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Abstract

Boosting algorithms are procedures that “boost” low-accuracy weak learning algorithms to achieve arbitrarily
high accuracy. Over the past decade boosting has been widely used in practice and has become a major research
topic in computational learning theory. In this paper we study boosting in the presence of random classification
noise, giving both positive and negative results.
We show that a modified version of a boosting algorithm due to Mansour and McAllester (J. Comput. System

Sci. 64(1) (2002) 103) can achieve accuracy arbitrarily close to the noise rate.We also give a matching lower bound
by showing that no efficient black-box boosting algorithm can boost accuracy beyond the noise rate (assuming that
one-way functions exist). Finally, we consider a variant of the standard scenario for boosting in which the “weak
learner” satisfies a slightly stronger condition than the usual weak learning guarantee.We give an efficient algorithm
in this framework which can boost to arbitrarily high accuracy in the presence of classification noise.
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1. Introduction

InValiant’s probably approximately correct (PAC) learningmodel, a successful learningalgorithmmust
be able to achieve any arbitrarily low error rate given random examples drawn from any fixed probability
distribution. In an early paper, Kearns and Valiant[13] proposed the notion of aweaklearning algorithm
which need only achieve some error rate bounded away from1

2, and posed the question of whether weak
and strong learning are equivalent for efficient (polynomial time) learning algorithms. Soon afterward,
in a celebrated result Schapire gave a positive answer to this question[16]. Schapire gave an efficient
boostingalgorithmwhich, given access to any weak learning algorithm, uses the weak learner to generate
a hypothesis with arbitrarily low error. Since Schapire’s initial result boosting has become one of the
biggest successes of computational learning theory; boosting algorithms have been intensively studied
from a theoretical perspective and are widely used in practice.
ThestandardPAC learningmodel assumes that all examples receivedby the learnerare labeledcorrectly,

i.e. the data has no noise. An important question, which was asked by Schapire in his original paper[16]
and by several subsequent researchers[2], is whether it is possible to efficiently perform boosting in the
presence of noise. Since real data is frequently noisy, this question is of significant practical as well as
theoretical interest.
In this paper, we give a detailed study of boosting in the presence ofrandom classification noise. In

the random classification noise model, the binary label of each example which the learner receives is
independently flipped from the true labelf (x) with probability� for some fixed 0< � < 1

2; the value
� is referred to as thenoise rate. Random classification noise is the most standard and widely studied
noise model in learning theory. We give both positive and negative results for boosting in this model as
described below.

1.1. Our results

We first demonstrate that decision-tree-like boosting algorithms can boost accuracy arbitrarily close
to the noise rate. In particular, we analyze a modified version of the “branching programs” booster of
Mansour and McAllester[15], which built on a boosting analysis of decision trees due to Kearns and
Mansour[11]. We refer to the boosting algorithm from[15] as the MM boosting algorithm, and to our
modifiedversion as the MMM boosting algorithm.
We next show that in general it isnot possible to boost to any error rate lower than the noise rate

using a “black-box” polynomial time boosting algorithm. This negative result assumes only that one-way
functions exist. Some computational hardness assumption is required since in exponential time any weak
learner can be boosted to arbitrary accuracy in the presence of noise. (Draw a polynomial size noisy data
set, exhaustively guess which labels are noisy, and run a standard boosting algorithm.)
The results described above assume that the boosting algorithm has access to a weak learner as defined

by Kearns and Valiant, i.e. an algorithm which, given examples drawn from a distributionD, produces
a hypothesis whose error rate relative to the target function is bounded away from1

2. For our second
positive result we consider a slightly stronger notion of anokaylearner (precisely defined in Section6)
which produces a hypothesis whosecovariancewith the target function is bounded away from 0. We
show that if the MMM boosting algorithm has access to an okay learner, then it can boost to achieve
arbitrarily low error in the presence of random classification noise.
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Table 1
Examples labeled 1 are either noisy negative examples or nonnoisy positive examples

Noise No noise

True positive example p� p(1− �)

True negative example (1− p)� (1− p)(1− �)

Thus, the frequency of true positive examples among examples labeled 1 isp(1−�)
p(1−�)+(1−p)� which is less than12 if p < � < 1

2.

1.2. Our approach

Recall that a weak learning algorithm must output a hypothesis with error at most1
2 − � when given

examples drawn fromany distributionD.A simple but useful observation is the following: ifD is balanced
between positive and negative examples then the hypothesis generated by a weak learner provides some
useful information, but ifD is unbalanced then the weak learner can output a trivial hypothesis and still
satisfy the guarantee. For example, if� = 0.1 andD puts probability weight 0.8 on positive examples,
then the identically-1 hypothesis is a legitimate output for the weak learner. Thus, the only way to ensure
that a weak learner gives some useful information is to run it on a distribution which is roughly balanced
between positive and negative examples. If the distributionD is unbalanced, then some sort of filtering
or reweighting must be performed to obtain a balanced distributionD′; all known boosting algorithms
take this approach when given a constant weak hypothesis.
Themain idea behind our negative result is that in the presence of classification noise, it can be difficult

to obtain a balanceddistributionD′. Consider a scenariowhereD putsweightp < 1
2 onpositive examples.

To make the weak learner do something useful, we would like to reweight to a balanced distributionD′.
Intuitively, the best way to do this is to discard some examples which are labeled 0. However, ifp < �
then even among examples which are labeled 1, less than half are true positive examples (see Table 1).
Thus, we cannot construct a new distribution which forces the weak learner to do something useful, so
we cannot boost to high accuracy. In Section5 we make these ideas precise and give a hardness proof.
For our positive results, we consider amodified version of the “branching program” boosting algorithm

of Mansour and McAllester[15]. Our analysis exploits the fact that their scheme causes the (possibly
noisy) label of a given example to play a relatively small role in its reweighting. This is in contrast with
several other boosting algorithms, such as AdaBoost[6], (and less obviously Boost by Majority[5],
LogitBoost[4], etc.),in which a noisy label can cause an example to receive exponentially more weight
than it would otherwise receive. We note that several researchers[3,17] have empirically observed that
standard boosting algorithms such asAdaBoost can perform poorly on noisy data, and indeed it has been
suggested that this poor performance is due to AdaBoost’s tendency to construct distributions which put
a great deal of weight on a few noisy examples[3].

1.3. Related work

The elegant Statistical Query model introduced by Kearns[10] is a model in which the learner does not
receive labeled examples but instead can obtain estimates of statistical properties of the distribution of
labeled examples. Aslam and Decatur gave an algorithm for boosting any Statistical Query weak learner
to arbitrary accuracy[1]. Since every Statistical Query algorithm can be simulated using a noisy example
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oracle[10], their result seems to imply that any Statistical Query weak learning algorithm can be boosted
even with noise.
However, Aslam and Decatur’s result does not allow the Statistical Query weak learner to have access

to unlabeled examples from the distribution, which is sometimes considered part of the Statistical Query
model. In fact, the “unboostable” weak learning algorithm we present in Section5 can be viewed as
a Statistical Query algorithm that requires access to unlabeled examples. This suggests that it may be
impossible, in general, to boost Statistical Query algorithms that have access to unlabeled examples, or
that Aslam and Decatur’s result may be the strongest possible.
One of the most impressive examples of noise-tolerant learning is that of learning a noisy half-space

[2]. Their algorithm uses a special outlier-removal process that examines unlabeled points. Thus, while
their algorithm is, in the broadest sense, a Statistical Query algorithm, Aslam and Decatur’s boosting
cannot be used directly on their approach. Instead, they give a special-case boosting approach for their
problem.
In follow-up work, it has been shown that branching programs can be used to boost under a stronger

modelof noise[9].Themodel considered there isanarbitrarydistributionoverX×Y ,where, for simplicity,
sayY = {0,1}. As in thep-concept mode[12] the goal is to learnf (x) = E[y|x] for a random example
(x, y) from the distribution, and the error of a hypothesish is measured byE[(h(x) − f (x))2]. It is
shown that as long as one can find a hypothesis which is positively correlated (has a positive correlation
coefficient) with the target function, boosting is possible. As an application, it is shown that the class of
generalized additive models (with monotonic link functions), popular in the statistics literature, can be
learned by such boosting.
The above model of “noise” is stronger and weaker in some senses. Its strength is that the noise is not

necessarily uniform, and the hypothesis has to learn the noise as well. However, in the case of uniform
classification noise very near12, the constant hypothesish(x) = 1

2 is quite accurate and real learning only
has to be done to get very small error. In contrast, according to the standard definition of accuracy in a
noisy setting, which is with respect to a noiseless test set, this high-noise case is more difficult.

