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Abstract. We start by showing that in an active learning setting, the
Perceptron algorithm needs Ω( 1

ε2
) labels to learn linear separators within

generalization error ε. We then present a simple selective sampling algo-
rithm for this problem, which combines a modification of the perceptron
update with an adaptive filtering rule for deciding which points to query.
For data distributed uniformly over the unit sphere, we show that our
algorithm reaches generalization error ε after asking for just Õ(d log 1

ε
)

labels. This exponential improvement over the usual sample complexity
of supervised learning has previously been demonstrated only for the
computationally more complex query-by-committee algorithm.

1 Introduction

In many machine learning applications, unlabeled data is abundant but labeling
is expensive. This distinction is not captured in the standard PAC or online
models of supervised learning, and has motivated the field of active learning, in
which the labels of data points are initially hidden, and the learner must pay for
each label it wishes revealed. If query points are chosen randomly, the number
of labels needed to reach a target generalization error ε, at a target confidence
level 1− δ, is similar to the sample complexity of supervised learning. The hope
is that there are alternative querying strategies which require significantly fewer
labels.

To date the single most dramatic demonstration of the potential of active
learning is perhaps Freund et al.’s analysis of the query-by-committee (QBC)
learning algorithm [6]. In their selective sampling model, the learner observes
a stream of unlabeled data and makes spot decisions about whether or not to
ask for a point’s label. They show that if the data is drawn uniformly from the
surface of the unit sphere in R

d, and the hidden labels correspond perfectly to a
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homogeneous (i.e., through the origin) linear separator from this same distribu-
tion, then it is possible to achieve generalization error ε after seeing Õ(d

ε log 1
ε )

points and requesting just Õ(d log 1
ε ) labels:4 an exponential improvement over

the usual Õ(d
ε ) sample complexity of learning linear separators in a supervised

setting.5 This remarkable result is tempered somewhat by the complexity of
the QBC algorithm, which involves random sampling from intermediate version
spaces; the complexity of the update step scales (polynomially) with the number
of updates performed.

In this paper, we show how a simple modification of the perceptron update
can be used to achieve the same sample complexity bounds (within Õ factors),
under the same streaming model and the same uniform input distribution. Unlike
QBC, we do not assume a distribution over target hypotheses, and our algorithm
does not need to store previously seen data points, only its current hypothesis.

Our algorithm has the following structure.

Set initial hypothesis v0 ∈ R
d

For t = 1, 2, . . .
Receive unlabeled point xt

Make a prediction SGN(vt · xt)
Filtering step: Decide whether to ask for xt’s label

If label yt is requested:

Update step: Set vt+1 based on vt, xt, yt

Adjust filtering rule

else: vt+1 = vt

Update step. It turns out that the regular perceptron update, that is,

if (xt, yt) is misclassified then vt+1 = vt + ytxt

cannot yield an error rate better than Ω(1/
√

lt), where lt is the number of labels
queried up to time t, no matter what filtering scheme is used. In particular, if
the data is perfectly classified by some linear separator u ∈ R

d, and if θt is the
angle between u and vt then

Theorem 1. For any t ≥ 1, if θt+1 ≤ θt then sin θt ≥ 1/(5
√

lt + ‖v0‖2).

This is a distribution-free result; when the data is distributed uniformly over the
unit sphere, θt ≥ sin θt (for θt ≤ π

2 ) is proportional to the error rate of vt.
So instead we use a slightly modified update rule:

if (xt, yt) is misclassified then vt+1 = vt − 2(vt · xt)xt

(where xt is assumed normalized to unit length). The same rule, but without
the factor of two, has been used in previous work [3] on learning linear classifiers
from noisy data, in a batch setting. We are able to show that our formulation has
the following generalization performance in a supervised (non-active) setting.

4 In this paper, the Õ notation is used to suppress terms in log d, log log 1

ε
and log 1

δ
.

