
Logarithmic Regret Algorithms for
Online Convex Optimization

Elad Hazan1 ?, Adam Kalai2, Satyen Kale1 ∗, and Amit Agarwal1

1 Princeton University
{ehazan,satyen,aagarwal}@princeton.edu

2 TTI-Chicago
kalai@tti-c.org

Abstract. In an online convex optimization problem a decision-maker
makes a sequence of decisions, i.e., chooses a sequence of points in Euclid-
ean space, from a fixed feasible set. After each point is chosen, it en-
counters a sequence of (possibly unrelated) convex cost functions. Zinke-
vich [Zin03] introduced this framework, which models many natural re-
peated decision-making problems and generalizes many existing prob-
lems such as Prediction from Expert Advice and Cover’s Universal Port-
folios. Zinkevich showed that a simple online gradient descent algorithm
achieves additive regret O(

√
T), for an arbitrary sequence of T convex

cost functions (of bounded gradients), with respect to the best single
decision in hindsight.
In this paper, we give algorithms that achieve regret O(log(T)) for an
arbitrary sequence of strictly convex functions (with bounded first and
second derivatives). This mirrors what has been done for the special cases
of prediction from expert advice by Kivinen and Warmuth [KW99], and
Universal Portfolios by Cover [Cov91]. We propose several algorithms
achieving logarithmic regret, which besides being more general are also
much more efficient to implement.
The main new ideas give rise to an efficient algorithm based on the New-
ton method for optimization, a new tool in the field. Our analysis shows
a surprising connection to follow-the-leader method, and builds on the
recent work of Agarwal and Hazan [AH05]. We also analyze other algo-
rithms, which tie together several different previous approaches including
follow-the-leader, exponential weighting, Cover’s algorithm and gradient
descent.

1 Introduction

In the problem of online convex optimization [Zin03], there is a fixed convex
compact feasible set K ⊂ Rn and an arbitrary, unknown sequence of convex
cost functions f1, f2, . . . : K → R. The decision maker must make a sequence of
decisions, where the tth decision is a selection of a point xt ∈ K and there is

? Supported by Sanjeev Arora’s NSF grants MSPA-MCS 0528414, CCF 0514993, ITR
0205594

a cost of ft(xt) on period t. However, xt is chosen with only the knowledge of
the set K, previous points x1, . . . , xt−1, and the previous functions f1, . . . , ft−1.
Examples include many repeated decision-problems:

Example 1: Production. Consider a company deciding how much of n
different products to produce. In this case, their profit may be assumed to be
a concave function of their production (the goal is maximize profit rather than
minimize cost). This decision is made repeatedly, and the model allows the profit
functions to be changing arbitrary concave functions, which may depend on
various factors such as the economy.

Example 2: Linear prediction with a convex loss function. In this set-
ting, there is a sequence of examples (p1, q1), . . . , (pT , qT) ∈ Rn× [0, 1]. For each
t = 1, 2, . . . , T , the decision-maker makes a linear prediction of qt ∈ [0, 1] which
is x>t pt, for some xt ∈ Rn, and suffers some loss L(qt, x

>
t pt), where L : R×R → R

is some fixed, known convex loss function, such as quadratic L(q, q′) = (q− q′)2.
The online convex optimization framework permits this example, because the
function ft(x) = L(qt, x

>pt) is a convex function of x ∈ Rn. This problem of lin-
ear prediction with a convex loss function has been well studied (e.g., [CBL06]),
and hence one would prefer to use the near-optimal algorithms that have been
developed especially for that problem. We mention this application only to point
out the generality of the online convex optimization framework.

Example 3: Portfolio management. In this setting, for each t = 1, ..., T
an online investor chooses a distribution xt over n stocks in the market. The
market outcome at iteration t is captured by a price relatives vector ct, such
that the loss to the investor is − log(x>t ct) (see Cover [Cov91] for motivation
and more detail regarding the model). Again, the online convex optimization
framework permits this example, because the function ft(x) = − log(x>c) is a
convex function of x ∈ Rn.

This paper shows how three seemingly different approaches can be used to
achieve logarithmic regret in the case of some higher-order derivative assump-
tions on the functions. The algorithms are relatively easy to state. In some cases,
the analysis is simple, and in others it relies on a carefully constructed poten-
tial function due to Agarwal and Hazan [AH05]. Lastly, our gradient descent
results relate to previous analyses of stochastic gradient descent [Spa03], which
is known to converge at a rate of 1/T for T steps of gradient descent under vari-
ous assumptions on the distribution over functions. Our results imply a log(T)/T
convergence rate for the same problems, though as common in the online setting,
the assumptions and guarantees are simpler and stronger than their stochastic
counterparts.

