
Graph Model Selection using Maximum Likelihood

keyword1, keyword2, keyword3, keyword4

keyword1, keyword2, keyword3, keyword4

keyword1, keyword2, keyword3, keyword4

Abstract

In recent years, there has been a proliferation
of theoretical graph models, e.g., preferential
attachment and small-world models, moti-
vated by real-world graphs such as the Inter-
net topology. To address the natural question
of which model is best for a particular data
set, we propose a model selection criterion for
graph models. Since each model is in fact a
probability distribution over graphs, we sug-
gest using Maximum Likelihood to compare
graph models and select their parameters.
Interestingly, for the case of graph models,
computing likelihoods is a difficult algorith-
mic task. However, we design and implement
MCMC algorithms for computing the maxi-
mum likelihood for four popular models: a
power-law random graph model, a preferen-
tial attachment model, a small-world model,
and a uniform random graph model. We
hope that this novel use of ML will objectify
comparisons between graph models.

1. Introduction

A plethora of random graph models have been pro-
posed which reproduce and explain the various prop-
erties of interesting graphs, such as the Internet topol-
ogy, the link structure of the World Wide Web, ci-
tation graphs, social networks and genetic networks
in biological systems (Barabási & Albert, 1999), to
name a few. Such models are useful both for under-
standing the nature of complex graphs as well as for
simulations that require such graphs. In this paper,

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

we rank some of these models using Maximum Like-
lihood (ML). The mainstream approach to comparing
models for these graphs has been somewhat subjective
and very application dependent – comparisons are of-
ten based on the model’s capability of reproducing a
set of properties observed in the real data, such as the
power-law degree distribution or the small-world phe-
nomenon (Medina et al., 2000; Bu & Towsley, 2002;
Tangmunarunkit et al., 2002).

Each graph model is specified by a set of parameters
and for a fixed parameter setting, the model induces a
probability distribution over graphs. Hence it is nat-
ural to use ML to rank graph models for a given data
set. In particular, we compare the probabilities as-
signed by the different models and choose the model
(and parameters) that assigns the largest probability
to actual graph data. This gives a more objective rank-
ing than previous approaches in the sense that it is less
property or application specific. However, applying
ML in this context is surprisingly tricky.

While ML is a standard principle in model selection,
application to graph models brings up two interesting
issues. The first is definitional: graphs are abstract ob-
jects that are difficult to describe without imposing an
ordering on nodes. The second difficulty is computa-
tional. For some models, calculating the likelihoods is
easy, while for others we design novel algorithms based
on Monte Carlo Markov Chains (MCMC). To illus-
trate the feasibility of our approach on existing models,
we implement algorithms for computing ML estimates
for four natural models: a power-law random graph
model, a preferential attachment model, a small-world
model, and a uniform random graph model. Based on
experiments on three snapshots of the Internet topol-
ogy graph, we find that the preferential attachment
model ranks highest, while the uniform random graph
model performs the worst. We note that our algo-

Graph Model Selection using Maximum Likelihood

rithms are applicable to other real-world complex net-
works, including the protein interaction networks and
citation networks.

We hope that this novel application of ML will enable
a more objective model comparison and the develop-
ment of improved models. As a byproduct, our algo-
rithms estimate the best parameters of such models.
The need for such an estimation procedure may arise
when setting parameters for a simulator based on a
given model.

2. Ranking graph models

We consider stochastic graph models, each of which
induces a probability distribution over graphs. In par-
ticular, a model P assigns a probability p(G) to every
graph G. The quantity p(G) is called the likelihood.
We score a model by the log-likelihood − logP (G),
which is a more tractable quantity. The Maximum
Likelihood Estimate prefers the model with the largest
likelihood (and hence the smallest log-likelihood).

One issue that arises in such a scenario is that a graph
is a single item and not a set of independent items
drawn i.i.d. from some distribution, as is typically as-
sumed in problems such as classification. It is unclear
how to naturally divide data into independent training
and test sets. Here the choice of likelihood is conve-
nient, as it naturally measures how well a model pre-

dicts an entire data set. (Certain models attempt to
explain how the data set could have originated. We
note that our approach scores the predictive power of
the model, not its explanatory power.)

