PLAYING GAMES WITH APPROXIMATION ALGORITHMS*

SHAM M. KAKADET, ADAM TAUMAN KALAIf, AND KATRINA LIGETT#

Abstract. In an online linear optimization problem, on each period ¢, an online algorithm
chooses s¢ € S from a fixed (possibly infinite) set S of feasible decisions. Nature (who may be
adversarial) chooses a weight vector wy € R™, and the algorithm incurs cost ¢(s¢, wt), where ¢ is a
fixed cost function that is linear in the weight vector. In the full-information setting, the vector w;
is then revealed to the algorithm, and in the bandit setting, only the cost experienced, c(s¢,wt), is
revealed. The goal of the online algorithm is to perform nearly as well as the best fixed s € S in
hindsight. Many repeated decision-making problems with weights fit naturally into this framework,
such as online shortest-path, online TSP, online clustering, and online weighted set cover.

Previously, it was shown how to convert any efficient ezact offline optimization algorithm for such
a problem into an efficient online algorithm in both the full-information and the bandit settings, with
average cost nearly as good as that of the best fixed s € S in hindsight. However, in the case where
the offline algorithm is an approximation algorithm with ratio @ > 1, the previous approach only
worked for special types of approximation algorithms.

We show how to convert any offline approximation algorithm for a linear optimization problem
into a corresponding online approximation algorithm, with a polynomial blowup in runtime. If the
offline algorithm has an a-approximation guarantee, then the expected cost of the online algorithm
on any sequence is not much larger than « times that of the best s € S, where the best is chosen
with the benefit of hindsight. Our main innovation is combining Zinkevich’s algorithm for convex
optimization with a geometric transformation that can be applied to any approximation algorithm.
Standard techniques generalize the above result to the bandit setting, except that a “Barycentric
Spanner” for the problem is also (provably) necessary as input.

Our algorithm can also be viewed as a method for playing large repeated games, where one can
only compute approzimate best-responses, rather than best-responses.

1. Introduction. In the 1950’s, Hannan gave an algorithm for playing repeated
two-player games against an arbitrary opponent [12]. His was one of the earliest al-
gorithms with the no-regret property: against any opponent, his algorithm achieved
expected performance asymptotically near that of the best single action, where the
best is chosen with the benefit of hindsight. Put another way, after sufficiently many
rounds, someone using his algorithm would not benefit (significantly) by being able
to change his actions to any single action, even if this action could be chosen after ob-
serving the opponent’s play. Kalai and Vempala showed that Hannan’s approach can
be used to efficiently solve online linear optimization problems as well [13]. Hannan’s
algorithm relied on the ability to find best responses to an opponent’s play history.
Informally speaking, Kalai and Vempala replaced this best-reply computation with an
efficient black-box optimization algorithm (the number of calls to that algorithm on
a sequence of length T was O(v/T) [13]). However, the above approach breaks down
when one can only approximately solve the offline optimization problem efficiently or
one can only compute approximate best responses. That is the focus of the present
paper.

In an offline optimization problem, one must select a single decision s from a
known set of decisions S, in order to minimize a known cost function. In an offline
linear optimization problem, a weight vector w € R" is given as input, and the
cost function c(s,w) is assumed to be linear in w. Many combinatorial optimization

*A preliminary version of these results appeared in the Proceedings of the 39th Annual ACM
Symposium on Theory of Computation, June 2007.

TToyota Technological Institute, Chicago, IL. sham@tti-c.org

fGeorgia Tech, Atlanta, GA. atk@cc.gatech.edu Supported in part by NSF award SES-527656.

§Carnegie Mellon, Pittsburgh, PA. katrina@cs.cmu.edu Supported in part by an AT&T Labs
Graduate Fellowship and an NSF Graduate Research Fellowship.

1

2 S. M. KAKADE, A. T. KALAI, AND K. LIGETT

problems fit into this framework, including traveling salesman problems (where S
consists of a subset of paths in a graph), clustering (S is partitions of a graph),
weighted set cover (S is the set of covers), and knapsack (S is the set of feasible sets
of items and weights correspond to item valuations).

Each of these problems has an online sequential version, in which on every period
the player must select her decision without knowing that period’s cost function. That
is, there is an unknown sequence of weight vectors wi,ws,... € R™ and for each
t =1,2,..., the player must select s; € S and pay c(s¢, w;). In the full-information
version, the player is then informed of w;, while in the bandit version she is only
informed of the value c(s,w¢). (The name bandit refers to the similarity to the
classic multi-armed bandit problem [15]).