1.1 Our results

The regret of the decision maker at time T is defined to be its total cost minus
the cost of the best single decision, where the best is chosen with the benefit of
hindsight.

regretT = regret =
∑T

t=1ft(xt)−minx∈K

∑T
t=1ft(x).

A standard goal in machine learning and game theory is to achieve algorithms
with guaranteed low regret (this goal is also motivated by psychology). Zinkevich
showed that one can guarantee O(

√
T) regret for an arbitrary sequence of dif-

ferentiable convex functions of bounded gradient, which is tight up to constant
factors. In fact, Ω(

√
T) regret is unavoidable even when the functions come from

a fixed distribution rather than being chosen adversarially. 3

Variable Meaning

K ⊆ Rn the convex compact feasible set
D ≥ 0 the diameter of K, D = supx,y∈K ‖x− y‖

f1, . . . , fT Sequence of T twice-differentiable convex functions ft : Rn → R.
G ≥ 0 ‖∇ft(x)‖ ≤ G for all x ∈ K, t ≤ T (in one dimension, |f ′t(x)| ≤ G.)
H ≥ 0 ∇2ft(x) � HIn for all x ∈ K, t ≤ T (in one dimension, f ′′t (x) ≥ H).
α ≥ 0 Such that exp(−αft(x)) is a concave function of x ∈ K, for t ≤ T .

Fig. 1. Notation in the paper. Arbitrary convex functions are allowed for G = ∞, H =
0, α = 0. ‖ · ‖ is the `2 (Euclidean) norm.

Algorithm Regret bound

Online gradient descent G2

2H
(1 + log T)

Online Newton step 3(1
α

+ 4GD)n log T
Exponentially weighted online opt. n

α
(1 + log(1 + T))

Fig. 2. Results from this paper. Zinkevich achieves GD
√

T , even for H = α = 0.

Our notation and results are summarized in Figures 1 and 2. Throughout the
paper we denote by ‖·‖ the `2 (Euclidean) norm. We show O(log T) regret under
relatively weak assumptions on the functions f1, f2, Natural assumptions to
consider might be that the gradients of each function are of bounded magnitude
G, i.e., ‖∇ft(x)‖ ≤ G for all x ∈ K, and that each function in the sequence
is strongly-concave, meaning that the second derivative is bounded away from
0. In one dimension, these assumptions correspond simply to |f ′t(x)| ≤ G and
f ′′t (x) ≥ H for some G, H > 0. In higher dimensions, one may require these
properties to hold on the functions in every direction (i.e., for the 1-dimensional
function of θ, ft(θu), for any unit vector u ∈ Rn), which can be equivalently
written in the following similar form: ‖∇ft(x)‖ ≤ G and ∇2ft(x) � HIn, where

3 This can be seen by a simple randomized example. Consider K = [−1, 1] and linear
functions ft(x) = rtx, where rt = ±1 are chosen in advance, independently with
equal probability. Ert [ft(xt)] = 0 for any t and xt chosen online, by independence
of xt and rt. However, Er1,...,rT [minx∈K

PT
1 ft(x)] = E[−|

PT
1 rt|] = −Ω(

√
T).

In is the n × n identity matrix and we write A � B if the matrix A − B is
positive semi-definite (symmetric with non-negative eigenvalues).

Intuitively, it is easier to minimize functions that are “very concave,” and
the above assumptions may seem innocuous enough. However, they rule out
several interesting types of functions. For example, consider the function f(x) =
(x>w)2, for some vector w ∈ Rn. This is strongly convex in the direction w,
but is constant in directions orthogonal to w. A simpler example is the constant
function f(x) = c which is not strongly convex, yet is easily (and unavoidably)
minimized.

Some of our algorithms also work without explicitly requiring H > 0, i.e.,
when G = ∞,H = 0. In these cases we require that there exists some α > 0
such that ht(x) = exp(−αft(x)) is a concave function of x ∈ K, for all t. A
similar exp-concave assumption has been utilized for the prediction for expert-
advice problem [CBL06]. It turns out that given the bounds G and H, the
exp-concavity assumption holds with α = G2/H. To see this in one dimension,
one can easily verify the assumption on one-dimensional functions ft : R → R
by taking two derivatives,

h′′t (x) = ((αf ′t(x))2 − αf ′′t (x)) exp(−αft(x)) ≤ 0 ⇐⇒ α ≤ f ′′t (x)
(f ′t(x))2

.