A second issue is node ordering. In our datasets each
vertex is specified by a unique number from the set
{1, . . . , n} but typically these labels do not bear any
information relevant to the generating process. There-
fore the models we consider are symmetric in the sense
that they generate all vertex labelings (each of the n!
permutations of vertex labels) of a given graph with
the same probability. Any graph model can easily be
symmetrized by appending a permutation step: af-
ter the nodes and edges are generated in some order,
the nodes are randomly permuted. So, if the original
model had probability distribution p, the new distrib-
ution would be p′ with p′(G) = 1

n!

∑

π p(π(G)), where
the sum is over all permutations of the n nodes in the
graph. For a given permutation π, p(π(G)) can typi-
cally be computed easily, but computing p′(G), which
is the average of p(π(G)) over exponentially many per-
mutations π, is much harder. This is where some of
our new ideas for MCMC-based sampling are used.

Comparisons can be drawn between language models,

which are probability distributions over sequences of
words, and graph models. Language models are most
often ranked by log-likelihood (or equivalently, cross-

entropy or perplexity (Chen et al., 1998)). The re-
lated Minimum Description Length principle (Rissa-
nen, 1978) scores models by the log-likelihood, plus
the description size of the model1. Interestingly, com-
puting values for some models, like maximum entropy
models, involves Monte Carlo Markov Chain (MCMC)
methods similar to the ones we use (Chen & Rosenfeld,
1999).

Language models are similarly tested on large text cor-
pora. However, the models typically have many thou-
sands of parameters and hence their description size
cannot be ignored. As a result, they are often tested
on independent held-out data. If they had as few pa-
rameters as our models, there would be no need for an
independent test set, as little overfitting is possible.

3. Preliminaries

We want to generate a directed graph G = (V, E) with
vertex set V and edge set E, where n = |V | is the
number of vertices and m = |E| is the number of edges.
For a node v, let in(v) be its indegree, i.e., the number
of edges pointing into that node and out(v) be its
outdegree, i.e., the number of edges pointing out of
that node.

We consider models which represent different streams
of graph modeling research. We include a power-law
model (PRG), a preferential attachment model (PA),
a small-world model (SW), and, for comparison, the
Erdős-Rényi (ER) random graph model. To be precise,
let us define a power-law probability distribution with
exponent β and cutoff c (possibly ∞) to be the dis-
tribution over integers that generates i ∈ {1, 2, . . . , c}
with probability i−β/

∑c
j=1 j−β.

Many graph models are unrealistic in the sense that
they would assign probability 0 to most real-world
graphs. In most cases, slight variations on these mod-
els are more appealing in that they retain the essential
features of the model while assigning positive proba-
bility to every graph. We have modified the PA model
and the SW model for this purpose.

• PA model. The PA model, inspired by (Mitzen-
macher, 2001), simulates a graph growth process
where incoming nodes connect to existing nodes
with probability proportional to their degree. It

1We note that in case of the graph models, which are
usually very simple (with only few parameters), the two
notions are practically equivalent.

Graph Model Selection using Maximum Likelihood

is parameterized by probabilities p, q satisfying
p + q < 1, and a parameter γ > 0. The graph
is created iteratively. We start with a single ver-
tex. In each iteration i = 2, . . . , n a random ver-
tex “appears” and edges between the new vertex
and already existing nodes are generated by the
following process. With probability p (resp. q) an
edge from (resp. to) the new vertex is created and
the other end-point v is chosen with probability
proportional to in(v)+ γ (resp. out(v)+ γ). The
edge-generating process is then repeated (possibly
resulting in multi-edges). Otherwise, with proba-
bility 1−p−q the process stops and new iteration
i+1 begins. It can be shown that this model pro-
duces with high probability a graph whose inde-
gree and outdegree distributions are governed by
power laws with exponents βin and βout, where
βin and βout are functions of p, q and γ.