5 This label complexity can be seen to be optimal by counting the number of spherical
caps of radius ε that can be packed onto the surface of the unit sphere in R

d.



Theorem 2. When the modified Perceptron algorithm is applied in a sequential
supervised setting, with data points xt drawn independently and uniformly at
random from the surface of the unit sphere in R

d, then with probability 1 − δ,
after O(d(log 1

ε + log 1
δ )) mistakes its generalization error is at most ε.

This contrasts favorably with the Õ( d
ε2 ) mistake bound of the Perceptron algo-

rithm, and a more recent variant, on the same distribution [2, 9].

Filtering step. Given the limited information the algorithm keeps, a natural
filtering rule is to query points xt when |vt · xt| is less than some threshold st.
The choice of st is crucial. If it is too large, then only a miniscule fraction of the
points queried will actually be misclassified – almost all labels will be wasted.
On the other hand, if st is too small, then the waiting time for a query might be
prohibitive, and when an update is actually made, the magnitude of this update
might be tiny.

Therefore, we set the threshold adaptively: we start s high, and keep dividing
it by two until we reach a level where there are enough misclassifications amongst
the points queried. This filtering strategy makes possible our main theorem,
again for data from the uniform distribution over the unit sphere in R

d.

Theorem 3. With probability 1− δ, if the active modified Perceptron algorithm
is given a stream of Õ(d

ε log 1
ε ) unlabeled points, it will request Õ(d log 1

ε ) labels,

make Õ(d log 1
ε ) errors (on all points, labeled or not), and have final error ≤ ε.

2 Related Work

Our approach relates to the literature on selective sampling [6, 4]. We have al-
ready discussed query-by-committee [6], which is perhaps the strongest positive
result in active learning to date. There have been numerous applications of this
method and also several refinements (see, for instance, [7, 5]).

Cesa-Bianchi, Gentile, and Zaniboni [4] have recently analyzed an algorithm
which conforms to roughly the same template as ours but differs in both the
update and filtering rule – it uses the regular perceptron update and it queries
points xt according to a fixed, randomized rule which favors small |vt · xt|. The
authors make no distributional assumptions on the input and they show that in
terms of worst-case hinge-loss bounds, their algorithm does about as well as one
which queries all labels. The actual fraction of points queried varies from data set
to data set. In contrast, our objective is to achieve a target generalization error
with minimum label complexity, although we do also obtain a mistake bound
(on both labeled and unlabeled points) under our distributional assumption.

Many active learning schemes for linear separators (or probabilistic ana-
logues) have been proposed in the literature. Several of these are similar in
spirit to our heuristic, in that they query points close to the margin, and seem
to have enjoyed some empirical success; e.g., [8]. Finally, there is a rich body
of theory on a related model in which it is permissible to create query points
synthetically; a recent survey by Angluin [1] summarizes key results.



3 Preliminaries

In our model, all data xt lie on the surface of the unit ball in R
d, which we will

denote as S:

S =
{

x ∈ R
d

∣

∣ ‖x‖ = 1
}

.

Their labels yt are either −1 or +1, and the target function is a half-space
u ·x ≥ 0 represented by a unit vector u ∈ R

d which classifies all points perfectly,
that is, yt(u · xt) > 0 for all t, with probability one.

For any vector v ∈ R
d, we define v̂ = v

‖v‖ to be the corresponding unit vector.

Our lower bound (Theorem 1) is distribution-free; thereafter we will assume
that the data points xt are drawn independently from the uniform distribution
over S. This implies that any hypothesis v ∈ R

d has error

ε(v) = Px∈S [SGN(v · x) 6= SGN(u · x)] =
arccos(u · v̂)

π
.

We will use a few useful inequalities for θ on the interval (0, π
2 ].

4

π2
≤ 1 − cos θ

θ2
≤ 1

2
, (1)

2

π
θ ≤ sin θ ≤ θ (2)

Equation (1) can be verified by checking that for θ in this interval, 1−cos θ
θ2 is a

decreasing function, and evaluating it at the endpoints.