All of our conditions hold in n-dimensions if they hold in every direction. Hence
we have that the exp-concave assumption is a weaker assumption than those of
G, H, for α = G2/H. This enables us to compare the three regret bounds of
Figure 2. In these terms, Online Gradient Descent requires the strongest
assumptions, whereas Exponentially Weighted Online Optimization re-
quires only exp-concavity (and not even a bound on the gradient). Perhaps most
interesting is Online Newton Step which requires relatively weak assump-
tions and yet, as we shall see, is very efficient to implement (and whose analysis
is the most technical).

2 The algorithms

The algorithms are presented in Figure 3. The intuition behind most of our
algorithms stem from new observations regarding the well studied follow-the-
leader method (see [Han57,KV05,AH05]).

The basic method, which by itself fails to provide sub-linear regret let alone
logarithmic regret, simply chooses on period t the single fixed decision that
would have been the best to use on the previous t− 1 periods. This corresponds
to choosing xt = arg minx∈K

∑t−1
τ=1 fτ (x). The standard approach to analyze

such algorithms proceeds by inductively showing,

regretT =
T∑

t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤
T∑

t=1

ft(xt)− ft(xt+1) (1)

The standard analysis proceeds by showing that the leader doesn’t change too
much, i.e. xt ≈ xt+1, which in turn implies low regret.

Online Gradient Descent. (Zinkevich’s online version of Stochastic Gradient De-
scent)
Inputs: convex set K ⊂ Rn, step sizes η1, η2, . . . ≥ 0.

– On period 1, play an arbitrary x1 ∈ K.
– On period t > 1: play

xt = ΠK(xt−1 − ηt∇ft−1(xt−1))

Here, ΠK denotes the projection onto nearest point in K, ΠK(y) = arg minx∈K ‖x−
y‖.

Online Newton Step.
Inputs: convex set K ⊂ Rn, and the parameter β.

– On period 1, play an arbitrary x1 ∈ K.
– On period t > 1: play the point xt given by the following equations:

∇t−1 = ∇ft−1(xt−1)

At−1 =

t−1X

τ=1

∇τ∇>
τ

bt−1 =

t−1X

τ=1

∇τ∇>
τ xτ −

1

β
∇τ

xt = Π
At−1
K

�
A−1

t−1bt−1

�

Here, Π
At−1
K is the projection in the norm induced by At−1:

Π
At−1
K (y) = arg min

x∈K
(x− y)>At−1(x− y)

A−1
t−1 denotes the Moore-Penrose pseudoinverse of At−1.

Exponentially Weighted Online Optimization.
Inputs: convex set K ⊂ Rn, and the parameter α.

– Define weights wt(x) = exp(−α
Pt−1

τ=1fτ (x)).

– On period t play xt =
R
K xwt(x)dx
R
K wt(x)dx

.

(Remark: choosing xt at random with density proportional to wt(x) also gives our
bounds.)

Fig. 3. Online optimization algorithms.

One of the significant deviations from this standard analysis is in the variant
of follow-the-leader called Online Newton Step. The analysis does not follow
this paradigm directly, but rather shows average stability (i.e. that xt ≈ xt+1

on the “average”, rather than always) using an extension of the Agarwal-Hazan
potential function.

Another building block, due to Zinkevich [Zin03], is that if we have another
set of functions f̃t for which f̃t(xt) = ft(xt) and f̃t is a lower-bound on ft, so
f̃t(x) ≤ ft(x) for all x ∈ K, then it suffices to bound the regret with respect to
f̃t, because,

regretT =
T∑

t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤
T∑

t=1

f̃t(xt)−min
x∈K

T∑
t=1

f̃t(x) (2)

He uses this observation in conjunction with the fact that a convex function is
lower-bounded by its tangent hyperplanes, to argue that it suffices to analyze
online gradient descent for the case of linear functions.

We observe4 that online gradient descent can be viewed as running follow-
the-leader on the sequence of functions f̃0(x) = (x−x1)2/η and f̃t(x) = ft(xt)+
∇ft(xt)>(x−xt). To do this, one need only calculate the minimum of

∑t−1
τ=0 f̃τ (x).

