∈ [d], j ∈ [n], l, r ∈ [s]. For an internal

node, l and r (l 6= r) represent the indices of the left and right children, and the split is

xi < xj
i . For a leaf, i = l = r = 1 and j/n is the leaf prediction value. This gives us an

upper bound of (dns2)s on the number of regression graph descriptions of G ∈ G′′s .

Fix a regression graph description. We now argue that, with high probability, the

corresponding regression graph has close training and generalization errors. Let S ⊆ [n]

correspond to the indices of the examples that were referred to in splits in the description,

so |S| < s. Let ZS =
〈
(xi, yi)

〉
i∈S

be the subsequence of data that are in S and

ZSc =
〈
(xi, yi)

〉
i∈[n]\S be the remaining data. Imagine choosing Z by first choosing

ZS and later ZSc . After choosing ZS , the regression graph G is completely determined.

Moreover, the remaining n−|S| examples in ZSc give independent, unbiased estimates of

the generalization error of G. Since yi and the predictions of G are in [0, 1], the training

error on any single example is in [0, 1]. As in (17), Chernoff bounds imply that, for any

δ′ ∈ (0, 1] (we will fix δ′ shortly), with probability at least 1 − δ′, |ε(G,ZSc) − ε(G)| ≤√
ln(2/δ′)/(2|Sc|). Hence the training error of any nice regression graph G on all of Z

29

can be bounded by,

|ε(G,Z)− ε(G)| =
∣∣∣∣
|S|
n

(ε(G,ZS)− ε(G)) +
|Sc|
n

(ε(G,ZSc)− ε(G))
∣∣∣∣

≤ |S|
n

+
|Sc|
n
|ε(G,ZSc)− ε(G)|

≤ |S|
n

+
|Sc|
n

√
ln(2/δ′)
2|Sc| (with probability 1− δ′)

≤
√
|S|
n

+
|Sc|
n

ln(2/δ′)
2|Sc| (by Jensen’s inequality on concave function f(x) =

√
x)

=

√
2|S|+ ln(2/δ′)

2n
.

Choosing δ′ = δ/(2(nds2)s), by the union bound on the (nds2)s descriptions of simple

regression graphs, and using |S| ≤ s, we have that with probability 1− δ/2, all G ∈ G′′s
have,

|ε(G,Z)− ε(G)| ≤
√

2s + ln(4(nds2)s/δ)
2n

≤
√

2s
(
ln(e) + ln(2nds/δ)

)

2n
.

To proove Theorem 3, we show that one can “round” every regression graph G ∈ G
to a similar G′ ∈ G′s and then to another similar G′′ ∈ G′′s , without changing the

training or generalization errors significantly. Then we can apply the above lemma to

argue that the training and generalization errors of all graphs are close. To do this, we

must show that such rounding can be done uniformly, meaning that with probability

1−δ/2, simultaneously every graph G ∈ G can be rounded to a similar G′′ ∈ G′′s without

significant change training or generalization errors.

The rounding procedure involves, first, rounding the leaf prediction values to the

nearest multiple of 1
n and, second, rounding the splits to be at sample points. For

the former, it is easy to show that the predictions G(x) and G′(x) are close for all x.

For the latter, we need to argue that, on each coordinate i ∈ [d], the samples Z are a

close representation of the distribution over the ith coordinate. In particular, imagine

ordering the samples in Z by their ith coordinate, and taking two consecutive examples

(examples for which there is no j ∈ [n] with xj
i in between the two). The following

lemma states that with high probability, the measure of the interval between the two is

low.

Lemma 11. With probability at least 1 − δ/2, for all i ∈ [d] and all intervals (open,

closed, or half-open) I ⊂ R, at least one of the following two conditions hold:

(a) ∃j ∈ [n] s.t. xj
i ∈ I or (b) µ ({(x, y) : xi ∈ I}) ≤ ln(2dn2/δ)

n− 2
.

30

Proof. Suppose there is an i ∈ [d] and I ⊂ R for which neither of the conditions hold.

WLOG we can assume that I is of the form I = (a, b), (a,∞), or (−∞, b) with a = xj1
i ,

and b = xj2
i for some j1, j2 ∈ [n]. This is because we could extend any violating interval

to be of this form without satisfying either condition (a) or (b).

There are at most
(
n
2

)
+2n ≤ n2 (WLOG n ≥ 3) intervals of the form, for j1, j2 ∈ [n].

Fix any one of them. The chance that neither (a) nor (b) hold can be bounded by the

fact that, given that (b) does not hold, the chance that a given independent sample

j ∈ [n] \ {j1, j2} does not have xj
i ∈ I is at most 1 − ln(2dn2/δ)/(n − 2). Hence the

chance that none of the n− 2 remaining independent samples have xj
i ∈ I is at most,

(
1− log(2dn2/δ)

n− 2

)n−2

≤
(

e−
log(2dn2/δ)

n−2

)n−2

=
δ

2dn2
.