• PRG model. This model is based on the model
for random graphs with power-law degree distri-
bution proposed by Aiello, Chung and Lu (Aiello
et al., 2000), which is a special case of the model
for random graphs with a given degree sequence
due to Bollobás (Bollobás, 1985) . The moti-
vation for this model is that many real-world
networks have been observed to exhibit power-
law distribution of degrees (Barabási & Albert,
1999; Siganos et al., 2003). Input parameters are
βin, βout, the intended power-law exponents, and
cutoffs cin, cout. First we generate the indegrees
and outdegrees of each of the n vertices indepen-
dently at random according to power-law distrib-
utions with exponents βin and βout, respectively,
and maximum indegrees and outdegrees cin and
cout, respectively. Then we connect the vertices
randomly to match the selected indegrees and out-
degrees.

To be precise, we need to specify exactly how
the vertices are matched. If the sum of the in-
degree sequence equals the sum of the outde-
gree sequence, we connect the vertices as follows.
For every vertex, we create in(v) copies of v:
v1, . . . , vin(v). Let A denote the set of all these
vertex copies. Similarly, for out-degrees we cre-
ate a set B. We then pair up the vertices, one
to one, randomly from these two sets. For each
pair vi ∈ A and uj ∈ B, we create an edge from
v to u in the original graph. This process cre-
ates a directed graph (possibly a multi-graph). If
the sums of the indegrees and outdegrees do not
equal, we output the empty graph (a graph with
n nodes and no edges).2

2It can be shown that the log-likelihoods assigned by

• SW model. Many real-world networks have been
observed to have low diameter and high clustering
co-efficient (Bu & Towsley, 2002; Barabási et al.,
2000). This is known as the small-world phe-
nomenon. Our model for graphs exhibiting the
small-world phenomenon is inspired by the Watts-
Strogatz and Kleinberg models (Watts & Stro-
gatz, 1998; Kleinberg, 2000). The basic idea is to
add random links to an underlying well-structured
graph, in our case the grid. The parameters of our
model are s, the side of an underlying grid topol-
ogy, and constants α, β. There are s × s vertices
arranged in a grid. For every pair of vertices u, v,
an edge from u to v is added with probability
αdist(u, v)−β , where dist(u, v) is the Manhattan
distance on the grid, i.e., |ux − vx|+ |uy − vy|. All
vertices with no incident edges are omitted.

• ER model. The Erdős-Rényi model is parame-
terized by a probability p ∈ [0, 1]. For every pair
of vertices u, v an edge from u to v appears inde-
pendently with probability p.

The PA and PRG models can technically produce
graphs with multiple copies of a single edge, which
do not occur in our data sets. We have two options -
to consider all such graphs with multiple copies of an
edge as equivalent to the corresponding simple graph,
or to distinguish them. We choose the second option,
i.e., interpret our data sets as multigraphs, because
it makes the probability calculation significantly eas-
ier. Choosing the first option would only increase the
scores of the PA and PRG models in our applications,
and hence would not affect the rankings of these mod-
els relative to the other models.

4. Algorithms

In this section, for each of the models, we present an al-
gorithm which estimates the corresponding likelihood
of a given directed graph G. The input to our al-
gorithms is the graph G together with a parameter
setting of the model. The output of our algorithms is
the likelihood, i.e. the negative logarithm of the prob-
ability that the model generates G. To find the best
likelihood, we also need to search for the optimal set-
tings of the parameters. Due to space constraints, we
defer the proof of the correctness of the algorithms to
the full version of the paper.

this model and the more natural model which generates the
degree sequences until the sums match are almost identical
(they differ only in the least significant digits). The advan-
tage of our model is that we can calculate the likelihood
exactly.

Graph Model Selection using Maximum Likelihood

4.1. ER algorithm

Recall that n is the number of nodes and m is the
number of edges in G. Therefore the number of non-
edges is n(n− 1)−m and the probability that the ER
model generates G is Pr(G) = pm(1 − p)n(n−1)−m. In
this model we can not only compute the probability ex-
actly but also compute the best parameter p = m

n(n−1) ,

which maximizes the above probability.