We will also make use of the following lemma.

Lemma 1. For any fixed unit vector a and any γ ≤ 1,

γ

4
≤ Px∈S

[

|a · x| ≤ γ√
d

]

≤ γ (3)

The proof is deferred to the appendix.

4 A lower bound for the Perceptron update

Consider an algorithm of the following form:

Pick some v0 ∈ R
d

Repeat for t = 0, 1, 2, . . .:
Get some (x, y) for which y(vt · x) ≤ 0
vt+1 = vt + yx

On any update,

vt+1 · u = vt · u + y(x · u). (4)



Thus, if we assume for simplicity that v0 · u ≥ 0 (we can always just start count
when this first occurs) then vt · u ≥ 0 always, and the angle between u and vt is
always acute. Denoting this angle by θt, we get

‖vt‖ cos θt = vt · u.

The update rule also implies

‖vt+1‖2 = ‖vt‖2 + 1 + 2y(vt · x). (5)

Thus ‖vt‖2 ≤ t + ‖v0‖2 for all t. In particular, this means that Theorem 1 is an
immediate consequence of the following lemma.

(i)

(ii)

θt

vt

u

Fig. 1. The plane defined by u and vt.

Lemma 2. Assume v0 · u ≥ 0 (i.e., start count when this first occurs). Then

θt+1 ≤ θt ⇒ sin θt ≥ min

{

1

3
,

1

5‖vt‖

}

.

Proof. Figure 1 shows the unit circle in the plane defined by u and vt. The
dot product of any point x ∈ R

d with either u or vt depends only upon the
projection of x into this plane. The point is misclassified when its projection lies
in the shaded region. For such points, y(u · x) is at most sin θt (point (i)) and
y(vt · x) is at least −‖vt‖ sin θt (point (ii)).

Combining this with equations (4) and (5), we get

vt+1 · u ≤ vt · u + sin θt

‖vt+1‖2 ≥ ‖vt‖2 + 1 − 2‖vt‖ sin θt



To establish the lemma, we’ll assume θt+1 ≤ θt and sin θt ≤ 1
5‖vt‖ , and then

conclude that sin θt ≥ 1
3 .

θt+1 ≤ θt implies

cos2 θt ≤ cos2 θt+1 =
(u · vt+1)

2

‖vt+1‖2
≤ (u · vt + sin θt)

2

‖vt‖2 + 1 − 2‖vt‖ sin θt
.

The final denominator is positive since sin θt ≤ 1
5‖vt‖ . Rearranging,

(‖vt‖2 + 1 − 2‖vt‖ sin θt) cos2 θt ≤ (u · vt)
2 + sin2 θt + 2(u · vt) sin θt

and using ‖vt‖ cos θt = (u · vt):

(1 − 2‖vt‖ sin θt) cos2 θt ≤ sin2 θt + 2‖vt‖ sin θt cos θt

Again, since sin θt ≤ 1
5‖vt‖ , it follows that (1 − 2‖vt‖ sin θt) ≥ 3

5 and that

2‖vt‖ sin θt cos θt ≤ 2
5 . Using cos2 = 1 − sin2, we then get

3

5
(1 − sin2 θt) ≤ sin2 θt +

2

5

which works out to sin2 θt ≥ 1
8 , implying sin θt > 1

3 . ut

The problem is that the perceptron update can be too large. In R
2 (eg. Figure

1), when θt is tiny, the update will cause vt+1 to overshoot the mark and swing
too far to the other side of u, unless ‖vt‖ is very large: to be precise, we need
‖vt‖ = Ω(1/ sin θt). But ‖vt‖ grows slowly, at best at a rate of

√
t. If sin θt is

proportional to the error of vt, as in the case of data distributed uniformly over
the unit sphere, this means that the perceptron update cannot stably maintain
an error rate ≤ ε until t = Ω(1/ε2).