The player’s goal is to achieve low average cost. In particular, we compare her cost
with that of the best fixed decision: she would like her average cost to approach that
of the best single point in S, where the best is chosen with the benefit of hindsight.
This difference, 7 Zthl c(s¢, wy) — minges 7 Zle c(s,wy), is termed regret.

Prior work showed how to convert an ezact algorithm for the offline problem
into an online algorithm with low regret, both in the full-information setting and in
the bandit setting. In particular, Kalai and Vempala showed [13] that using Hannan’s
approach [12], one can guarantee O(T~1/2) regret for any linear optimization problem,
in the full-information version, as the number of periods T increases. It was later
shown [2, 14, 7] how to convert exact algorithms to achieve O(T~'/3) regret in the
more difficult bandit setting.

This prior work was actually a reduction showing that one can solve the online
problem nearly as efficiently as one can solve the offline problem. (They used the
offline optimizer as a black box.) However, in many cases of interest, such as online
combinatorial auction problems [3], even the offline problem is NP-hard. Hannan’s
“follow-the-perturbed-leader” approach can also be applied to some special types of
approximation algorithms, but fails to work directly in general. Finding a reduction
that maintains good asymptotic performance using general approximation algorithms
was posed as an open problem [13]; we resolve this problem.

In this paper, we show how to convert any approximation algorithm for a linear
optimization problem into an algorithm for the online sequential version of the prob-
lem, both in the full-information setting and in the bandit setting. Our reduction
maintains the asymptotic approximation guarantee of the original algorithm, rela-
tive to the average performance of the best static decision in hindsight. Our new
approach is inspired by Zinkevich’s algorithm for the problem of minimizing convex
functions over a convex feasible set S C R™ [16]. However, the application is not direct
and requires a geometric transformation that can be applied to any approximation
algorithm.

Ezample 1 (Online metric TSP). Every day, a delivery company serves the same
n customers. The company must schedule its daily route without foreknowledge of
the traffic on each street. The time on any street may vary unpredictably from day
to day due to traffic, construction, accidents, or even competing delivery companies.
In online metric TSP, we are given a undirected graph G, and on every period t, we
must output a tour that starts at a specified vertex, visits all the vertices at least once,
then returns to the initial vertex. After we announce our tour, the traffic patterns
are revealed (in the full-information setting, the costs on all the edges; in the bandit
setting, just the cost of the tour) and we pay the cost of the tour.

PLAYING GAMES WITH APPROXIMATION ALGORITHMS 3

Ezample 2 (Online weighted set cover). Every financial quarter, our company
hires vendors from a fixed pool of subcontractors to cover a fixed set of tasks. Each
subcontractor can handle a known, fixed subset of the tasks, but their price is only
announced at the end of the quarter and varies from quarter to quarter. In online
weighted set cover, the vendors are fixed sets Py, ..., P, C [m]. Each period, we choose
a legal cover s; C [n], that is, ,c,, P = [m]. There is an unknown sequence of cost
vectors wi, wa, ... € [0,1]", indicating the quarterly vendor costs. Each quarter, our
total cost c(s¢, wy) is the sum of the costs of the vendors we chose for that quarter. In
the full-information setting, at the end of the quarter we find out the price charged by
each of the subcontractors; in the bandit setting, we receive a combined bill showing
only our total cost.

1.1. Hannan’s approach. In this section, we briefly describe the previous ap-
proach [13] for the case of exact optimization algorithms based on Hannan’s idea of
adding perturbations. We begin with the obvious “follow-the-leader” algorithm which,
each period, picks the decision that is best against the total (equivalently, average)
of the previous weight vectors. This means, on period ¢, choosing s; = A(Zi;ll wT),
where A is an algorithm that, given a cost vector w, produces the best s € S.! Han-
nan’s perturbation idea, in our context, suggests using s; = A(pt + Et;:ll wT) for
uniformly random perturbation p; € [0,/#]”. One can bound the expected regret of
following-the-perturbed-leader to be O(T*I/ 2), disregarding other parameters of the
problem.

Kalai and Vempala [13] note that Hannan’s approach maintains an asymptotic
a-approximation guarantee when used with a-approximation algorithms with a spe-
cial property they call a-point-wise approrimation, meaning that on any input, the
solution they find differs from the optimal solution by a factor of at most « in ev-
ery coordinate. They observe that a number of algorithms, such as the Goemans-
Williamson max-cut algorithm [11], have this property. Balcan and Blum [3] observe
that the previous approach applies to another type of approximation algorithm: one
that uses an optimal decision for another linear optimization problem, for example,
using MST for TSP. It is also not difficult to see that a FPTAS can be used to
get a (1 + €)-competitive online algorithm. We further note that the Hannan-Kalai-
Vempala approach extends to approximation algorithms that perform a simple type
of randomized rounding where the randomness does not depend on the input.