4.2. PRG algorithm

The algorithm for computing the probability of a
graph according to the PRG model is given in Fig-
ure 1. Fixing the parameters βin, βout, cin, cout, the
probability that the PRG model generates G can be
computed as the product of the probability of gener-
ating the in-degree sequence, the probability of gener-
ating the out-degree sequence, and the probability of
matching up the right vertices.

PRG(G, βin, βout, cin, cout)

• Zin :=
∑cin

d=1 d−βin , similarly for Zout.

• Pin :=
∏

v∈V
(in(v))−β

in

Zin

, similarly for Pout.

• return PinPout
1

m!

∏

v∈V in(v)! out(v)!

Figure 1. PRG model computation

In the PRG model a vertex gets assigned an in-
degree d ∈ {0, . . . , cin} with probability d−βin/Zin,
where Zin =

∑cin
d=1 d−βin is the normalization fac-

tor. Therefore, the probability of generating the par-
ticular indegree sequence is Pin, as defined in Figure
1. For a graph with no multiple edges, the proba-
bility of any particular matching can be shown to be
1

m!

∏

v∈V in(v)!out(v)!. We cannot easily compute
the optimal parameters βin, βout, cin, cout, but, since
the computation is fast, we quickly search the (appro-
priately discretized) parameter space.

4.3. PA algorithm

Given a permutation of the vertices π (the order of
their appearance), it is not difficult to compute the
probability that the PA model generates G: Pr(G|π) =

n
∏

i=2

dπ(i)! r
∏

j < i :
(πj , πi) ∈ E

p
inπ

i (πj) + γ

mπ
i

∏

j < i :
(πi, πj) ∈ E

q
outπ

i (πj) + γ

mπ
i

,

where,

inπ
i (v) = |{j : j < i ∧ (πj , v) ∈ E}|

outπ
i (v) = |{j : j < i ∧ (v, πj) ∈ E}|

mπ
i =

i−1
∑

k=1

(inπ
i (πk) + γ) =

i−1
∑

k=1

(outπ
i (πk) + γ)

dπ(i) = inπ
i+1(πi) + outπ

i+1(πi)

r = 1 − p − q

In words, inπ
i (v) and outπ

i (v) are the in- and out-
degrees of vertex v just before the ith node appears
and dπ(i) is the number of edges incident to the ith
node generated before the (i + 1)st iteration begins
(before the (i + 1)st node appears). These edges can
be generated in any of the dπ(i)! orders. An edge
from πi to πj (for j < i) is generated with probability
q(inπ

i (πj) + γ)/mπ
i and an edge from πj to πi appears

with probability p(outπ
i (πj) + γ)/mπ

i . Finally, with
probability r we move to the next iteration. This jus-
tifies the above expression for Pr(G|π).

The computation of Pr(G|π) is relatively straightfor-
ward. However, as discussed earlier, we need to com-
pute Pr(G) = 1

n!

∑

π Pr(G|π). Obviously, summing
over all n! permutations is not feasible and tradi-
tional sampling methods (pick several permutations at
random and average the corresponding Pr(G|π)’s) do
not approximate the sum well as the variance of the
Pr(G|π) can be huge. Our algorithm, summarized in
Figure 2, is based on a MCMC method.

Each Self-iter procedure uses a random walk to com-
pute the conditional probability Pr(σi|G, σ1 . . . σi−1).
The procedure walks on the space of all permutations
with the first i−1 elements fixed to σ1, . . . , σi−1, where
the stationary distribution of a permutation π is pro-
portional to Pr(G|π). By Bayes’ rule,

Pr(G) =
Pr(G|σ) Pr(σ)

∏n
i=1 Pr(σi|G, σ1 . . . σi−1)

=
Pr(G|σ)

n!
∏n

i=1 Self-iter(G, σ, i, p, q, γ, T)

To get some intuition for the walk we use, imagine
trying to shuffle a deck of n cards uniformly at ran-
dom. The natural random walk to do (and the first
one we tried) would be to pick an arbitrary pair of
adjacent cards and swap them. Unfortunately, this
would require approximately θ(n3) steps until it is ap-
proximately random, because each card would need
to be swapped θ(n2) times to be in a random place.
In contrast, imagine picking a random card, removing
it, and reinserting it in a random place in the deck.
The cards will be random as soon as each one has

Graph Model Selection using Maximum Likelihood

PA(G, p, q, γ, T)

• Let σ be the permutation of vertices sorted by the
total degree in(v) + out(v) in decreasing order.