5 The modified Perceptron update

We now describe the modified Perceptron algorithm. Using a simple modification
to the standard perceptron update yields the fast convergence we will prove
subsequently. Unlike with standard Perceptron, this modification ensures that
vt · u is increasing, i.e., the error of vt is monotonically decreasing. Another
difference from the standard update (and other versions) is that the magnitude
of ‖vt‖ = 1, which is convenient for our analysis.

The modified Perceptron algorithm is shown in Figure 2. Note that the up-
date can also be written as vt+1 = vt +2yt|vt ·xt|xt, since updates are only made
on mistakes, for which yt 6= SGN(vt · xt), by definition. Thus we are scaling the
standard perceptron’s additive update by a factor of 2|vt ·xt| to avoid oscillations
caused by points close to the half-space represented by the current hypothesis.

We now show that the norm of vt stays at one. Note that ‖v1‖ = 1 and

‖vt+1‖2 = ‖vt‖2 + 4(vt · xt)
2‖xt‖2 − 4(vt · xt)

2 = 1



Inputs: dimensionality d and desired number of updates

(mistakes) M.

Let v1 = x1y1 for the first example (x1, y1).
For t = 1 to M:

Let (xt, yt) be the next example with y(x · vt) < 0.
vt+1 = vt − 2(vt · xt)xt.

Fig. 2. The (non-active) modified Perceptron algorithm. The standard Percep-
tron update, vt+1 = vt + ytxt, is in the same direction (note yt = −SGN(vt · xt))
but different magnitude.

by induction. In contrast, for the standard perceptron update, the magnitude of
vt is important and normalized vectors cannot be used.

With the modified update, the error can only decrease, because vt · u only
increases:

vt+1 · u = vt · u − 2(vt · xt)(xt · u) = vt · u + 2|vt · xt||xt · u|.

The second equality follows from the fact that vt misclassified xt. Thus vt · u
is increasing, and the increase can be bounded from below by showing that
|vt · xt||xt · u| is large. This is a different approach from previous analyses.

Blum et al. [3] used an update similar to ours, but without the factor of two.
In general, one can consider modified updates of the form vt+1 = vt−α(vt ·xt)xt.
When α 6= 2, the vectors vt no longer remain of fixed length; however, one can
verify that their corresponding unit vectors v̂t satisfy

v̂t+1 · u = (v̂t · u + α|v̂t · xt||xt · u|)/
√

1 − α(2 − α)(v̂t · xt)2,

and thus any choice of α ∈ [0, 2] guarantees non-increasing error. Blum et al. used
α = 1 to guarantee progress in the denominator (their analysis did not rely on
progress in the numerator) as long as v̂t ·u and (v̂t ·xt)

2 were bounded away from
0. Their approach was used in a batch setting as one piece of a more complex
algorithm for noise-tolerant learning. In our sequential framework, we can bound
|v̂t · xt||xt · u| away from 0 in expectation, under the uniform distribution, and
hence the choice of α = 2 is most convenient, but α = 1 would work as well.
Although we do not further optimize our choice of the constant α, this choice
itself may yield interesting future work, perhaps by allowing it to be a function
of the dimension.

5.1 Analysis of (non-active) modified Perceptron

How large do we expect |vt · xt| and |u · xt| to be for an error (xt, yt)? As we
shall see, in d dimensions, one expects each of these terms to be on the order of
d−1/2 sin θt, where sin θt =

√

1 − (vt · u)2. Hence, we might expect their product
to be about (1 − (vt · u)2)/d, which is how we prove the following lemma.

Note, we have made little effort to optimize constant factors.



Lemma 3. For any vt, with probability at least 1
3 ,

1 − vt+1 · u ≤ (1 − vt · u)

(

1 − 1

50d

)

.