As explained before, any algorithm for the online convex optimization prob-
lem with linear functions has Ω(

√
T) regret, and thus to achieve logarithmic

regret one necessarily needs to use the curvature of functions. When we consider
strongly concave functions where H > 0, we can lower-bound the function ft by
a paraboloid,

ft(x) ≥ ft(xt) +∇ft(xt)>(x− xt) +
H

2
(x− xt)2,

rather than a linear function. The follow-the-leader calculation, however, remains
similar. The only difference is that the step-size ηt = 1/(Ht) decreases linearly
rather than as O(1/

√
t).

For functions which permit α > 0 such that exp(−αft(x)) is concave, it turns
out that they can be lower-bounded by a paraboloid f̃t(x) = a+(w>x−b)2 where
w ∈ Rn is proportional to ∇ft(xt) and a, b ∈ R. Hence, one can do a similar
follow-the-leader calculation, and this gives the Follow The Approximate
Leader algorithm in Figure 4. Formally, the Online Newton Step algorithm
is an efficient implementation to the follow-the-leader variant Follow The
Approximate Leader (see Lemma 3), and clearly demonstrates its close con-
nection to the Newton method from classical optimization theory. Interestingly,
the derived Online Newton Step algorithm does not directly use the Hessians
of the observed functions, but only a lower-bound on the Hessians, which can be
calculated from the α > 0 bound.

Finally, our Exponentially Weighted Online Optimization algorithm
does not seem to be directly related to follow-the-leader. It is more related to

4 Kakade has made a similar observation [Kak05].

Follow The Approximate Leader.
Inputs: convex set K ⊂ Rn, and the parameter β.

– On period 1, play an arbitrary x1 ∈ K.
– On period t, play the leader xt defined as

xt , arg min
x∈K

t−1X

τ=1

f̃τ (x)

Where for τ = 1, . . . , t− 1, define ∇τ = ∇fτ (xτ) and

f̃τ (x) , fτ (xτ) +∇>
τ (x− xτ) +

β

2
(x− xτ)>∇τ∇>

τ (x− xτ)

Fig. 4. The Follow The Approximate Leader algorithm, which is equivalent to
Online Newton Step

similar algorithms which are used in the problem of prediction from expert ad-
vice5 and to Cover’s algorithm for universal portfolio management.

2.1 Implementation and running time

Perhaps the main contribution of this paper is the introduction of a general loga-
rithmic regret algorithms that are efficient and relatively easy to implement. The
algorithms in Figure 3 are described in their mathematically simplest forms, but
implementation has been disregarded. In this section, we discuss implementation
issues and compare the running time of the different algorithms.

The Online Gradient Descent algorithm is straightforward to imple-
ment, and updates take time O(n) given the gradient. However, there is a pro-
jection step which may take longer. For many convex sets such as a ball, cube, or
simplex, computing ΠK is fast and straightforward. For convex polytopes, the
projection oracle can be implemented efficiently using interior point methods. In
general, K can be specified by a membership oracle (χK(x) = 1 if x ∈ K and 0
if x /∈ K), along with a point x0 ∈ K as well as radii R ≥ r > 0 such that the
balls of radii R and r around x0 contain and are contained in K, respectively.
In this case ΠK can be computed (to ε accuracy) in time Õ(n4 log(R

r)) 6 using
the Vaidya’s algorithm [Vai96].

The Online Newton Step algorithm requires O(n2) space to store the
matrix At. Every iteration requires the computation of the matrix A−1

t , the
current gradient, a matrix-vector product and possibly a projection onto K.

A näıve implementation would require computing the Moore-Penrose pseudoin-
verse of the matrix At every iteration. However, in case At is invertible, the

5 The standard weighted majority algorithm can be viewed as picking an expert of
minimal cost when an additional random cost of − 1

η
ln ln ri is added to each expert,

where ri is chosen independently from [0, 1].
6 The Õ notation hides poly-logarithmic factors, in this case log(nT/ε).

matrix inversion lemma [Bro05] states that for invertible matrix A and vector x

(A + xx>)−1 = A−1 − A−1xx>A−1

1 + x>A−1x

Thus, given A−1
t−1 and ∇t one can compute A−1

t in time O(n2). A generalized
matrix inversion lemma [Rie91] allows for iterative update of the pseudoinverse
also in time O(n2), details will appear in the full version.

The Online Newton Step algorithm also needs to make projections onto
K, but of a slightly different nature than Online Gradient Descent. The
required projection, denoted by ΠAt

K , is in the vector norm induced by the matrix
At, viz. ‖x‖At

=
√

x>Atx. It is equivalent to finding the point x ∈ K which
minimizes (x− y)>At(x− y) where y is the point we are projecting. We assume
the existence of an oracle which implements such a projection given y and At.
The runtime is similar to that of the projection step of Online Gradient
Descent.