By the union bound, the chance that any of the dn2 intervals of the above form (varying

i ∈ [d] as well) have neither (a) nor (b) holding is at most δ/2.

Lemma 12. For any s, n ≥ 1,

PZ

[
∃G ∈ Gs s.t. |ε(G,Z)− ε(G)| ≥ 2

√
6s ln(6nds/δ)

5n

]
≤ δ

Proof. Every size-s regression graph G can be “rounded” to a size-s regression graph

G′ ∈ G′s with leaf predictions values in {0, 1
n , 2

n , . . . , 1}, by rounding each leaf prediction

values to the nearest multiple of 1/n. Such a prediction rounding will change the pre-

diction G(x) on any example by at most |G′(x)−G(x)| ≤ 1/(2n). Hence, for any x ∈ X ,

y ∈ [0, 1],
∣∣(G′(x)− y)2 − (G(x)− y)2

∣∣ = |G′(x)− y + G(x)− y| |G′(x)−G(x)| ≤ 2 |G′(x)−G(x)|

This implies that |ε(G′)− ε(G)|, |ε(G′,Z)− ε(G,Z)| ≤ 1/n and hence,

|ε(G,Z)− ε(G)| ≤ |ε(G′,Z)− ε(G′)|+ 2
n

(18)

We can round up a split xi < θ to the split xi < θ′ for θ′ = minj∈[n]{xj
i : xj

i ≥ θ}, or

θ′ = ∞ if this min does not exist (equivalently, we can remove the test and one child).

This rounding has the property that it has not changed the prediction on any samples

in Z, and has changed prediction only on examples for which xi ∈ [θ, θ′). Notice that

xj
i /∈ [θ, θ′) for all j ∈ [n], otherwise we would not have rounded all the way up to θ′. By

Lemma 11, we see that with probability 1− δ/2, this means that rounding a single such

split will only affect the predictions on a µ{(x, y) : xi ∈ [θ, θ′)} ≤ log(2dn2/δ)/(n − 2)

fraction of the distribution µ.

Imagine performing this split rounding on all (less than s) splits in any G′ to get G′′ ∈
G′′s . Lemma 11 together with the union bound implies that, with probability 1 − δ/2,

31

the predictions change on at most a µ({(x, y) : G′′(x) 6= G′(x)}) < s log(2dn2/δ)/(n−2)

fraction of µ. This implies that,

PZ

[
∃G′ ∈ G′s s.t. |ε(G′′)− ε(G′)| > s ln(2dn2/δ)

n− 2

]
≤ δ

2
(19)

Combining the fact that ε(G′,Z) = ε(G′′,Z) with (18), (19), and Lemma 10, for

A =

√
s ln(6nds/δ)

n
+

2
n

+
s ln(2dn2/δ)

n− 2
≤

√
s ln(6nds/δ)

n
+

2(1 + s ln(2dn/δ))
n− 2

(20)

we have PZ [∃G ∈ G |ε(G,Z)− ε(G)| ≥ A] ≤ δ. To simplify further, noting that 1 +

ln(2) ≤ ln(6), we can write A ≤ √
B + 2B, for B = s ln(6nds/δ)/(n− 2). Also, one can

verify that max{√B+2B, 1} ≤ 2
√

B. Thus PZ
[
∃G ∈ G s.t. |ε(G,Z)− ε(G)| ≥ 2

√
B

]
≤

δ. Also notice that the Lemma holds trivially for n ≤ 11 because |ε(G,Z)− ε(G)| ≤ 1.

For n ≥ 12, we have n− 2 ≥ (5/6)n, in which case,

2
√

B =≤ 2

√
s ln(6nds/δ)

(5/6)n
= 2

√
6
5

s ln(6nds/δ)
n

.

The proof of Theorem 3 follows simply from Lemma 12.

Proof of Theorem 3. By Lemma 12, for any n, s ≥ 1,

PZ

[
∃ s.t. G ∈ Gs|ε(G,Z)− ε(G)| > 2

√
6s ln(12nds3/δ)

5n

]
≤ δ

2s2
.

Finally, because 3
√

12 ≤ 3 and 2
√

18/5 ≤ 4,

2

√
6s ln(12nds3/δ)

5n
= 2

√
18s ln 3

√
12nds3/δ

5n
≤ 3.8

√
s ln(3nds/δ)

n
.

By the union bound over s = 1, 2, . . .,

PZ

[
∃G ∈ G s.t. |ε(G,Z)− ε(G)| > 3.8

√
|G| ln(3nd|G|/δ)

n

]
≤ δ

2

∞∑
s=1

1
s2

=
δ

2
π2

6
.

32