There exists a constant c > 0, such that with probability at least 63
64 , for any vt,

1 − vt+1 · u ≤ (1 − vt · u)
(

1 − c

d

)

.

Proof. We show only the first part of the lemma. The second part is quite similar.
We will argue that each of |vt · xt|,|u · xt| is “small” with probability at most
1/3. This means, by the union bound, that with probability at least 1/3, they
are both sufficiently large.

The error rate of vt is θt/π, where cos θt = vt ·u. Also define the error region
ξt = {x ∈ S |SGN(vt · x) 6= SGN(u · x)}. By Lemma 1, for an x drawn uniformly
from the sphere,

Px∈S

[

|vt · x| ≤
θt

3π
√

d

]

≤ θt

3π
.

Using P [A|B] ≤ P [A]/P [B], we have,

Px∈S

[

|vt · x| ≤
θt

3π
√

d

∣

∣

∣

∣

x ∈ ξt

]

≤
Px∈S [|vt · x| ≤ θt

3π
√

d
]

Px∈S [x ∈ ξt]
≤ θt/(3π)

θt/π
=

1

3

Similarly for |u · x|, and by the union bound the probability that x ∈ ξ is within
margin θ

3π
√

d
from either u or v is at most 2

3 . Since the updates only occur if x

is in the error region, we now have a lower bound on the expected magnitude of
|vt · x||u · x|.

Px∈S

[

|vt · x||u · x| ≥ θ2
t

(3π
√

d)2

∣

∣

∣

∣

x ∈ ξt

]

≥ 1

3
.

Hence, we know that with probability at least 1/3, |vt ·x||u ·x| ≥ 1−(vt·u)2

100d , since

θ2
t ≥ sin2 θt = 1 − (vt · u)2 and (3π)2 < 100. In this case,

1 − vt+1 · u ≤ 1 − vt · u − 2|vt · xt||u · xt|

≤ 1 − vt · u − 1 − (vt · u)2

50d

≤ (1 − vt · u)

(

1 − 1 + vt · u
50d

)

ut

Finally, we give a high-probability bound, i.e. Theorem 2, stated here with proof.

Theorem 2. With probability 1 − δ, after M = O(d(log 1
ε + log 1

δ )) mistakes,
the generalization error of the modified Perceptron algorithm is at most ε.



Proof. By the above lemma, we can conclude that, for any vector vt,

Ext∈ξt
[1 − vt+1 · u] ≤ (1 − vt · u)

(

1 − 1

3(50d)

)

.

This is because with ≥ 1/3 probability it goes down by a factor of 1 − 1
50d

and with the remaining ≤ 2/3 probability it does not increase. Hence, after M
mistakes,

E[1 − vM · u] ≤ (1 − v1 · u)

(

1 − 1

150d

)M

≤
(

1 − 1

150d

)M

,

since v1 · u ≥ 0. By Markov’s inequality,

P

[

1 − vM · u ≥
(

1 − 1

150d

)M

δ−1

]

≤ δ.

Finally, using (1) and cos θM = vM · u, we see P [ 4
π2 θ2

M ≥ (1 − 1
150d )Mδ−1] ≤ δ.

Using M = 150d log(1/εδ) gives P [ θM

π ≥ ε] ≤ δ as required. ut

6 An active modified Perceptron

The active version of the modified Perceptron algorithm is shown in Figure 3.
The algorithm is similar to the algorithm of the previous section, in its update
step. For its filtering rule, we maintain a threshold st and we only ask for labels
of examples with |vt · xt| ≤ st. We decrease this threshold adaptively over time,
starting at s1 = 1/

√
d and reducing it by a factor of two whenever we have a

run of labeled examples on which we are correct.
For Theorem 3, we select values of R, L that yield ε error with probability

at least 1 − δ. The idea of the analysis is as follows:

Definition 1. We say the tth update is “good” if,

1 − vt+1 · u ≤ (1 − vt · u)
(

1 − c

d

)

.