• return Pr(G|σ)

n!
∏n

i=1 Self-iter(G, σ, i, p, q, γ, T)
.

Self-iter(G, σ, i, p, q, γ, T) // est. Pr(σi|G, σ1 . . . σi−1).

• π := σ

• est := 0

• for t=1 to T

– v := random vertex from {σi, σi+1, . . . , σn}

– for j ∈ {i, i + 1, . . . , n},
let a[j] := Pr(G|Shift(π, v, j))

– choose j at random from {i, . . . , n} with
probability a[j]/

∑n
k=i a[k].

– π := Shift(π, v, j) // random walk step

– for j ∈ {i, i + 1, . . . , n},
let b[j] := Pr(G|Shift(π, σi, j))

– est := est + b[i]/
∑n

k=1 b[k] // estimation

• return est
T .

Shift(π, v, j) is the permutation obtained from π by
inserting v at position j.

Figure 2. PA model computation

been touched once, which happens in approximately
θ(n log n) steps. While the steps in the latter case
take O(n) times longer than the steps in the first case,
the second algorithm is still an order faster. Since n
is large, and the algorithms are slow, this difference
amounts to hundreds of hours of computation.

To search for the optimal parameters, we first found
good candidates and then we searched the parameter
space close to the candidate values. In particular, we
noticed that for our data sets Pr(G|σ) is quite close to
Pr(G) (their logarithms are within 5% of each other).
Since the computation of Pr(G|σ, p, q, γ) is fast, we
could quickly find the (candidate) values of the para-
meters that minimize this probability.

There are several important details to discuss. First
of all, in the algorithm we do not recompute
Pr(G|Shift(π, v, j)) from scratch. Instead, such cal-
culations can be quickly computed incrementally from
the value Pr(G|π). This is essential to the efficiency of
the algorithm. Second, we do not do estimation every

step but rather every ten steps. Since consecutive steps
are dependent, the benefit of estimating every step is
not worth the cost. And, third, the algorithm can be
easily parallelized by computing, separately for each i,
Self-iter(G, i, p, q, γ, T).

4.4. SW algorithm

We do not know how to accurately (and in a reason-
able time) estimate the correct likelihood by the SW
model, rather we bound it from below and from above.
This information is sufficient to conclude that the SW
model ranks worse than the PA and PRG models but
not worse than the ER model. Notice that the likeli-
hood of the SW model is at least as big as the like-
lihood of the ER model. In particular, setting β = 0
gives exactly the ER model with parameter p = α.
It remains to bound the likelihood by the SW model
from above.

We attempt to use a similar MCMC approach as for
the PA model. If we knew the initial grid alignment
of the vertices g, then computing the probability of
generating G from g would be straightforward:

Pr(G|g) =
∏

(u,v)∈E

αdist(u, v)−β

∏

(u,v) 6∈E

(

1 − αdist(u, v)−β
)

,

where dist(u, v) = |ug
x − vg

x| + |ug
y − vg

y | is the
Manhattan-distance of vertices u and v in g, and
(vg

x, vg
y) are the coordinates of vertex v in g. As be-

fore, we want to compute Pr(G) = 1
n!

∑

g Pr(G|g)
where the sum ranges over all possible grid alignments.
An MCMC approach analogous to the one presented
for the PA model, a (self-reducible) walk on the grid
alignments with stationary distribution proportional
to Pr(G|g), converges to the correct likelihood as the
number of steps goes to infinity. Unfortunately, this
walk does not mix rapidly, both in practice and the-
oretically (consider two cliques of size n/2, they will
position themselves on opposite sides of the grid and
it will take exponentially long for them to switch).

In lieu of estimating this probability, we upper bound
the probability as follows,

Pr(G) =
1

n!

∑

g

Pr(G|g) ≤ max
g

Pr(G|g)

In other words, the probability given the best grid is
an upper bound on the average probability over all
grids.