Modulo calls to the projections oracle, the Online Newton Step algorithm
can be implemented in time and space O(n2), requiring only the gradient at each
step.

The Exponentially Weighted Online Optimization algorithm can be
approximated by sampling points according to the distribution with density
proportional to wt and then taking their mean. In fact, as far as an expected
guarantee is concerned, our analysis actually shows that the algorithm which
chooses a single random point xt with density proportional to wt(x) achieves
the stated regret bound, in expectation. Using recent random walk analyses of
Lovász and Vempala [LV03a,LV03b], m samples from such a distribution can be
computed in time Õ((n4 + mn3) log R

r). A similar application of random walks
was used previously for an efficient implementation of Cover’s Universal Portfolio
algorithm [KV03].

3 Analysis

3.1 Online Gradient Descent

Theorem 1 Assume that the functions ft have bounded gradient, ‖∇ft(x)‖ ≤
G, and Hessian, ∇2ft(x) � HIn, for all x ∈ K.

The Online Gradient Descent algorithm of Figure 3, with ηt = (Ht)−1

achieves the following guarantee, for all T ≥ 1.
T∑

t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤ G2

2H
(1 + log T)

Proof. Let x∗ ∈ arg minx∈K

∑T
t=1 ft(x). Define ∇t , ∇ft(xt). By H-strong

convexity, we have,

ft(x∗) ≥ ft(xt) +∇>
t (x∗ − xt) +

H

2
‖x∗ − xt‖2

2(ft(xt)− ft(x∗)) ≤ 2∇>
t (xt − x∗)−H‖x∗ − xt‖2 (3)

Following Zinkevich’s analysis, we upper-bound ∇>
t (xt − x∗). Using the update

rule for xt+1, we get

‖xt+1 − x∗‖2 = ‖Π(xt − ηt+1∇t)− x∗‖2 ≤ ‖xt − ηt+1∇t − x∗‖2.

The inequality above follows from the properties of projection onto convex sets.
Hence,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + η2
t+1‖∇t‖2 − 2ηt+1∇>

t (xt − x∗)

2∇>
t (xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt+1
+ ηt+1G

2 (4)

Sum up (4) from t = 1 to T . Set ηt+1 = 1/(Ht), and using (3), we have:

2
T∑

t=1

ft(xt)− ft(x∗) ≤
T∑

t=1

‖xt − x∗‖2
(

1
ηt+1

− 1
ηt
−H

)
+ G2

T∑
t=1

ηt+1

= 0 + G2
T∑

t=1

1
Ht

≤ G2

H
(1 + log T)

�

3.2 Online Newton Step

Before analyzing the algorithm, we need a couple of lemmas.

Lemma 2 If a function f : K → R is such that exp(−αf(x)) is concave, and
has gradient bounded by ‖∇f‖ ≤ G, then for β = 1

2 min{ 1
4GD , α} the following

holds:

∀x, y ∈ K : f(x) ≥ f(y) +∇f(y)>(x− y) +
β

2
(x− y)∇f(y)∇f(y)>(x− y)

Proof. First, by computing derivatives, one can check that since exp(−αf(x)) is
concave and 2β ≤ α, the function h(x) = exp(−2βf(x)) is also concave. Then
by the concavity of h(x), we have

h(x) ≤ h(y) +∇h(y)>(x− y).

Plugging in ∇h(y) = −2β exp(−2βf(y))∇f(y) gives,

exp(−2βf(x)) ≤ exp(−2βf(y))[1− 2β∇f(y)>(x− y)].

Simplifying

f(x) ≥ f(y)− 1
2β

log[1− 2β∇f(y)>(x− y)].

Next, note that |2β∇f(y)>(x − y)| ≤ 2βGD ≤ 1
4 and that for |z| ≤ 1

4 ,
− log(1 − z) ≥ z + 1

4z2. Applying the inequality for z = 2β∇f(y)>(x − y)
implies the lemma. �

Lemma 3 The Online Newton Step algorithm is equivalent to the Follow
The Approximate Leader algorithm.