(The constant c is from Lemma 3.)

1. (Lemma 4) First, we argue that st is not too small (we do not decrease st

too quickly). Assuming this is the case, then 2 and 3 hold.
2. (Lemma 6) We query for labels on at least an expected 1/32 of all errors. In

other words, some errors may go undetected because we don’t ask for their
labels, but the number of mistakes total should not be much more than 32
times the number of updates we actually perform.

3. (Lemma 7) Each update is good (Definition 1) with probability at least 1/2.
4. (Theorem 3) Finally, we conclude that we cannot have too many label

queries, updates, or total errors, because half of our updates are good, 1/32
of our errors are updates, and about 1/R of our labels are updates.



Inputs: Dimensionality d, maximum number of labels L,
and patience R.

v1 = x1y1 for the first example (x1, y1).

s1 = 1/
√

d
For t = 1 to L:

Wait for the next example x : |x · vt| ≤ st and query its label.

Call this labeled example (xt, yt).
If (xt · vt)yt < 0, then:

vt+1 = vt − 2(vt · xt)xt

st+1 = st

else:
vt+1 = vt

If predictions were correct on R consecutive labeled

examples (i.e. (xi · vi)yi ≥ 0 ∀i ∈ {t − R + 1, t − R + 2, . . . , t}),
then set st+1 = st/2, else st+1 = st.

Fig. 3. An active version of the modified Perceptron algorithm.

We first lower-bound st with respect to our error, showing that, with high
probability, the threshold st is never too small.

Lemma 4. With probability at least 1 − L
(

3
4

)R
, we have:

st ≥
√

1 − (u · vt)2

16d
for t = 1, 2, . . . , L, simultaneously. (6)

¡ Before proving this lemma, it will be helpful to show the following lemma. As
before, let us define ξt = {x ∈ S|(x · vt)(x · u) < 0}.

Lemma 5. For any γ ∈
(

0,
√

1−(u·vt)2

4d

]

,

Pxt∈S

[

xt ∈ ξt

∣

∣ |xt · vt| < γ
]

≥ 1

4

Proof. Let x be a random example from S such that |x · vt| < γ and, without
loss of generality, suppose that 0 ≤ x · vt ≤ γ. Then we want to calculate the
probability we err, i.e. u · x < 0. We can decompose x = x′ + (x · vt)vt where
x′ = x−(x ·vt)vt is the component of x orthogonal to vt, i.e. x′ ·vt = 0. Similarly
for u′ = u − (u · vt)vt. Hence,

u · x = (u′ + (u · vt)vt) · (x′ + (x · vt)vt) = u′ · x′ + (u · vt)(x · vt)

In other words, we err iff u′ · x′ < −(u · vt)(x · vt). Using u · vt ∈ [0, 1] and since
x · vt ∈ [0,

√

(1 − (u · vt)2)/(4d)], we conclude that if,

u′ · x′ < −
√

1 − (u · vt)2

4d
(7)



then we must err. Also, let x̂′ = x′

‖x′‖ be the unit vector in the direction of x′.

It is straightforward to check that ‖x′‖ =
√

1 − (x · vt)2. Similarly, for u we

define û′ = u′√
1−(u·vt)2

. Substituting these into (7), we must err if, û′ · x̂′ <

−1/
√

4d(1 − (x · vt))2, and since
√

1 − (x · vt)2 ≥
√

1 − 1/(4d), it suffices to
show that,

Px∈S

[

û′ · x̂′ <
−1

√

4d(1 − 1/(4d))

∣

∣

∣

∣

∣

0 ≤ x · vt ≤ γ

]

≥ 1

4

What is the probability that this happens? Well, one way to pick x ∈ S would
be to first pick x · vt and then to pick x̂′ uniformly at random from the set
S′ = {x̂′ ∈ S|x̂′ · vt = 0}, which is a unit sphere in one fewer dimensions. Hence
the above probability does not depend on the conditioning. By Lemma 1, for
any unit vector a ∈ S ′, the probability that |û′ · a| ≤ 1/

√

4(d − 1) is at most
1/2, so with probability at least 1/4 (since the distribution is symmetric), the
signed quantity û′ · x̂′ < −1/

√

4(d − 1) < −1/
√

4d(1 − 1/(4d)). ut

We are now ready to prove Lemma 4.