2. PAC learning preliminaries

Our results are for the model of PAC learning in the presence of classification noise. For a detailed
introduction to PAC learning see[14].
A concept class Cis a class of Boolean functions over someinstance spaceX. We assume throughout

that the instance spaceX is of dimensionn, i.e.X = Rn orX = {0,1}n, andweare interested in algorithms
whose running time is polynomial inn (and other parameters).
Let f be a function inC,D a distribution overX, and� a value 0�� < 1

2. A noisy example oracleis
an oracleEX(f,D, �) which works as follows: each timeEX(f,D, �) is invoked, it returns a labeled
example〈x, b〉 ∈ X × {0,1} wherex ∈ X is drawn from distributionD andb is independently chosen
to bef (x) with probability 1− � and 1− f (x) with probability�.
Let f ∈ C be a fixed target function. A noise-tolerant PAC learning algorithm for a concept classC is

an algorithmwhich has the following property: for any�, � > 0, any 0�� < 1
2, any target functionf ∈ C,

and any distributionD overX, if the algorithm is given access toEX(f,D, �) then with probability 1−�
it outputs a hypothesish such that Prx∈D[h(x) �= f (x)] < �. We refer to Prx∈D[h(x) �= f (x)] as the
error of h underD.
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A noise-tolerant weak learning algorithm is an algorithm which satisfies the PAC criterion only for
sufficiently large�. More precisely, we have:

Definition 1. Let 0 < � < 1
2. A noise-tolerant�-weak learning algorithm for a concept classC is an

algorithmA that takes inputsn, � and is given access to a noisy example oracleO, with the following
property. For alln, �, if O is a noisy example oracleEX(f,D, �) wheref ∈ C, D is any distribution on
{0,1}n, and 0�� < 1

2, thenA runs in time poly(n, 1
1−2� ,

1
� ) and with probability at least 1− �,A outputs

a poly(n, 1� ,
1
� ,

1
1−2�)-time evaluable hypothesish such that Prx∈D[h(x) �= f (x)]� 1

2 − �.

A boosting algorithm is an algorithm which, given access to a weak learning algorithm, can generate
a hypothesishwith arbitrarily low error. More precisely, we have:

Definition 2. A black-box noise-tolerant booster is an algorithmB that is given access to an oracleO
and black-box access to an algorithmA, with the following property. For all concept classesC, for
all 0 < � < 1

2, for all 0�� < 1
2, for all n, �, �, we have: ifA is a noise-tolerant�-weak learning

algorithm forC andO is a noisy example oracleEX(f,D, �) wheref ∈ C andD is any distribution
on {0,1}n, thenBO,A runs in time poly(n, 1� ,

1
� ,

1
� ,

1
1−2�) and with probability at least 1− � B outputs a

poly(n, 1� ,
1
� ,

1
� ,

1
1−2�)-time evaluable hypothesish such that Prx∈D[h(x) �= f (x)]��.

We note that in both our positive and negative results, the boosting algorithmB calls the weak learning
algorithmAas a black box;Bmay runAusing any oracleO whichB is able to provide, butBcannot “read
the code” ofA. Thus, our negative results hold only for boosting algorithms which operate in this black-
box way. We feel that this is a minor restriction to put on boosting algorithms since all known boosting
algorithms (including the MM boosting algorithm which we analyze) work in a black-box way—they
call the weak learner and use the hypotheses which it generates, but do not inspect the internal state of
the weak learner during its execution.

3. MM: noise-free boosting

In this section, we describe a particular boosting algorithm and analyze its performance in the absence
of noise (i.e. when� = 0). The algorithm we describe here is essentially the branching program booster
of Mansour and McAllester[15] (which built on ideas from Kearns and Mansour’s paper[11]), and we
henceforth refer to it as the MM boosting algorithm. Our goal here is to set the stage for our analysis of
the MMM algorithm (modified MM) in the presence of noise, which we give in Sections4 and6. Our
presentation and analysis of the MM algorithm are slightly different from[15] in order to facilitate our
presentation and analysis of the MMM algorithm in Sections4 and6.

3.1. Preliminaries

Throughout this section, we letf ∈ C be a fixed target function andD be a fixed distribution overX.
For � ⊆ X we writeD|� to denoteD conditioned onx ∈ �, i.e.D|�(S) = PrD[x ∈ S | x ∈ �]. We write
p� to denote PrD[f (x) = 1|x ∈ �] andp to denote PrD[f (x) = 1].
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Definition 3. As in [11], theuncertaintyof a distributionD is defined to beU(D) = 2
√
p(1− p). Let

L be a partition ofX into disjoint subsets (soX = ⋃
�∈L �). The uncertainty ofL underD is defined to

beU(D,L) = ∑
�∈Lw�u�, whereu� = U(D|�) = 2

√
p�(1− p�) is the uncertainty of the conditional

distributionD|� andw� = PrD[x ∈ �] is referred to as theweightof leaf�.

Given any partitionL ofX, there is a natural corresponding predictor for the target functionf: on each
set� ∈ L, we predict 1 iffp� > 1

2. The error of this predictor underD is
∑
� w�min(p�,1− p�); note

that this is at most12U(L,D) since min is less than geometric mean. Thus, the uncertainty of a partition
gives an upper bound on the error of the corresponding predictor.

Definition 4. ThebalanceddistributionD̂ is an equal average of the distributionsD|f−1(1) andD|f−1(0),

i.e. D̂(S) = 1
2 PrD[x ∈ S | f (x) = 1] + 1

2 PrD[x ∈ S | f (x) = 0].

Given access to a noise-free oracleEX(f,D), it is easy to simulate the noise-free oracleEX(f, D̂);
this is done by flipping a coin at random to decide whether to choose a positive or negative example. Then
wait until one receives such an example.3

For our purposes, abranching programis a rooted, directed acyclic graph in which each leaf� is
labeled with a bitb� and each internal nodev has outdegree 2 and is labeled with a Boolean function
hv. (Branching programs go by various names, such as decision graphs and binary decision diagrams, in
different communities.) Branching programswere introduced into boosting as a generalization of decision
tree learning: while decision trees are constructed by splitting nodes, for branching programs nodes can
be merged as well.

3.2. The MM boosting algorithm

The MM algorithm iteratively constructs a branching program in which each internal nodev is labeled
with a hypothesishv generated by the weak learner at some invocation. In such a branching program,
any instancex ∈ X determines a unique directed path from the root to a leaf; at each internal nodev the
outgoing edge taken depends on the valuehv(x). Thus, the setLof leaves� corresponds to a partition ofX,
and for each leaf� we have probabilitiesw� = Pr[x reaches�] andp� = Prx∈D[f (x) = 1|x reaches�].
As described above, each leaf� is labeled 1 ifp� > 1

2 and is labeled 0 otherwise; thus a branching program
naturally corresponds to a classifier.
The MM algorithm is given below. The branching program initially consists of a single leaf. The

algorithm repeatedly performs two basic operations:

• Split a leaf(Steps2–3): The chosen leaf� becomes an internal node which has two new leaves as its
children. The label of this new internal node is a hypothesis generated by the weak learning algorithm
when run with the oracleEX(f, D̂|�) (recall that this distribution is obtained by first conditioning on
x ∈ � and then balancing that conditional distribution).

3This may take a great deal of time ifp is very close to 0 or 1, but as we will see these situations do not pose a problem for
us since we will abort the simulation after some bounded number of draws.
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• Merge two leaves(Steps6–7): The two leaves�a and�b chosen for the merge are replaced by a single
leaf�. All edges into�a and�b are redirected into�.

Intuitively, splitting a leaf should increase the accuracy of our classifier. In the MM algorithm, the leaf
to be split is chosen so as to maximally decrease the overall uncertainty of the partition corresponding to
the branching program. Conversely, merging two leaves should decrease the accuracy of our classifier.
However, we must do merges in order to ensure that the branching program does not get too large;
Kearns and Mansour have shown that without merges the size of the resulting decision tree may be
exponentially large[11]. The leaves to be merged are chosen so as to minimally increase the overall
uncertainty of the partition. The condition in line 7 ensures thatwe only performmergeswhose cumulative
uncertainty increase is substantially less than the uncertainty decrease of the most recently performed
split, and thus we make progress. The final output hypothesis of the MM booster is the final branching
program.

The MM boosting algorithm:
Input: desired final error level�,

access to�-weak learnerA,
access to noise-free example oracleEX(f,D).