To find the best grid, we use Simulated Annealing
(Kirkpatrick et al., 1983), a well-known optimization

Graph Model Selection using Maximum Likelihood

method. It searches among a set of states S with a
real-valued energy function c(s). It consists of sev-
eral phases, each characterized by a temperature T .
For a given T a Markov chain is run with stationary
distribution proportional to e−c(s)/T . Starting with a
high temperature, for which the distribution is nearly
uniform, the temperature is progressively decreased,
biasing the distribution towards low-energy states.

In our case, S is the set of all grid alignments and
c(g) = − lnPr(G|g). The stationary distribution at
temperature T is proportional to Pr(G|g)1/T . The
transitions are swaps of arbitrary grid vertices. The al-
gorithm, specified in Figure 3, is a standard annealing
algorithm with initial temperature T0 and a geometric
cooling schedule.

SW(G, α, β, T0, R, δ) // Finds maxg Pr(G|g).

1. T := T0 // temperature

2. g := random initial assignment to the grid.

3. repeat: // until convergence of Pr(G|g).

(a) r := 0 // step counter

(b) Let u and v be two vertices on grid g. Let g′

be the grid g with u and v swapped.

(c) with probability max

{

1,
(

Pr(G|g′)
Pr(G|g)

)1/T
}

, do:

• g := g′

• r := r + 1

• if r > R, then r := 0; T := T (1 − δ)

Figure 3. SW model computation

We use brute force search over the (discretized) para-
meter space to find the optimal parameters α, β.

5. Experiments

We ran our algorithms on three publicly available
snapshots of the AS-level Internet topology, data from
1997, 1999, and 2001 (NLANR, 2001). These data
sets have 3,117, 6,266, and 11,080 vertices and 6,024,
13,681, and 25,485 edges, respectively. As suggested
by (Gao, 2001), for each year we combined five snap-
shots taken in a short time span into one representa-
tive snapshot. A histogram, including error estimate
(a rather large uncertainty region) for SW, is shown
in Figure 4. Figure 5 describes the raw results of
our algorithms, together with the optimal parameters.
The numbers are reflective of the corresponding log-
likelihoods divided by the number of edges in the data
sets.

As can be seen in the histogram, all three data sets
produced the same ranking of models. This result is
more meaningful than a comparison based on a sin-
gle data set alone. In all three cases, the PA model
placed first, closely followed by the PRG model. The
two models both attempt to reproduce the power-law
property. In the PRG, it is imposed directly, while in
PA, it arises naturally. Nonetheless, the two scored
similarly.

The SW model ranked third. With care, compar-
isons between models can be interpreted as statements
about the relative importance of graph properties. In
this case, one could conclude that the power-law degree
distribution is a more significant predictor of Internet-
topology data than the small-world phenomenon.

0

2

4

6

8

10

12

14

16

18

1997 1999 2001

PA
PRG
SW ER

LZ
W PA

PRG
SW ER

LZ
W PA

PRG
SW ER

LZ
W

Figure 4. The log-likelihoods (per edge) of the data sets
using the four models. The SW model has an uncertainty
region, but we can still rank it with respect to all the others.

5.1. PA implementation

We estimate convergence time heuristically and con-
servatively. To upper-bound time T needed for our
estimator to converge to the true value. We choose a
value T > 100, 000 so that ten independent executions
of the same Self-iter converge to the same number x
in time t/4 and for the next 3t/4 steps the value re-
mains within ε of x, for a small ε. We do this for a
sampling of the values i ∈ {1, 2, . . . , n}. As expected,
fewer steps T were required for convergence for later
(larger i) Self-iter’s.

To verify the correctness of our estimates, we first
ran the algorithm with the target permutation hav-
ing nodes sorted in order of increasing total degree.
The difference in likelihoods was an insignificant .1%.