Proof (of Lemma 4). Suppose that condition (6) fails to hold for some t’s. Let
t be the smallest number such that (6) fails. By our choice of s1, clearly t > 1.
Moreover, since t is the smallest such number, and u · vt is increasing, it must
be the case that st = st−1/2, that is we just saw a run of R labeled examples
(xi, yi), for i = t − R, . . . , t − 1, with no mistakes, vi = vt, and

si = 2st <

√

1 − (u · vt)2

4d
=

√

1 − (u · vi)2

4d
. (8)

Such an event is highly unlikely, however, for any t. In particular, from Lemma 5,
we know that the probability of (8) holding for any particular i and the algorithm
not erring is at most 3/4. Thus the chance of having any such run of length R
is at most L(3/4)R.

Lemma 5 also tells us something interesting about the fraction of errors that
we are missing because we do not ask for labels. In particular,

Lemma 6. Given that st ≥
√

(1 − (u · vt)2)/(16d), upon the tth update, each
erroneous example is queried with probability at least 1/32, i.e.,

Px∈S

[

|x · vt| ≤ st

∣

∣x ∈ ξt

]

≥ 1

32
.



Proof. Using Lemmas 5 and 1, we have

Px∈S [x ∈ ξt ∧ |x · vt| ≤ st] ≥ Px∈S

[

x ∈ ξt ∧ |x · vt| ≤
√

1 − (u · vt)2

16d

]

≥ 1

4
Px∈S

[

|x · vt| ≤
√

1 − (u · vt)2

16d

]

≥ 1

64

√

1 − (u · vt)2 =
1

64
sin θt

≥ θt

32π

For the last inequality, we have used (2). However, Px∈S [x ∈ ξt] = θt/π, so
we are querying an error x ∈ ξt with probability at least 1/32, i.e., the above
inequality implies,

Px∈S

[

|x · vt| ≤ st

∣

∣ x ∈ ξt

]

=
Px∈S [x ∈ ξt ∧ |x · vt| ≤ st]

Px∈S [x ∈ ξt]
≥ θt/(32π)

θt/π
=

1

32
.

ut

Next, we show that the updates are likely to make progress.

Lemma 7. Assuming that st ≥
√

(1 − (u · vt)2)/(16d), a random update is good
with probability at least 1/2, i.e.,

Pxt∈S

[

(1− vt+1 · u) ≤ (1 − vt · u)
(

1 − c

d

) ∣

∣

∣
|x · vt| ≤ st ∧ xt ∈ ξt

]

≥ 1

2
.

Proof. By Lemma 6, each error is queried with probability 1/32. On the other
hand, by Lemma 3 of the previous section, 63/64 of all errors are good. Since
we are querying at least 2/64 fraction of all errors, at least half of our queried
errors must be good. ut

We now have the pieces to guarantee the convergence rate of the active algorithm,
thereby proving Theorem 3. This involves bounding both the number of labels
that we query as well as the number of total errors, which includes updates as
well as errors that were never detected.

Theorem 3. With probability 1 − δ, using L = O
(

d log
(

1
εδ

)

(log d
δ + log log 1

ε )
)

labels and making a total number of errors of O
(

d log
(

1
εδ

)

(log d
δ +log log 1

ε )
)

, the
final error of the active modified Perceptron algorithm will be ε, when run with
the above L and R = O(log d

δ + log log 1
ε ).