Recall from the definitions:w� = PrD[xreaches leaf�], p� = PrD[f (x) = 1|x reaches�], u� =
2
√
p�(1− p�), D|� is the distribution obtained by conditioning onx ∈ �, and D̂|� is the balanced

version ofD|�.
Algorithm:
1. Start with the trivial partitionL = {X}, so the branching program is a single leaf.
2. Construct candidate splits: For each leaf� ∈ L, such thatp� /∈ {0,1}, run the weak learning

algorithmA on the balanced distribution on this leaf (i.e. oracleEX(f, D̂|�)) to obtain leaves�0
and�1.

3. Choose best split:Perform the split that reduces the overall uncertainty the most. Let�S be this
reduction, so

�S = max
�

{w�u� − w�0u�0 − w�1u�1}.
4. Stop if the error of the current branching program≤ �.
5. Set�M := 0.
6. Consider candidate merges: Let �a �= �b be the two leaves which, if merged into one leaf�, would

cause the minimum increase in uncertainty. Letz be this minimum value:

z := min
�a �=�b

{w�au�a + w�bu�b − w�u�}.
7. Merge if safe: If �M + z < �S/2 then

• Merge leaves�a, �b in the branching program.
• Set�M := �M + z.
• Go to Step 6.

8. Otherwise, go to Step 2.
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3.3. Correctness and efficiency of the MM algorithm

We assume in this section that all probabilities are computed exactly by the MM algorithm. In Sec-
tion 3.4, we show that our analysis still holds if probabilities are estimated by a polynomial amount of
sampling.We also assume that the weak learning algorithm successfully finds a(12 − �)-accurate hypoth-
esis at each invocation, i.e. we ignore the� probability of failure. This failure probability can be handled
with standard techniques as discussed in Section3.4.
The following lemma corresponds to Lemma 2 in[11].

Lemma 1. Suppose for distributionD, hypothesis h satisfiesPrD̂[h(x) �= f (x)]� 1
2 − �. LetL be the

partition induced by h, i.e.L = {h−1(0), h−1(1)}. ThenU(L,D)�(1− 2�2)U(D).

Proof. Without loss of generality we write

PD[f (x) = 1] =p,

PD[h(x) = 1∧ f (x) = 1] =pa,

PD[h(x) = 0∧ f (x) = 1] =p(1− a),

PD[f (x) = 0] = q = (1− p),

PD[h(x) = 1∧ f (x) = 0] = qb,

PD[h(x) = 0∧ f (x) = 0] = q(1− b),

so the error ofh underD|f (x)=1 is 1− a and underD|f (x)=0 is b. Since the error under the balanced
distribution is at most12 − �, we have1−a+b2 � 1

2 − � and hencea − b�2�.
By definition,U(D) = 2

√
pq and that

U(L,D)= 2(pa + qb)

√
paqb

(pa + qb)2
+ 2(p(1− a)+ q(1− b))

√
p(1− a)q(1− b)

(p(1− a)+ q(1− b))2

= 2
√
paqb + 2

√
p(1− a)q(1− b)

=U(D)
(√

ab +√
(1− a)(1− b)

)
.

To finish the proof, we observe that
√
ab +√

(1− a)(1− b) = 1

2

√
(a + b)2 − (a − b)2 + 1

2

√
(1− a + 1− b)2 − (a − b)2

�
1

2

√
(a + b)2 − 4�2 + 1

2

√
(2− (a + b))2 − 4�2

�
√
1− 4�2

� 1− 2�2,

where the second inequality uses the concavity of the function
√
x2 − �. �

Lemma1 implies that as long as the MM branching program does not have too many leaves, each split
performed in line 3 gives a substantial decrease in the overall uncertainty:

Lemma 2. Suppose that the MM branching program’s partitionL has L leaves before executing Step3.
Then after performing the split in Step3, the new partitionL′ satisfiesU(L′,D)�(1− 2�2/L)U(L,D).
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Proof. SinceL hasL leaves, some leaf� must havew�u�� 1
L
U(L,D). If this leaf were chosen for the

split then by Lemma1 the uncertaintyu� would be multiplied by at most 1− 2�2, and hence the overall
uncertaintyU(L,D) would be multiplied by at most 1− 2�2/L. Since the actual split chosen is the one
which reduces overall uncertainty the most, the lemma holds.�

Now we show that if the branching program has many leaves, there are merges it can perform which
do not increase uncertainty by too much.

Lemma 3. Suppose that the MM branching program has uncertaintyU = U(L,D) andL� 72
�2
log 4

U�2

leaves. Then there are two leaves�a and�b whose merger would cause the uncertainty to increase by at
most�2U/L, i.e. the resulting partitionLa,b would satisfyU(La,b,D)�(1+ �2/L)U .

Proof. We may assume without loss of generality that there are at leastL/2 leaves� such thatp�� 1
2.

(The other case, that there are at leastL/2 leaves� such thatp�� 1
2 follows by symmetry.) Consider

what would happen if we were to merge two such leaves�1 and�2 which have associated weightsw1
andw2 and uncertaintiesu1 = U(D|�1)�u2 = U(D|�2). It is easily verified that this would give a leaf
� with weightw = w1 + w2 and uncertaintyu = U(D�) satisfyingu1�u�u2 (this uses the fact that
p1, p2� 1

2). Consequently, the increase in overall uncertainty resulting from such a merge would be

wu− w1u1 − w2u2�w1(u2 − u1) = w1u1

(
u2

u1
− 1

)
. (1)

Now we imagine putting the uncertainties of these leaves into disjoint buckets. Consider theL/8
intervals((

1− �2

9

)i
,

(
1− �2

9

)i−1
]

for i = 1,2, . . . , L/8. (These buckets were used explicitly as part of the algorithm in[15] but our
presentation uses them only here in the analysis.) Since(1− x)1/x�1/e for x ∈ (0,1], we have(

1− �2

9

)L/8
�
(
1− �2

9

) 9
�2

log 4
U�2

�
�2U

4

and hence these buckets cover at least the interval(�2U/4,1].
Suppose first that at leastL/4 of theL/2 leaves withp�� 1

2 have uncertaintyu���2U/4. If this is the
case then theremust be some such leaf with weightw��4/L. By Eq. (1), merging this leaf with any other
leaf whose uncertainty is at most�2U/4 results in an increase in uncertainty of at mostw��2U/4��2U/L,
which suffices to establish the lemma in this case.
So now suppose that at leastL/4 of theL/2 leaves withp�� 1

2 have uncertaintyu� > �2U/4. By the
pigeon-hole principle, among theseL/4 values ofu� at leastL/8 fall into buckets in which they are not
the unique largest value assigned to that bucket. Among theseL/8 values, let�′ be the leaf with lowest
w�′u�′ . Since the total uncertainty isU , we must havew�′u�′ �8U/L. Let �′′ be a leaf which falls into
the same bucket and satisfies

u�′ �u�′′ �u�′/(1− �2/9).
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From Eq. (1), the increase in uncertainty which would result from merging�′ and�′′
is at most

8U

L

(
1

(1− �2/9)
− 1

)
= 8U

L
· �2

9− �2
�
U�2

L

so the lemma is proved.�

Now, we can establish correctness of the MM boosting algorithm:

Theorem 4. After at most144
�4

log 2
��2

log 1
2� splits andmerges, theMMalgorithmwill output a hypothesis

h such thatPrD[h(x) �= f (x)]��.

Proof. First, note that since the algorithm halts as soon as the error PrD[h(x) �= f (x)] is at most�,
throughout its execution we haveU(L,D) > 2� (recall that the uncertainty is always at least twice the
error rate). We now show that the algorithm halts after the claimed number of steps.
We first note that the number of leaves in the branching program whenever Step 3 is executed is never

greater thanL = 72
�2
log 2

��2
. To see this, note that if there areL leaves and a split is performed, then by

Lemma2 the uncertaintyU prior to the split decreases by at least 2�2U/L. Lemma3 then implies that
there is some merge which would increase the uncertainty by at most�2U/L. Thus this merge will be
performed in Step 7 and there will again be at mostL leaves.
Thus by Lemma2 and the condition in Step 7, the cumulative effect of a split and the (possibly

empty) sequence of merges which follows it before the next split is to multiply the uncertainty by at most
(1− �2/L). Since the uncertainty of the initial trivial partition is at most 1, we have that immediately

before the(s + 1)st split takes place the uncertainty is at most
(
1− �2

L

)s
�e−s�2/L. This is less than 2�

for s = L
�2
log 1

2� , so at most this many splits take place. The total number of merges is clearly at most the
total number of splits, so the theorem is proved.�

3.4. Approximating MM via sampling

So far we have discussed an idealized version of the MM algorithm in which all probabilities can be
computed exactly. In[15], the MM algorithm was run on a fixed sample so this exact computation could
in fact be done, but for our extension to the noisy setting it is more convenient to consider a “boosting-
by-filtering” version where we do not use a fixed sample. Hence we cannot compute probabilities exactly
but instead must use empirical estimates obtained by callingEX(f,D).
Let L be as in Theorem4. We first note that in Step 2 the algorithm need not run the weak learning

algorithm on any leaf� which hasw�u�� �
2L , since the total contribution of such leaves to the final

uncertainty will be at most�2. By the analysis in Section3.3, for each leaf� it suffices to estimate the

quantityw�u� to additive accuracyO(
�2�
L
). This accuracy ensures that, as inTheorem4, before the(s+1)st

split the uncertainty is at most(1− �(�2/L))s , and that our final estimate of the uncertainty
∑
� w�u�

will be off by at mostO(�).
How much time is required to estimatew�u� to a given additive accuracy? We can rewritew�u� as

2
√
a�b� wherea� = PrD[x ∈ � andf (x) = 1] andb� = PrD[x ∈ � andf (x) = 0]. Tail inequalities,

such as Chernoff bounds, imply that these probabilities, and hencew�u� as well, can be estimated to any
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inverse polynomial additive accuracy from a polynomial number of calls toEX(f,D). (Note that from
the above discussion, we only need to simulateEX(f, D̂|�) in Step 2 ifw�u� is�(�/L), and if this is the
case then we can simulate each call toEX(f, D̂|�) in poly(L/�) time with high probability.)
Finally, we note by a standard analysis the total failure probability of all estimates and calls to the weak

learner can be bounded by� at little cost. We thus have:

Theorem 5. For any�, � > 0, if the MM boosting algorithm is run using a�-weak learner and a noise-
free example oracleEX(f,D), then it runs forpoly(1� , 1� , 1� ) time steps and with probability1−� outputs
a hypothesis h satisfyingPrD[h(x) �= f (x)]��.

4. MMM: boosting to the noise rate

In this section we modify the MM algorithm to obtain the MMM algorithm which can achieve any
accuracy up to the noise rate. The MMM algorithm is given access to a noise-tolerant�-weak learning
algorithm and to a noisy example oracleEX(f,D, �) and is given a value� > 0; its goal is to output
a hypothesish such that PrD[h(x) �= f (x)]�� + �. We analyze the algorithm in terms of the true
probabilitiesp� = PrD[f (x) = 1|x ∈ �] instead of the “noisy” probabilities̃p� = PrD[label= 1|x ∈ �].
Sincep̃� = p�(1− �)+ (1− p�)�, we have

p� = p̃� − �

1− 2�
. (2)

Thus, the MMM algorithm can estimatep� to within an additive error ofc by estimatingp̃� to within an
additive c

1−2� . We assume throughout this section that the MMM algorithm knows the value of�. If not,
we can use the following standard trick: if we could “guess”� then the algorithm would succeed. In fact,
if we could guess� to within a small error, then we would succeed as well. This is because the algorithm
would succeed with high probability if the true distribution had our guessed amount of noise, and the
two distributions with different amounts of noise are very close (so close that no algorithm that draws
a sufficiently small number of examples can succeed on one and fail on the other). Thus, one searches
through the possible noise values, starting at small eta and gradually increasing, each time rerunning the
algorithm with the estimated�. When we reach the correct value of�, the algorithm will succeed and we
will be able to tell by our sufficiently high accuracy.
The MMM algorithm differs from the MM algorithm in the following ways:

• In Step 2 the oracleEX(f, D̂|�, �′), i.e. a noisy balanced oracle, is used to run the weak learning
algorithm, where�′ > � is some higher noise rate. (Later we will show how to efficiently simulate
EX(f, D̂, �′) given access toEX(f,D, �) and will show that�′ is bounded away from12; this ensures
that at each stage the noise-tolerant weak learner can construct a weak hypothesis as required.)

• For � > 0 defineL� to be the set of leaves� such that min{p�,1− p�}�� + �
2. Each time a leaf�

is formed, if� /∈ L� then we view� as “dead” and never consider it again for splits or merges; so
MMM only performs splits and merges on leaves inL�. (This ensures that we can efficiently simulate
the noisy balanced oracle. For leaves not inL� we may not be able to simulate such an oracle.)

• In Step 4 the algorithm halts if PrD[h(x) �= f (x)]�� + �.

We have the following analogue of Theorem4:
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Theorem 6. AfterO( 1
�4
log 1

�� log
1
� ) splits and merges, the MMM algorithm will output a hypothesis h

such thatPrD[h(x) �= f (x)]�� + �.

Proof. The error PrD[h(x) �= f (x)] has contributions from leaves inL� and not inL�. By definition
of L� the total contribution from leaves not inL� is at most� + �/2. Thus it suffices to bound the error
contribution from leaves inL� by �/2. The analysis establishing this bound is very similar to that of
Theorem4with �/2 in place of�. LetU� = ∑

�∈L�
w�2

√
p�(1− p�) be the total uncertainty of leaves in

L�. As before, it suffices to reduceU� to �. If we setL� = |L�|, then Lemma2now holds with 1− 2�2/L�

in place of 1−2�2/L, because the leaf of largest uncertainty inL� can be split and its uncertainty reduced
by a factor of 1− 2�2. Lemma3 applies to the subset of leavesL� and the uncertaintyU�, so as before
if there are many leaves inL� then merging some pair increases uncertainty by at most 1+ �2/L�. Thus,
by the same argument as Theorem4 the valueU� will be reduced to� in the same number of splits and
merges as in Theorem4 for � = �/2. �

We now show how to simulate the noisy balanced example oracleEX(f, D̂, �′) usingEX(f,D, �).
Assume without loss of generality thatp = PrD[f (x) = 1]� 1

2. From the discussion above we may
assume thatp�� + �

2. We filter examples fromEX(f,D, �) as follows:

• Labeled0: Reject each example labeled 0 with probability1−2p
1−p−� , otherwise keep it.

• Labeled1: Flip to 0 with probability (1−2p)�(1−�)
(1−�−p)(p+�−2p�) , otherwise do not flip the label.

The idea is that the rejection balances the distribution between true positive and true negative examples,
but as a result of this balancing we now have asymmetric noise, i.e. the fraction of negative examples
that are mislabeled is greater than the fraction of positive examples that are mislabeled. To compensate,
the flipping causes an equal fraction of positive and negative examples to be mislabeled, so we have true
classification noise at a higher rate�′. We have the following lemma:

Lemma 7. Given access toEX(f,D, �),wherep = Pr[f (x) = 1] andmin{p,1−p}��+ �
2,bymaking

poly(1� , log
1
� ) calls toEX(f,D, �)we can simulate a call toEX(f, D̂, �′)with probability1− �,where

�′� 1
2 − �

4.

Proof. Recall that we have access to a noisy example oracleEX(f,D, �) whereD is some distribution,
0< � < 1

2 is the noise rate, andp = PrD[f (x) = 1] satisfies�+ �
2�p� 1

2 for some� > 0.We show how
this oracle can be used to simulate the oracleEX(f, D̂, �′). HereD̂ is the balanced version of distribution
D and 0< �′ < 1

2 is a new noise rate.
We filter examples fromEX(f,D, �). For each example,
Labeled0: Reject with probabilitypr = 1−2p

1−p−� , keep with probability 1− pr = p−�
1−p−� .

Labeled1: Flip its label with probabilitypf = (1−2p)�(1−�)
(1−p−�)(p+�−2p�) , do not flip withprobability 1−pf .

We will show that this results inEX(f, D̂, �′) where�′� 1
2 − �

4.
In order to verify this, it suffices to check the following two things. First, with regard to rejection,

Pr
D

[f (x) = 0∧ not rejected] = Pr
D

[f (x) = 1∧ not rejected].
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This would show that at least the resulting distribution is balanced but says nothing about the labels or
apparent noise rates. The LHS above can be written as(1−p)((1− �)(1−pr)+ �) because the example
was negative with probability 1−p and either the example was not noisy (probability 1−�), thus labeled
0, and kept (probability 1−pr ), or it was noisy (probability�) and was kept for sure. Similarly, the RHS
above can be written asp(�(1 − pr) + 1 − �). One can check that the above two quantities are both
(1−2�)p(1−p)

1−p−� .
Second, we need to check that the noise rates on both positive and negative examples are�′. In other

words, we need to verify that,

Pr
D

[f (x) = 0∧ not rejected∧ label′ = 1] = �′ Pr
D

[f (x) = 0∧ not rejected]

and

Pr
D

[f (x) = 1∧ not rejected∧ label′ = 0] = �′ Pr
D

[f (x) = 1∧ not rejected].