Graph Model Selection using Maximum Likelihood

1997:
PA PRG SW ER
8.30 8.60 8.96 12.10

p = 0.58 βin = 1.55 α = 0.111 p = 6.2e-4
q = 0.08 βout = 2.39 β = 1.9
γ = 0.5 cin = 610

cout = 69

1999:
PA PRG SW ER
8.55 8.83 9.76 12.93

p = 0.61 βin = 1.57 α = 0.092 p = 3.5e-4
q = 0.08 βout = 2.44 β = 1.8
γ = 0.4 cin = 1410

cout = 172

2001:
PA PRG SW ER
8.58 8.85 10.42 13.68

p = 0.63 βin = 1.57 α = 0.088 p =2.1e-4
q = 0.07 βout = 2.5 β = 1.8
γ = 0.3 cin = 2421

cout = 214

Figure 5. Raw data results of the four algorithms on
datasets (not including error bars). Bold numbers rep-
resent log-likelihood per edge, the rest are the best para-
meter values. Note: SW only computes a lower bound on
the log-likelihood.

Second, to ensure that estimates in each phase were
converging, for a sampling of the Self-iter’s, we ran
the walks for significantly longer and the values re-
mained within .1%. Note that margin of error of the
total estimate is actually lower than the margin of er-
ror of any individual Self-iter. This is because the total
is the sum of thousands of independent random vari-
ables. Hence, as long as each estimate has the correct
expectation, the margin of error of the total estimate
will be significantly smaller (in percentage).

We ran the Self-iter steps in parallel. To do this we
used Condor (CONDOR, 2005) and the University of
Chicago Condor pool consisting of about 70 2-GHz
computers, out of which about 35-50 were available
at a time. Our computations for the 1997 data took
around 40 hours total, compared with twice as long
for the 1999 data and about a week for the 2001 data.
However, as discussed above, we were very conserva-
tive in our stopping heuristics.

5.2. SW implementation

For the SW algorithm, we used δ = 0.01 and R =
1, 000, 000. We chose a random grid alignment of ver-
tices as a starting state of our algorithm. The algo-
rithm converged in a few hours. Figure 6 graphically
shows the results of annealing on the largest data set.

Figure 6. The result of the simulated annealing on the 2001
snapshot.

For the SW model, our ranking depends crucially on
the ability of simulated annealing to come close to the
true maximum Pr(G|g). We performed this test to
validate the SW algorithm: We took the simple grid
graph, where each interior node has degree four. We
permuted the nodes randomly and ran a search for
the best configuration. As seen in Figure 7, the final
answer is not perfect but very close. The error in final
likelihood was less than 1%. For practical purposes,
we conclude that the likelihood assigned by the SW
model is between 99% of the raw score of SW (which
computes a bound on the SW model’s performance)
and the score of ER, which can never be better.

Figure 7. The results of simulated annealing on a grid
graph.

Graph Model Selection using Maximum Likelihood

6. Conclusions and future work

We have proposed using ML for ranking graph mod-
els, which involves computing the likelihood of real-
world graphs with respect to each model. In contrast
with previously used approaches which typically esti-
mate the model’s ability to reproduce a set of observed
properties, ML is a universal criterion and can be used
to rank models in an objective manner.

We have designed and implemented algorithms com-
puting likelihoods for four natural random graph mod-
els from various parts of the modeling spectrum. We
designed algorithms based on a variety of techniques,
ranging from simple to complex, including an MCMC-
based algorithm and Simulated Annealing, for com-
puting the probability assigned to a graph. While
the algorithms we use are not always simple, we have
demonstrated the feasibility of applying the approach
even to models which were not designed with this met-
ric in mind.

For future work, one would like to design improved
models for a variety of real-world data sets. Recent fast
MCMC (Lovász & Vempala, 2003) techniques show a
promising approach which could yield algorithms ap-
plicable to a wide range of models, and ultimately help
to design better scoring models.

It is also interesting to compare our work with re-
lated work on compressing the linkage information on
the web (Adler & Mitzenmacher, 2001; Bharat et al.,
1998). Log-likelihood and compression are closely re-
lated, since the log-likelihood of a data set with respect
to a model is the measure of how well the data can be
compressed using the model (via arithmetic coding).
For compression, better performance is achieved us-
ing special vertex orderings, such as when the data is
sorted by URL. Since we are comparing graph mod-
els only, we take a random ordering over nodes and no
URL information. However, the ML estimate could be
applied to a wide range of models with other informa-
tion as well.