Proof. Let U be the number of updates performed. We know, by Lemma 4 that
with probability 1 − L( 3

4 )R,

st ≥
sin θt

4
√

d
≥ θt

2π
√

d
(9)



for all t. Again, we have used (2). By Lemma 7, we know that for each t which
is an update, either (9) fails or

E[1 − u · vt+1|vt] ≤ (1 − u · vt)
(

1 − c

2d

)

.

Hence, after U updates, using Markov’s inequality,

P

[

1 − u · vL ≥ 4

δ

(

1 − c

2d

)U
]

≤ δ

4
+ L

(

3

4

)R

.

In other words, with probability 1 − δ/4− L(3/4)R, we also have

U ≤ 2d

c
log

4

δ(1 − u · vL)
≤ 2d

c
log

π2

δθ2
L

= O

(

d log
1

δε

)

,

where for the last inequality we used (1). In total, L ≤ R (U + log2 1/sL). This
is because once every R labels we either have at least one update or we decrease
sL by a factor of 2. Equivalently, sL ≤ 2U−L/R. Hence, with probability 1 −
δ/4 − L(3/4)R,

θL

2π
√

d
≤ sL ≤ 2O(d log(1/δε))−L/R

Working backwards, we choose L/R = Θ(d log 1
εδ ) so that the above expression

implies θL

π ≤ ε, as required. We choose,

R = 10 log
2L

δR
= Θ

(

log
d log 1

εδ

δ

)

= O

(

log
d

δ
+ log log

1

ε

)

.

The first equality ensures that L(3/4)R ≤ δ/4. Hence, for the L and R chosen
in the theorem, with probability 1 − 3

4δ, we have error θL/π < ε. Finally, either
condition (9) fails or each error is queried with probability at least 1/32. By the
multiplicative Chernoff bound, if there were a total of E > 64U errors, with
probability ≥ 1 − δ/4, at least E/64 > U would have been caught and used
as updates. Hence, with probability at most 1 − δ, we have achieved the target
error using the specified number of labels and observing the specified number of
errors. ut

7 Future directions

The theoretical terrain of active learning is largely an unexplored wilderness.
The one nontrivial scenario in which active learning has been shown to give
an exponential improvement in sample complexity is that of learning a linear
separator for data distributed uniformly over the unit sphere. In this paper, we
have demonstrated that this particular case can be solved by a much simpler
algorithm than was previously known. It is possible that our algorithm can be
molded into something of more general applicability, and so it would interesting



to study its behavior under different circumstances, for instance a different dis-
tributional assumption. The uniform distribution is an impressive one to learn
against because it is difficult in some ways – most of the data is close to the
decision boundary, for instance – but a more common assumption would be to
make the two classes Gaussian, or to merely stipulate that they are separated
by a margin. How would our algorithm fare under these circumstances?
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A Proof of Lemma 1

Let r = γ/
√

d and let Ad be the area of a d-dimensional unit sphere, i.e. the
surface of a (d + 1)-dimensional unit ball.

Px [|a · x| ≤ r] =

∫ r

−r
Ad−2(1 − z2)

d−2

2 dz

Ad−1
=

2Ad−2

Ad−1

∫ r

0

(1 − z2)d/2−1dz (10)

First observe,

r(1 − r2)d/2−1 ≤
∫ r

0

(1 − z2)d/2−1dz ≤ r (11)

For x ∈ [0, 0.5], 1 − x ≥ 4−x. Hence, for 0 ≤ r ≤ 2−1/2,

(1 − r2)d/2−1 ≥ 4−r2(d/2−1) ≥ 2−r2d.



So we can conclude that the integral of (11) is in [r/2, r] for r ∈ [0, 1/
√

d]. The
ratio 2Ad−2/Ad−1 can be shown to be in the range [

√

d/3,
√

d] by straightforward
induction on d, using the definition of the Γ function, and the fact that Ad−1 =
2πd/2/Γ (d/2). ut