In theabove, label′ is thepossibly flipped label afterStep2.Thefirst LHScanbewrittenas(1−p)�(1−pf )
because the example must have been a negative example that was noisy and not flipped. Similarly, the
second LHS above isp(�(1− pr) + (1− �)pf ). A tedious but straightforward verification shows that
these two quantities are both�(1−p)

(p+�−2p�) · (1−2�)p(1−p)
(1−p−�) .

Based on our earlier calculation that

Pr[f (x) = 0∧ not rejected] = (1− 2�)p(1− p)

1− p − �
,

the effective noise rate is

�′ = �(1− p)

p + � − 2p�
= 1

2
− p − �

2(p + � − 2p�)
.

It is straightforward to verify that�′� 1
2 − �

4 becausep − �� �
2 andp + � − 2p� < 1, so the lemma is

proved. �

As in Section3.4, to run MMM successfully we need only estimate eachw�, p�, u� to inverse poly-
nomial accuracy. A new issue which arises is that sincep� is an estimate instead of a precise value, the
filtering procedure described above to sample fromEX(f, D̂|�, �′)will not perfectly simulate this oracle,
i.e. the resulting distribution may not be perfectly balanced, and the noise rates on positive and negative
examplesmay not be exactly equal. However, this is not a problem since a straightforward analysis shows
that the statistical difference between the true distribution and the distribution we simulate can be made
as small as any inverse polynomial (at the expense of a corresponding polynomial increase in runtime).
Thus, any weak learner which makes polynomially many draws from our simulated distribution cannot
distinguish between it and the true distribution with high probability. Since it succeeds with high proba-
bility from the true distribution, it must succeed with high probability from the simulated distribution as
well.
We thus have
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Theorem 8. For any �, � > 0, if the MMM boosting algorithm is run using a noise-tolerant �-weak
learner and a noisy source of examples,EX(f,D, �), then it runs forpoly(1� , 1� , 1� , 1

1−2�) time steps and
with probability1− � outputs a hypothesis h satisfyingPrD[h(x) �= f (x)]�� + �.

In the next section, we give a lower bound showing that, in general, it is impossible to boost a black-box
weak learner past the noise rate.

5. Boosting past the noise rate is hard

The basic approach here is that we suppose we have some distribution with ap < � fraction of positive
examples.Thus theall 0’s hypothesis is a goodweakhypothesis to start.Wewill describe an “unboostable”
weak learner with the following property: whenever possible, it outputs a trivial hypothesis that contains
no useful information. In fact, the weak learner only does something interesting if its sample contains a
large set of unique (occurring only once in the sample) examples that is nearly1

2 positive. The motivation
for considering this weak learner is that it is difficult for a booster to generate a set of examples that is
nearly12 positive, because a random example that is labeled positive is still more than1

2 likely to be a true
negative example, and thus intuitively it is hard for the booster to make the weak learner give any useful
information.
However, there is a difficulty in that the booster might conceivably be able to learn on its own, without

even using theweak learner. Thus, in order to prove that it is hard to boost past the noise rate, we somehow
need to ensure that the booster must indeed use the weak learner.
Our approach takes advantage of the fact that since a boosting algorithm must work for any concept

class, the booster does not “know” the concept class on which it is being run.4We will consider concept
classes each containing a single function; for each such concept class there is a corresponding weak
learner which knows this function (since the weak learner may be tailored for the particular concept class
being learned), but the booster does not. The overall collection of functions (collection of concept classes)
considered will be a pseudo-random family of functions, so intuitively the booster should be unable to
learn without using the weak learner.
Using this approach, we prove the following:

Theorem 9. If one-way functions exist then black-box noise-tolerant boosters do not exist.

In fact, we show (Theorem13) that for any� > 0 it is cryptographically hard to boost to accuracy�− �
in the presence of classification noise at rate�.
We give some more intuition for our construction. The unboostable weak learning algorithm is as

follows. Consider a target functionf which has only an� − � fraction of inputsx satisfyingf (x) = 1.
Then under the uniform distribution a weak learner can output the constant-0 hypothesis; in fact the only
distributions for which a weak learner must output some other hypothesis are nonuniform ones which

4An alternative approach would instead be to assume that the boosting algorithm cannot use any information about the
particulars of the learning problem. Namely, we could assume that the boosting algorithm cannot do anything with examples
other than identify whether two are the same or different, examine their labels, and apply the weak hypotheses to them. Under
this assumption almost any concept class can be shown to have an unboostable weak learner. In our cryptographic construction
described below, we bypass this strong assumption by instead assuming that one-way functions exist.
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put weight at least12 on the small set of positive examples. Thus, the only way a boosting algorithm can
get anything useful out of such a weak learner is to simulate a distribution which puts weight at least1

2
on positive examples, and as argued earlier this seems difficult to do since the noise rate is�.
In fact there is a hole in this argument. For example, a boosting algorithm could simulate a distribution

which puts weight12 on each of two examples. If the booster is lucky and one of the examples is positive,
then the resulting distribution is balanced. Thus, in order to design a maximally unhelpful weak learner
which thwarts this boosting strategy, we have our weak learner make a lookup table of examples which it
seesmany times in its sample. For each example in the table, the weak learner’s output is themajority vote
label from its occurrences in the sample; on all other examples the weak learner outputs 0. Intuitively,
this hypothesis is sufficient to satisfy the weak learning criterion unless the data set for the weak learner
contains a large number of distinct instances many of which are true positive examples; only if this is the
case does the weak learner give up some useful information.
Now we give the actual construction. Let 0< p < 1. Let{fs : {0,1}|s| → {0,1}}s∈{0,1}∗ be ap-biased

pseudorandom function family, i.e. a family of functions which are indistinguishable from truly random
p-biased functions (see AppendixA for a formal definition ofp-biased pseudorandom function family).
For eachs ∈ {0,1}n we define a concept classCs as follows: each classCs contains exactly one concept,
which isfs .
Fix 0< � < 1

4.We now define an algorithmAs for each concept classCs . In the following description
the valuesm1, k,m2, are polynomials inn, 1� ,

1
1−2� ,

1
� whose values will be given later.

Algorithm As(�, �):
1. Draw a sequenceS1 ofm1 examples. (Note that a given instancex ∈ {0,1}n may occur more than

once inS1.)
2. LetT be the set of instancesx ∈ {0,1}n which occur at leastk times inS1. For eachx ∈ T let
bx ∈ {0,1} be the majority vote label of all pairs〈x, y〉 in S1 which havex as the instance.

3. Defineh1 to be the hypothesish1(x) ≡ “if x ∈ T then outputbx else output 0.”
4. Draw a sequenceS2 of m2 examples. Abort and output the hypothesish1 if there is any instancex

which occurs more than once inS2 but is not inT .
5. Let N be the number of occurrences inS2 of instancesx such thatx /∈ T andfs(x) = 1. If
N�(12 − 3�

2 )m2 then outputfs , and otherwise outputh1.

Note that the hypothesish1 is quite uninformative since any algorithm with access to the example
oracle can generate this hypothesis for itself without usingAs . Steps 4 and 5 ensure that the informative
fs hypothesis is output only ifS2 contains many distinct positive examples.
The following claim shows thatAs is indeed a noise-tolerant weak learning algorithm. As before, we

assume that we know the noise rate, but again this assumption can be removed.

Claim 10. As is a noise-tolerant�-weak learning algorithm for concept classCs .

Proof. The valuesm2,m1 andk are polynomials inn, 1� ,
1

1−2� ,
1
� which will be defined later.

We first observe thatAs runs in polynomial time. To see this, note thatAs can havefs “hard-wired”
into it, andfs is efficiently evaluable, so the numberN in Step 5 can be computed exactly in polynomial
time.
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It remains to show that for any distributionD and any 0< � < 1
2, if As is run usingEX(fs,D, �) as the

oracle, then with probability at least 1−�,As outputs a hypothesishsuch that PrD[h(x) �= fs(x)]� 1
2−�.

We use the following two lemmas which we prove later:

Lemma 11. As aborts in line4with probability less than�3.

Lemma 12.With probability at least1− �
3, we havebx = fs(x) for everyx ∈ T .