Proof. In the Follow The Approximate Leader algorithm, one needs to
perform the following optimization at period t:

xt , arg min
x∈K

t−1∑
τ=1

f̃τ (x)

By expanding out the expressions for f̃τ (x), multiplying by 2
β and getting rid of

constants, the problem reduces to minimizing the following function over x ∈ K:

t−1∑
τ=1

x>∇τ∇>
τ x− 2(x>τ ∇τ∇>

τ −
1
β
∇>

τ)x

= x>At−1x− 2b>t−1x = (x−A−1
t−1bt−1)>At−1(x−A−1

t−1bt−1)− b>t−1A
−1
t−1bt−1

The solution of this minimization is exactly the projection Π
At−1
K (A−1

t−1bt−1) as
specified by Online Newton Step. �

Theorem 4 Assume that the functions ft are such that exp(−αft(x)) is concave
and have gradients bounded by ‖∇ft(x)‖ ≤ G. Then the Online Newton Step
algorithm with parameter β = 1

2 min{ 1
4GD , α} achieves the following guarantee,

for all T ≥ 1.

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤ 3
[

1
α

+ 4GD

]
n log T

Proof. The theorem relies on the observation that by Lemma 2, the function
f̃t(x) defined by the Follow The Approximate Leader algorithm satisfies
f̃t(xt) = ft(xt) and f̃t(x) ≤ ft(x) for all x ∈ K. Then the inequality (2) im-
plies that it suffices to show a regret bound for the follow-the-leader algorithm
run on the f̃t functions. The inequality (1) implies that it suffices to bound∑T

t=1

[
f̃t(xt)− f̃t(xt+1)

]
, which is done in Lemma 5 below. �

Lemma 5

T∑
t=1

[
f̃t(xt)− f̃t(xt+1)

]
≤ 3

[
1
α

+ 4GD

]
n log T

Proof (Lemma 5). For the sake of readability, we introduce some notation. Define
the function Ft ,

∑t−1
τ=1 f̃τ . Note that ∇ft(xt) = ∇f̃t(xt) by the definition of

f̃t, so we will use the same notation ∇t to refer to both. Finally, let ∆ be the
forward difference operator, for example, ∆xt = (xt+1 − xt) and ∆∇Ft(xt) =
(∇Ft+1(xt+1)−∇Ft(xt)).

We use the gradient bound, which follows from the convexity of f̃t:

f̃t(xt)− f̃t(xt+1) ≤ −∇f̃t(xt)>(xt+1 − xt) = −∇>
t ∆xt (5)

The gradient of Ft+1 can be written as:

∇Ft+1(x) =
t∑

τ=1

∇fτ (xτ) + β∇fτ (xτ)∇fτ (xτ)>(x− xτ) (6)

Therefore,

∇Ft+1(xt+1)−∇Ft+1(xt) = β
t∑

τ=1

∇fτ (xτ)∇fτ (xτ)>∆xt = βAt∆xt (7)

The LHS of (7) is

∇Ft+1(xt+1)−∇Ft+1(xt) = ∆∇Ft(xt)−∇t (8)

Putting (7) and (8) together, and adding εβ∆xt we get

β(At + εIn)∆xt = ∆∇Ft(xt)−∇t + εβ∆xt (9)

Pre-multiplying by − 1
β∇

>
t (At + εIn)−1, we get an expression for the gradient

bound (5):

−∇>
t ∆xt = − 1

β
∇>

t (At + εIn)−1[∆∇Ft(xt)−∇t + εβ∆xt]

= − 1
β
∇>

t (At + εIn)−1[∆∇Ft(xt) + εβ∆xt] +
1
β
∇>

t (At + εIn)−1∇t

(10)

Claim. The first term of (10) can be bounded as follows:

− 1
β
∇>

t (At + εIn)−1[∆∇Ft(xt) + εβ∆xt] ≤ εβD2

Proof. Since xτ minimizes Fτ over K, we have

∇Fτ (xτ)>(x− xτ) ≥ 0 (11)

for any point x ∈ K. Using (11) for τ = t and τ = t + 1, we get

0 ≤ ∇Ft+1(xt+1)>(xt − xt+1) +∇Ft(xt)>(xt+1 − xt) = −[∆∇Ft(xt)]>∆xt

Reversing the inequality and adding εβ‖∆xt‖2 = εβ∆x>t ∆xt, we get

εβ‖∆xt‖2 ≥ [∆∇Ft(xt) + εβ∆xt]>∆xt

=
1
β

[∆∇Ft(xt) + εβ∆xt]>(At + εIn)−1[∆∇Ft(xt) + εβ∆xt −∇t]

(by solving for ∆xt in (9))