Finally, ML could also be used for the interesting
problem of predicting links in social networks (Kubica
et al., 2003), and interactions in various cellular net-
works (Barabási & Oltvai, 2004; Bork et al., 2004).

References

Adler, M., & Mitzenmacher, M. (2001). Towards compressing web
graphs.

Aiello, W., Chung, F., & Lu, L. (2000). A random graph model for
massive graphs. Proceedings of ACM Symposium on Theory of
Computing.

Barabási, A., & Albert, R. (1999). Emergence of scaling in random
networks. Science, 286, 509–512.

Barabási, A. L., Albert, R., & Jeong, H. (2000). Scale-free char-
acteristics of random networks: topology of the world-wide web.
Physica A, 281, 69.

Barabási, A.-L., & Oltvai, Z. (2004). Network biology: Understand-
ing the cells functional organization. Nature Reviews Genetics,
5, 101–113.

Bharat, K., Broder, A., Henzinger, M., Kumar, P., & Venkatasubra-
manian, S. (1998). The connectivity server: fast access to linkage
information on the web. Proceedings of the 7th World Wide Web
Conference.

Bollobás, B. (1985). Random graphs. Academic Press.

Bork, P., Jensen, L., von Mering, C., Ramani, A., Lee, I., & Mar-
cotte, E. (2004). Protein interaction networks from yeast to hu-
man. Current Opinion in Structural Biology, June 14(3), 292–9.

Bu, T., & Towsley, D. F. (2002). On distinguishing between internet
power law topology generators. Proceedings of the 21st Annual
Joint Conference of the IEEE Computer and Communications
Society (INFOCOM-02) (pp. 638–647).

Chen, S., Beeeferman, D., & Rosenfeld, R. (1998). Evaluation met-
rics for language models. DARPA Broadcast News Transcription
and Understanding Workshop.

Chen, S., & Rosenfeld, R. (1999). Efficient sampling and feature
selection in whole sentence maximum entropy language models.
Proceedings of ICASSP ’99.

CONDOR (2005). University of Wisconsin at Madison.
http://www.cs.wisc.edu/condor/.

Gao, L. (2001). On inferring autonomous system relationships in the
Internet. IEEE/ACM Transactions on Networking, 9, 733–745.

Kirkpatrick, S., C.D.Gellatt, & Vecchi, M. (1983). Simulated an-
nealing. Science, 220.

Kleinberg, J. (2000). The small-world phenomenon: an algorithm
perspective. Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing (pp. 163–170).

Kubica, J., Moore, A., Cohn, D., & Schneider, J. (2003). Find-
ing underlying connections: A fast graph-based method for link
analysis and collaboration queries. Proceedings of Twentieth In-
ternational Conference on Machine Learning.

Lovász, L., & Vempala, S. (2003). Simulated annealing in convex
bodies and an O∗(n4) volume algorithm. Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computing (pp.
650–).

Medina, A., Matta, I., & Byers, J. (2000). On the origin of power
laws in internet topologies. Computer Communications Review,
30, 18–28.

Mitzenmacher, M. (2001). A brief history of generative models for
power law and log normal distributions. Proceedings of the 39th
Annual Allerton Conference on Communication, Control, and
Computing (pp. 182–191).

NLANR (2001). National Laboratory for Applied Network Research
Routing data. http://moat.nlanr.net/Routing/rawdata/.

Rissanen, J. (1978). Modeling by shortest data description. Auto-
matica, 14, 265–271.

Siganos, G., Faloutsos, M., Faloutsos, P., & Faloutsos, C. (2003).
Power laws and the AS-level internet topology. IEEE/ACM
Transactions on Networking, 11, 514–524.

Tangmunarunkit, H., Govindan, R., Shenker, S., Jamin, S., & Will-
inger, W. (2002). Network topology generators: Degree-based vs.
structural. Proceedings of ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munications (pp. 147–160).

Watts, D., & Strogatz, S. (1998). Collective dynamics of ‘small-
world’ networks. Nature, 393, 440–442.