We will analyze an alternate algorithmA′
s in which the test in line 4 is not performed andbx is defined

to equalfs(x) for everyx ∈ T . By Lemmas11and12it suffices to show that PrD[h′(x) �= f (x)]� 1
2 − �

with probability at least 1− �
3, whereh

′ is the hypothesis output byA′
s . Consequently, it suffices to show

that if PrD[h′
1(x) �= f (x)] > 1

2 − � thenA′
s outputsfs with probability 1− �

3.
To see that this condition holds, note that in line 5 ofA′

s we have thatS2 is a set of independent
random draws fromEX(fs,D, �). (This is not true in line 5 ofAs since inAs we have conditioned onS
containing no repeated instances which are not inT .) Thus inA′

s the valueN is an empirical estimate of
PrD[x /∈ T andfs(x) = 1] obtained fromm2 independent samples.As long asm2�2(log 3

� )/�
2, standard

Chernoff bounds tell us that with probability at least 1− �
3 the fractionN/m2 differs from PrD[x /∈ T

andfs(x) = 1] by at most�2. Hence if PrD[x /∈ T andfs(x) = 1] is greater than12 − � we outputfs
with probability at least 1− �

3. Since inA′
s hypothesish

′
1 is guaranteed to be right onx ∈ T , we have

PrD[h′
1(x) �= f (x)] = PrD[x /∈ T andf (x) = 1] and the claim is proved.�

Proof of Lemma 11. For 1�i < j�m2, call positions(i, j) in S2 a violator if the corresponding
elements are equal, i.e.xi = xj , and the number of occurrences ofxi in S1 is less thank. The algorithm
aborts in Step 4 only if there is some violator(i, j).Wenowupper bound the probability that any particular
(i, j) is a violator.
Fix (i, j) and also fixxi . We may imagine thatS1 andxj were drawn in the following way: First a

multisetS′ ofm1+1 labeled examples was drawn from the example oracle, and then a random element of
S′ was chosen to bexj and the rest were chosen forS1. This is equivalent to drawingxj and all examples
in S1 independently from the example oracle.
Now suppose that there weret occurrences ofxi in S′. If t > k, then there is no way that(i, j) can be a

violator because there will always be at leastkoccurrences ofxi in S1. On the other hand, the probability
thatxj = xi is exactlyt/(m1+1). So if t�k, the probability that(i, j) is a violator ist/(m1+1) < k/m1.
By the union bound, the probability that any(i, j) is a violator is at mostm2

2k/m1. This is at most�/3
provided thatm1�3m2

2k/�. �

Proof of Lemma 12. Fix anyx ∈ T , sox occursm�k times inS1. The probability that the majority
vote of the labels corresponding to instances ofx in S1 is incorrect is precisely the probability that a coin
which has probability� < 1

2 of coming up HEADS comes up HEADS more often than TAILS inm�k
tosses. Using a standard Chernoff bound, as long ask�2(log 3m1

� )/(1− 2�)2 this probability is at most
�

3m1
, so the probability thatbx �= fs(x) for any fixedx ∈ T is at most �

3m1
. SinceT contains at mostm1

instances, a union bound finishes the proof.�

So we have seen that the above three lemmas hold as long asm2�2(log 3
� )/�

2, m1�3m2
2k/�, and

k�2(log 3m1
� )/(1− 2�)2, which is easily achieved for polynomial sizedm1,m2, andk.
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5.1. Proof of Theorem 9

Let U denote the uniform distribution on{0,1}n. Fix any noise rate 0< � < 1
2 and any 0< � < �.

Fix p = � − �
2. Let the parameter in algorithmAs be � = �−p

4(�+p−2�p) <
1
4. We prove Theorem9 by

establishing the following stronger theorem, which bounds the accuracy level that black-box boosting
algorithms can achieve in the presence of noise at rate�.

Theorem 13. Let {fs} be a p-biased pseudorandom function family. Then, for random s, no black-box
boosting algorithmB, given access toEX(fs,U, �) andAs , can output a hypothesis whose error is at
most�− �.More precisely: for all polynomials Q and all polynomial time algorithmsB, for n sufficiently
large,

Pr
s∈U

[
Pr
x∈U

[h(x) �= fs(x)]�� − �

]
<

1

Q(n)
,

where h is the hypothesis output byB.

Theorem13 gives a lower bound of� on the accuracy level� which any polynomial time black box
boosting algorithm can achieve. In Section4, we analyzed theMMMboosting algorithm (which is black-
box) and showed that it matches this lower bound: given any� = �+ � where� > 0, the MMM algorithm
achieves�-accuracy in the presence of classification noise at rate� in time polynomial in1� (and the other
relevant parameters). Thus the bound of Theorem13 (and of the MMM algorithm) is the best possible.
The idea of the proof of Theorem13 is thatB will only succeed ifAs outputsfs at some invocation.

As above, this can only happen ifS2 contains at least a(12 − 3�
2 ) fraction of distinct positive examples.

Sincefs is ap-biased pseudorandom function and the noise rate� is sufficiently larger thanp, such a set
S2 is difficult to construct.
Before giving the proof we introduce some terminology: we say that the setS2 is foolproof if N�(12 −

3�
2 )m2 and otherwise we say thatS2 is foolable.We writeBO,A to indicate thatBhas access to the example
oracleO and black-box access to the weak learning algorithmA. We say thatBO,As hits fs if at some
point during its executionB invokesAs andAs draws a foolproof sequenceS2 in Step 4 (so ifAs does
not abort in Step 4, it outputs hypothesisfs in Step 5). We say that itmissesif it does not hit. We say that
a hypothesish is goodif Prx∈U [h(x) �= fs(x)]�� − �.
Theorem13 follows immediately from the following two lemmas. Here and subsequently we write

“p.p.t.” as an abbreviation for “probabilistic polynomial time.”

Lemma 14. For all polynomialsQ, all p.p.t. algorithms B, and all sufficiently large n,

Pr[BEX(fs,U,�),As hitsfs] < 1

Q(n)
.

Lemma 15. For all polynomials Q, all p.p.t. algorithms B, and all sufficiently large n,

Pr[BEX(fs,U,�),As outputs a good h| BEX(fs,U,�),As missesfs] < 1

Q(n)
.
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5.2. Proof of Lemma 14

The idea of the proof is as follows: before hittingfs for the first time, algorithmAs outputs the
hypothesish1 from Step 4 each time it is invoked byB. However, it is not difficult to see thatB can
generate this hypothesis for itself without having any access toAs . Thus, prior to its first call ofAs which
hitsfs , Bmight as well have access only toEX(fs,U, �). We then show that no p.p.t. algorithm which
has access only toEX(fs,U, �) can hitfs with nonnegligible probability. Intuitively, the reason why
B cannot do this is because the frequency of positive examples is low relative to the noise rate�, so
even examples〈x,1〉 fromEX(fs,U, �) have too low a probability of being true positive examples to be
useful.
More formally, letB be any p.p.t. algorithm. We may assume that for all oraclesO and algorithmsA,

the algorithmBO,A makes exactlyq queries toO and exactlyt calls toA, whereq, t are both poly(n).
For i = 1, . . . , t letXi denote the sequencexi,1, . . . , xi,|S2| of strings whichBEX(fs,U,�),As provides to
algorithmAs in Step 3 of theith invocation ofAs . EachXi is thus a random variable over the probability
space defined by the uniform choice ofs ∈ {0,1}n and any internal randomness of algorithmB. For
succinctness, we say thatXi hitsfs if Xi is foolproof and does not causeAs to abort in Step 3.
For eachs ∈ {0,1}n let Ãs be a modified version of algorithmAs which always outputsh1. Consider

the following algorithmB̃ which takes access only toEX(fs,U, �):
• Algorithm B̃EX(fs,U,�) first simulates the execution ofBEX(fs,U,�),Ãs (note thatB̃ can simulateÃs for
itself given access toEX(fs,U, �)).

• Algorithm B̃ then chooses a uniform random value 1��� t and outputs the sequenceX̃i of strings
x̃�,1, . . . , x̃�,|S2| whichBEX(fs,U,�),Ãs provided to algorithmÃs in Step 3 of the�th invocation ofÃs .

Now, without loss of generality, we may assume thatX̃i = Xi for all i (i.e. the random variables̃Xi and
Xi are identically distributed for alli). To see this, note that at each invocationAs outputs eitherh1 or
fs; theX̃i ’s correspond to havingAs always outputh1. But even ifAs outputsfs at some call, we may
assume without loss of generality that the boosting algorithmB storesfs but continues running just as if
As outputtedh1 (recall that the booster can construct such ah1 for itself usingEX(fs,U, �)). For such
a booster, each̃Xi will be identical to the correspondingXi .
We thus have that

Pr[X̃� hitsfs] = Pr[X� hitsfs]� Pr[BEX(fs,U,�),As hitsfs]/t.
This, together with the following lemma, implies Lemma14.

Lemma 16. Pr[X̃� hits fs] < 1
Q(n)

for all polynomials Q and all sufficiently largen.