=
1
β

[∆∇Ft(xt) + εβ∆xt]>(At + εIn)−1(∆∇Ft(xt) + εβ∆xt)

− 1
β

[∆∇Ft(xt) + ε∆xt]>(At + εIn)−1∇t

≥ − 1
β

[∆∇Ft(xt) + εβ∆xt]>(At + εIn)−1∇t

(since (At + εIn)−1 � 0 ⇒ ∀x : x>(At + εIn)−1x ≥ 0)

Finally, since the diameter of K is D, we have εβ‖∆xt‖2 ≤ εβD2. �

Now we bound the second term of (10). Sum up from t = 1 to T , and apply
Lemma 6 below with A0 = εIn and vt = ∇t. Set ε = 1

β2D2T .

1
β

T∑
t=1

∇>
t (At + εIn)−1∇t ≤ 1

β
log

[
|AT + εIn|
|εIn|

]
≤ 1

β
n log(β2G2D2T 2 + 1) ≤ 2

β
n log T

The second inequality follows since AT =
∑T

t=1∇t∇>
t and ‖∇t‖ ≤ G, we

have |AT + εIn| ≤ (G2T + ε)n.
Combining this inequality with the bound of the claim above, we get

T∑
t=1

[
f̃t(xt)− ft(xt+1)

]
≤ 2

β
n log T + εβD2T ≤ 3

[
1
α

+ 4GD

]
n log T

as required. �

Lemma 6 Let A0 be a positive definite matrix, and for t ≥ 1, let At =
∑t

τ=1 vtv
>
t

for some vectors v1, v2, . . . , vt. Then the following inequality holds:

T∑
t=1

v>t (At + A0)−1vt ≤ log
[
|AT + A0|
|A0|

]
To prove this Lemma, we first require the following claim.

Claim. Let A be a positive definite matrix and x a vector such that A−xx> � 0.
Then

x>A−1x ≤ log
[

|A|
|A− xx>|

]

Proof. Let B = A−xx>. For any positive definite matrix C, let λ1(C), λ2(C), . . . , λn(C)
be its (positive) eigenvalues.

x>A−1x = Tr(A−1xx>)

= Tr(A−1(A−B))

= Tr(A−1/2(A−B)A−1/2)

= Tr(I −A−1/2BA−1/2)

=
n∑

i=1

[
1− λi(A−1/2BA−1/2)

]
∵ Tr(C) =

n∑
i=1

λi(C)

≤
n∑

i=1

log
[
λi(A−1/2BA−1/2)

]
∵ 1− x ≤ − log(x)

= − log

[
n∏

i=1

λi(A−1/2BA−1/2)

]

= − log |A−1/2BA−1/2| = log
[
|A|
|B|

]
∵

n∏
i=1

λi(C) = |C|

�

Lemma 6 now follows as a corollary:

Proof (Lemma 6). By the previous claim, we have

T∑
t=1

v>t (At + A0)−1vt ≤
T∑

t=1

log
[

|At + A0|
|At + A0 − vtv>t |

]

=
T∑

t=2

log
[
|At + A0|
|At−1 + A0|

]
+ log

[
|A1 + A0|
|A0|

]
= log

[
|At + A0|
|A0|

]
�

3.3 Exponentially Weighted Online Optimization

Theorem 7 Assume that the functions ft are such that exp(−αft(x)) is con-
cave. Then the Exponentially Weighted Online Optimization algorithm
achieves the following guarantee, for all T ≥ 1.

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤ 1
α

n(1 + log(1 + T)).

Proof. Let ht(x) = e−αft(x). The algorithm can be viewed as taking a weighted
average over points x ∈ K. Hence, by concavity of ht,

ht(xt) ≥
∫

K
ht(x)

∏t−1
τ=1 hτ (x) dx∫

K

∏t−1
τ=1 hτ (x) dx

.

Hence, we have by telescoping product,

t∏
τ=1

hτ (xτ) ≥
∫

K

∏t
τ=1 hτ (x) dx∫
K

1 dx
=

∫
K

∏t
τ=1 hτ (x) dx

vol(K)
(12)

Let x∗ = arg minx∈K

∑T
t=1 ft(x) = arg maxx∈K

∏T
t=1 ht(x). Following [BK97],

define nearby points S ⊂ K by,

S = {x ∈ S|x =
T

T + 1
x∗ +

1
T + 1

y, y ∈ K}.

By concavity of ht and the fact that ht is non-negative, we have that,

∀x ∈ S ht(x) ≥ T

T + 1
ht(x∗).