Proof of Lemma 16. Let f be a Boolean function from{0,1}n to {0,1}. Consider the following algorithm
D which takes access to an oracle forf and outputs a single bit:

• Df first simulates the execution of̃BEX(f,U,�).Df simulates each call toEX(f,U, �) by choosing a
uniform randomx ∈ {0,1}n, calling f to obtainf (x), and flipping this bit with probability�. Let Ỹ i

denote the sequence of strings whichBEX(f,U,�),Ãs (which is simulated byB̃EX(f,U,�)) provided to
algorithmÃs in Step 3 of itsith invocation ofÃs .
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• Let 1��� t be the value selected bỹBEX(f,U,�). If Ỹ � hits f (meaning that there are at leastN�
(12 − 3�

2 )m2 uniquely occurring instances iñY � such thatf (x) = 1), thenDf outputs 1. Otherwise it
outputs 0.

Looking over the algorithm, one sees thatD is a p.p.t. algorithm. The following claim plays a crucial role
in our argument. (AppendixA definesFn,p, ap-biased pseudorandom family of functions.)

Claim 17. Suppose that f is a random function drawn fromFn,p. Then for all polynomials Q and all
sufficiently largen, we havePr[Df outputs1] < 1/Q(n).

Proof. In order forỸ � to hit f , algorithmB̃ must construct a sequence ofm2 instances in{0,1}n which
containsN�(12 − 3�

2 )m2 distinct instances withf (x) = 1. SinceB̃ makes at most polynomially many
calls toEX(f,U, �), we have that with probability exponentially close to 1,B̃ never receives the same
instance more than once fromEX(f,U, �). Thus wemay assume that after it has made all its oracle calls
to f, there are three types of instancesx ∈ {0,1}n for B̃:
• Instancesx such thatB̃ received〈x,1〉 from a call ofEX(f,U, �). For such anx, eitherf (x) = 1 and

the label was not flipped byD or f (x) = 0 and the label was flipped byD. Hence for such anx we
have thatf (x) = 1 with probability p(1−�)

p(1−�)+(1−p)� .
• Instancesx such thatB̃ received〈x,0〉 from a call ofEX(f,U, �). For such anx, eitherf (x) = 0
and the label was not flipped byD or f (x) = 1 and the label was flipped byD. Hence for such anx
we have thatf (x) = 1 with probability p�

(1−p)(1−�)+p� .

• Instancesx such thatB̃ never received an example〈x, b〉. In this case we have thatf (x) = 1 with
probabilityp.

We will use the following fact:

Fact 18. max{ p(1−�)
p(1−�)+(1−p)� ,

p�
(1−p)(1−�)+p� , p} = 1

2 − 2�.

Proof. Recall that 0< � = �−p
4(�+p−2�p) <

1
4, 0< � < 1

2, andp = � − �
2. We thus havep = �(1−4�)

1+4�(1−2�) .

We first show thatp < 1
2 − 2�. Substituting forp, multiplying both sides by 2 and rearranging, this

inequality becomes(1− 16�2)(1− 2�) > 0 which is clearly true.
Now, we show that p(1−�)

p(1−�)+(1−p)� = 1
2 − 2�. This follows from substituting forp and simplifying the

left-hand side.
Finally we show that p�

(1−p)(1−�)+p� <
1
2 − 2�. Substituting forp, multiplying both sides by 2 and

rearranging, this inequality becomes(1−16�2)(1−2�)
1+4�−8�� > 0 which is clearly true. �

Thus, regardless of how̃B selects instances of these three types for the sequence of lengthm2, the
probability that there are at least(12− 3�

2 )m2 distinct instanceswithf (x) = 1 is atmost the probability that

a(12 −2�)-biased coin comes up HEADS at least(12 − 3�
2 )m2 times inm2 flips.As long asm2 = �(n/�2),

standard Chernoff bounds guarantee this probability to be 1/2�(n), and the claim is proved.�

By the definition ofp-biased pseudorandomness and Claim17, we have that iff is ap-biased pseudo-
random functionfs wheres is uniformly chosen in{0,1}n, then for all polynomialsQand all sufficiently
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largen we have Pr[Dfs outputs 1] < 1/Q(n) as well. However, it is straightforward to verify from
the construction of algorithmD that Pr[Dfs outputs 1] is precisely Pr[X̃� hits fs]. This proves the
lemma. �

5.3. Proof of Lemma 15

The intuition here is that by conditioning on the event thatBEX(fs,U,�),As missesfs , B might as
well have access only toEX(fs,U, �). Sincefs is a p-biased pseudorandom function, though, no
p.p.t. algorithm can output a good hypothesis (i.e. learnfs to high accuracy), since otherwise it would
be possible for a p.p.t. algorithm to learn a random function fromFn,p to high accuracy which is
absurd.
More formally, letB be any p.p.t. algorithm. Consider the following algorithm̃C which takes access

only toEX(fs,U, �): algorithmC̃EX(fs,U,�) simulates the execution ofBEX(fs,U,�),Ãs and outputs the
hypothesish which BEX(fs,U,�),Ãs outputs. (Note thatC̃ can simulateÃs for itself given access to
EX(fs,U, �).)
The following two lemmas together imply Lemma15:

Lemma 19. For all sufficiently large n, we have

Pr[C̃EX(fs,U,�) outputs a good h]
> Pr[BEX(fs,U,�),As outputs a good h| BEX(fs,U,�),As missesfs]/2.

Lemma 20. Pr[C̃EX(fs,U,�) outputs a goodh] < 1
Q(n)

for all polynomials Q and all large enoughn.

Proof of Lemma 19. We have

Pr[C̃EX(fs,U,�) outputs a goodh]
= Pr[BEX(fs,U,�),Ãs outputs a goodh]
� Pr[BEX(fs,U,�),Ãs outputs a goodh & BEX(fs,U,�),Ãs missesfs]
= Pr[BEX(fs,U,�),Ãs outputs a goodh | BEX(fs,U,�),Ãs missesfs]

·Pr[BEX(fs,U,�),Ãs missesfs]
> Pr[BEX(fs,U,�),Ãs outputs a goodh | BEX(fs,U,�),Ãs missesfs]/2,

where the last inequality holds for all sufficiently largen by Lemma14. (Recall thatBEX(fs,U,�),As

can simulateBEX(fs,U,�),Ãs , so we have Pr[BEX(fs,U,�),As missesfs]� Pr[BEX(fs,U,�),Ãs missesfs].)
Let TRANS(BEX(fs,U,�),As ) (TRANS (BEX(fs,U,�),Ãs ), respectively) denote a complete transcript
of algorithm B’s execution usingEX(fs,U, �) and weak learning algorithmAS (Ãs respectively).
TRANS(BEX(fs,U,�),As ) and TRANS(BEX(fs,U,�),Ãs ) are both random variables over the probability
space defined by choosings, making random draws toEX(fs,U, �), and any internal randomness ofB.
Induction shows that the two conditional random variables

TRANS(BEX(fs,U,�),AS ) | (BEX(fs,U,�),As missesfs)
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and

TRANS(BEX(fs,U,�),ÃS ) | (BEX(fs,U,�),Ãs missesfs)

are identically distributed. This implies that

Pr[BEX(fs,U,�),As outputs a goodh |BEX(fs,U,�),As missesfs]
= Pr[BEX(fs,U,�),Ãs outputs a goodh |BEX(fs,U,�),Ãs missesfs]

which combined with the previous inequality proves the lemma.�

Proof of Lemma 20. Let f be a Boolean function from{0,1}n to {0,1}. Consider the following algorithm
Ewhich takes access to an oracle forf and outputs a single bit:

• Ef first simulates the execution of̃CEX(f,U,�). Like algorithmDf in the previous subsection,Ef

simulates each call toEX(f,U, �) by choosing a uniform randomx ∈ {0,1}n, calling f to obtain
f (x), and flipping this bit with probability�. Lethf be the hypothesis which̃CEX(f,U,�) outputs.

• Ef then selectsn-independent uniform randomn-bit stringsz1, . . . , zn ∈ {0,1}n. Ef computes�
which is the fraction of these strings which havehf (zi) = f (zi).Ef outputs 0 if� < 1− p+�−�

2 and
outputs 1 if��1− p+�−�

2 .

It is not difficult to see thatE is a p.p.t. algorithm. We have

Claim 21. Suppose that f is a random function drawn fromFn,p. Then for all polynomials Q and all
sufficiently large n we havePr[Ef outputs1] < 1/Q(n).