Hence,

∀x ∈ S
T∏

τ=1

hτ (x) ≥
(

T

T + 1

)T T∏
τ=1

hτ (x∗) ≥ 1
e

T∏
τ=1

hτ (x∗)

Finally, since S = x∗ + 1
T+1K is simply a rescaling of K by a factor of 1/(T +1)

(followed by a translation), and we are in n dimensions, vol(S) = vol(K)/(T +
1)n. Putting this together with equation (12), we have

T∏
τ=1

hτ (xτ) ≥ vol(S)
vol(K)

1
e

T∏
τ=1

hτ (x∗) ≥ 1
e(T + 1)n

T∏
τ=1

hτ (x∗).

This implies the theorem. �

4 Conclusions and future work

In this work, we presented efficient algorithms which guarantee logarithmic regret
when the loss functions satisfy a mildly restrictive convexity condition. Our
algorithms use the very natural follow-the-leader methodology which has been
quite useful in other settings, and the efficient implementation of the algorithm
shows the connection with the Newton method from offline optimization theory.

Future work involves adapting these algorithms to work in the bandit setting,
where only the cost of the chosen point is revealed at every point (and no other
information). The techniques of Flaxman, Kalai and McMahan [FKM05] seem
to be promising for this.

Another direction for future work relies on the observation that the original
algorithm of Agarwal and Hazan worked for functions which could be written
as a one-dimensional convex function applied to an inner product. However, the
analysis requires a stronger condition than the exp-concavity condition we have
here. It seems that the original analysis can be made to work just with exp-
concavity assumptions, more detail to appear in the full version of this paper.

5 Acknowledgements

The Princeton authors would like to thank Sanjeev Arora and Rob Schapire for
helpful comments.

References

[AH05] Amit Agarwal and Elad Hazan. Efficient algorithms for online game playing
and universal portfolio management. ECCC, TR06-033, 2005.

[BK97] Avrim Blum and Adam Kalai. Universal portfolios with and without trans-
action costs. In COLT ’97: Proceedings of the tenth annual conference on
Computational learning theory, pages 309–313, New York, NY, USA, 1997.
ACM Press.

[Bro05] M. Brookes. The matrix reference manual. [online]
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html, 2005.

[CBL06] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge
University Press, Cambridge, 2006.

[Cov91] T. Cover. Universal portfolios. Math. Finance, 1:1–19, 1991.
[FKM05] Abraham Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. On-

line convex optimization in the bandit setting: gradient descent without a
gradient. In Proceedings of 16th SODA, pages 385–394, 2005.

[Han57] James Hannan. Approximation to bayes risk in repeated play. In M. Dresher,
A. W. Tucker, and P. Wolfe, editors, Contributions to the Theory of Games,
volume III, pages 97–139, 1957.

[Kak05] S. Kakade. Personal communication, 2005.
[KV03] Adam Kalai and Santosh Vempala. Efficient algorithms for universal portfo-

lios. J. Mach. Learn. Res., 3:423–440, 2003.
[KV05] Adam Kalai and Santosh Vempala. Efficient algorithms for on-line optimiza-

tion. Journal of Computer and System Sciences, 71(3):291–307, 2005.
[KW99] J. Kivinen and M. K. Warmuth. Averaging expert predictions. In Compu-

tational Learning Theory: 4th European Conference (EuroCOLT ’99), pages
153–167, Berlin, 1999. Springer.

[LV03a] László Lovász and Santosh Vempala. The geometry of logconcave functions
and an o∗(n3) sampling algorithm. Technical Report MSR-TR-2003-04, Mi-
crosoft Research, 2003.

[LV03b] László Lovász and Santosh Vempala. Simulated annealing in convex bodies
and an 0∗(n4) volume algorithm. In Proceedings of the 44th Symposium on
Foundations of Computer Science (FOCS), pages 650–659, 2003.

[Rie91] Kurt Riedel. A sherman-morrison-woodbury identity for rank augmenting
matrices with application to centering. SIAM J. Mat. Anal., 12(1):80–95,
January 1991.

[Spa03] J. Spall. Introduction to Stochastic Search and Optimization. John Wiley &
Sons, Inc, New York, NY, 2003.

[Vai96] Pravin M. Vaidya. A new algorithm for minimizing convex functions over
convex sets. Math. Program., 73(3):291–341, 1996.

[Zin03] Martin Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the Twentieth International Conference
(ICML), pages 928–936, 2003.