Proof of Claim 21. SinceC̃EX(f,U,�)makes at most poly(n)many calls toEX(f,U, �), with probability
1− 1/2�(n) no stringzi selected in the last step ofEf was previously seen byEf in its simulation of
C̃EX(f,U,�); so we assume that this is indeed the case. Sincef is ap-biased random function, for eachzi

the probability thathf agrees withf on zi is at most 1− p (recall thatp < 1
2). Thus the probability that

Ef outputs 1 is at most the probability that a(1−p)-biased coin comes up HEADS at least(1− p+�−�
2 )n

times inn tosses. Using Chernoff bounds this is at most 1/2�(n) (recall that� − � < p are fixed relative
to n sop − (� − �) = 	(1)), so the claim is proved.�

Now we suppose thatf is ap-biased pseudorandom functionfs wheres is uniformly chosen in{0,1}n.
By the definition ofp-biased pseudorandomness and Claim21, for all polynomialsQ and all sufficiently
largen we have that Pr[Efs outputs 1] < 1/Q(n) as well. Let
 = Pr[C̃EX(fs,U,�) outputs a goodh],
and recall that a goodh is anh such that Pr[h(x) �= fs(x)]�� − �. Consequently, with probability
, we
have that eachzi chosen byEfs satisfieshfs (z

i) = fs(z
i) with probability at least 1− (� − �). Hence,

with probability
 we have thatEfs outputs 1 with probability at least�, where� is the probability that a
(1− (� − �))-biased coin outputs at least(1− p+�−�

2 )n HEADS inn tosses. As before, Chernoff bounds
imply that��1− 1/2�(n), so consequently Pr[Efs outputs 1]�
(1− 1/2�(n)). This proves the claim.
�

As a remark, we note that the algorithmAs is a weak learner for noise rate� and can be modified in a
straightforward manner to handle larger noise rates (simply by taking the majority of more examples).
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6. Boosting an okay learner to arbitrary accuracy

In this section we present an alternate notion of weak learning, calledokaylearning, and show that the
MMM algorithm can be used to efficiently boost any okay learner to arbitrary accuracy in the presence
of noise.
To motivate our definition of okay learning, we note that the standard definition of weak learning has

some counterintuitive consequences. Consider a scenario in which the target conceptf (x) is the Boolean
conjunctionx1 ∧ x2 ∧ x3 and our hypothesish(x) is ¬x1 ∧ ¬x2 ∧ ¬x3. Under the uniform distribution
we have Pr[f (x) �= h(x)] = 1

4 and henceh is a valid output for a standard weak learner. This is slightly
odd since in factf (x) andh(x) are negatively correlated in a statistical sense, so in some sense a learner
which outputsh as a weak hypothesis forf would be a disappointment.
Recall that the balanced distribution̂D is obtained by reweightingD so that Pr̂D[f (x) = 1] =

PrD̂[f (x) = 0] = 1
2. We define thebalanced errorof a hypothesish to be

Pr
D̂

[f (x) �= h(x)] = 1

2
Pr
D

[f (x) �= h(x) | f (x) = 1] + 1

2
Pr
D

[f (x) �= h(x) | f (x) = 0]. (3)

Similarly, anoise tolerant�-okay learneris an algorithm which, given access toEX(f,D, �), outputs
a hypothesish such that Pr̂D[h(x) �= f (x)]� 1

2 − �. The running time is allowed to be polynomial in
n, 1

1−2� ,
1
� ,

1
� ,

1
PrD[f (x)=1] and

1
PrD[f (x)=0] .

While this definition may seem artificially chosen to make our guarantees work, it is actually fairly
natural. One observation is that having balanced error�� is equivalent to

Cov(h, f )�2� Cov(f, f ),

where, Cov(f, h) = ED[f (x)h(x)] − ED[f (x)]ED[h(x)] is the covariance off andh. So it is a guar-
antee that the covariance is positive (equivalently correlation is positive). Another consequence is that
PrD[h(x) = 1|f (x) = 1] > PrD[h(x) = 1]. In the absence of noise, an okay learning algorithm can be
converted to a weak learning algorithm and vice versa. In the presence of noise, an okay learner can be
converted to a weak learner.
Given access to a noise-tolerant okay learner, we modify the MM algorithm in the following ways:

• As before we calculatep� according to (2).
• In Step 2 we run the noise-tolerant�-okay learner using theunbalancedconditional distribution
EX(f,D|�, �).
As in the MM algorithm we boost until we obtain anh which satisfies PrD[h(x) �= f (x)]��. We

obtain:

Theorem 22. For any �, � > 0, if the above boosting algorithm is run using a noise-tolerant �-okay
learner and a noisy example oracleEX(f,D, �), then it runs for at mostpoly(1� , 1� , 1� , 1

1−2�) time steps
and with probability1− � outputs a hypothesis h satisfyingPrD[h(x) �= f (x)]��.

Proof. The analysis for boosting a noise-tolerant�-okay learner is identical to the original noise-freeMM
analysis. Each hypothesis generated by our noise-tolerant�-okay learner using an oracleEX(f,D, �)
satisfies Pr̂D[h(x) �= f (x)]� 1

2 − � which is exactly the condition that was used in our noise-free
analysis. �
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We note that an okay learner is equivalent to simply a learner that satisfies Mansour and McAllester
notion of “index reduction hypothesis”[15], namely assuming that the algorithm makes progress each
step. However, we follow the original spirit of boosting as a method of increasing weak (or okay) to
strong. Further work[9], studies in detail these types of okay learners (and even weaker learners), giving
such learners for simple and advanced problems.

7. Conclusions

We have given matching upper and lower bounds for boosting in the presence of classification noise.
Intuitively, the key to our positive results for the MM algorithm is that changing the label of any example
does not change its weight by very much. This property also holds for the earlier decision tree boosting
algorithm analyzed by Kearns and Mansour[11], but as mentioned earlier the size of the decision tree
could beexponential in1� .While theMMalgorithmgivesa substantial improvement, theO( 1

�4
)hypothesis

size of the MM algorithm is still larger than theO( 1
�2
)which other boosting algorithms such asAdaBoost

achieve.
Finally, we have defined a noise-tolerant okay learner which can be boosted to arbitrary accuracy in

the presence of noise. We hope this will be an aid to designing provably noise-tolerant strong learners,
just as the concept of boosting weak learning makes it easier to design provably strong learners.
Follow-up work [9] has extended the analysis of branching program boosting algorithms to differ-

ent models of noise (probabilistic concepts[12] more similar to statistical regression), giving another
theoretical interpretation of noisy boosting.
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Appendix A. p-biased pseudorandom function families

Let �(·) be a polynomial. Recall from[7] that apseudorandom function familyis a collection of
functions{fs : {0,1}|s| → {0,1}�(|s|)}s∈{0,1}∗ with the following two properties:

• Efficient evaluation: There is a deterministic algorithm which, given ann-bit seedsand ann-bit input
x, runs in time poly(n) and outputsfs(x).

• Pseudorandomness: For all polynomialsQ, all probabilistic polynomial time oracle algorithmsM,
and all sufficiently largen, we have∣∣∣∣ Pr

F∈Fn
[MF(1n) outputs 1] − Pr

s∈{0,1}n[M
fs (1n) outputs1]

∣∣∣∣ < 1

Q(n)
,

whereFn is the set of all 2�(n)2
n
functions which map{0,1}n to {0,1}�(n) (and henceF ∈ Fn is a truly

random function).

It is well known[7,8] that pseudorandom function families exist if and only if one-way functions exist.



A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266–290 289

For 0 < p < 1, we define ap-biased pseudorandom function familyto be a family of functions
{fs : {0,1}|s| → {0,1}}s∈{0,1}∗ which satisfies the usual “efficient evaluation” property and the following
“p-Biased pseudorandomness” property:

• p-Biasedpseudorandomness: For all polynomialsQ, all probabilistic polynomial timeoracle algorithms
M, and all sufficiently largen, we have∣∣∣∣ Pr

F∈Fn,p
[MF(1n) outputs 1] − Pr

s∈{0,1}n[M
fs (1n) outputs 1]

∣∣∣∣ < 1

Q(n)
,

whereFn,p is the distribution over functions from{0,1}n to {0,1} such that each functionF has weight

p|F−1(1)|(1− p)|F−1(0)|. Equivalently, drawing a functionF ∈ Fn,p is done by tossing ap-biased coin
for eachx ∈ {0,1}n to determineF(x).

We use the fact that for any 0<p<1, if one-way functions exist thenp-biased pseudorandom function
families exist. To see this, consider a pseudorandom function family{fs} in which �(n) = n. Let {f ′

s }
be a family of binary-valued functions defined as follows:f ′

s (x) = 1 if fs(x) is one of the first�p2n�
lexicographically ordered strings in{0,1}n, andf ′

s (x) = 0 otherwise. It is straightforward to verify that
{f ′
s } is ap-biased pseudorandom function family.
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