In Appendix A, we use an explicit example based on the greedy set-cover ap-
proximation algorithm to illustrate how Hannan’s approach fails on more general
approximation algorithms.

1.2. Informal statement of results. The main result of this paper is a general
conversion from any approximate linear optimization algorithm to an approximate
online version in the full-information setting (§3). The extension to the bandit setting
(84) uses well-understood techniques, modulo one new issue that arises in the case of
approximation algorithms. We summarize the problem, our approach, and our results
here.

We assume there is a known compact convex set W C R"™ of legal weight vec-
tors (in many cases W = [0,1]"), and a cost function ¢ : & x W — [0,1] that
is linear in its second argument, that is, c¢(s,av + bw) = ac(s,v) + be(s,v) for all
s €S8, a,beR, and v,w,av + bw € W. The generalization to [0, M]-bounded cost

IThis approach fails even on a two-decision problem, where the costs of the two decisions are
(0.5,0) during the first period and then alternate (1,0), (0, 1), (1,0), ..., thereafter.

4 S. M. KAKADE, A. T. KALAI, AND K. LIGETT

functions for M > 0 is straightforward.? We assume that we have a black-box a-
approximation algorithm, which we abstract as an oracle A such that, for all w € W,
c(A(w),w) < aminges ¢(s,w). That is, we do not assume that our approximation
oracle can optimize in every direction. In the full-information setting, we assume our
only access to S is via the approximation algorithm; in the bandit setting, we need
an additional assumption, which we describe below.

In this paper, we focus on the non-adaptive setting, in which the adversary’s
choices of wy can be arbitrary but must be chosen in advance. In the adaptive setting,
on period t, the adversary may choose w; based on sy,wi,...,St_1,ws—1. In the
bandit case, extension of these results to the adaptive setting and the conversion from
results in expectation to high probability results remain open questions.

For a-approximation algorithms, it is natural to consider the following notion
of a-regret, in both the full-information and the bandit-settings. It is the difference
between the algorithm’s average cost and « times the cost of the best s € S, that is,
T o1 €50, we) — aminges £ Yy os,w,).?

1.2.1. Full-information results. Our approach to the full-information prob-
lem is inspired by Zinkevich’s algorithm (for a somewhat different problem) [16],
which uses an exact projection oracle to create an online algorithm with low regret.
An exact projection oracle IT; is an algorithm which can produce argmin, ¢ ; ||z — y|
for all y € R™, where J is the “feasible region” (in Zinkevich’s setting, a compact
convex subset of R™). The main algorithm presented in Zinkevich’s paper, GREEDY
PROJECTION, determines its decision z; at time ¢ as x; = II;(z4—1 — nwy—1), where
7 is a parameter called the learning rate and w;_; is the cost vector at time (¢t — 1).
One can view the approach in this paper as providing a method to simulate a type
of “approximate” projection oracle using an approximation algorithm. In §3 we show
the following:

REsuLT 1.1. Given any a-approximation oracle to an offline linear-optimization
problem and any T, Ty > 1, wy,wa, ... € W, our (full-information) algorithm outputs
$1,82,... € S achieving

1 AT 1 ol O(an)
E T Z c(st,wt)] —agéi‘rslf Z c(s,wy) = T
t=To+1 t=To+1

The algorithm makes poly(n,T) calls to the approximation oracle. Note that the
above bound on expected a-regret holds simultaneously for every window of T con-
secutive periods (7' must be known by the algorithm). We easily inherit this useful
adaptation property of Zinkevich’s algorithm. It is not clear to us whether one could
elegantly achieve this property using the previous approach.

1.2.2. Bandit results. Previous work in the bandit setting constructs an “ex-
ploration basis” to allow the algorithm to discover better decisions [2, 14, 7]. In
particular, Awerbuch and Kleinberg [2] introduce a so-called Barycentric Spanner
(BS) as their exploration basis and show how to construct one from an optimization
oracle A : R — S. However, in the case where the oracle (exact or approximate)
only accepts inputs in, say, the positive orthant, it may be impossible to extract an
exploration basis. Hence, we assume that we are given a §-BS (6 > 1 is an approx-
imation factor for the BS) for the problem at hand as part of the input. Note that

2In [13], the set W = {w € R™ | |w|; < 1} was assumed.
3If there is a hardness of approximation result with ratio « for the offline version of a problem,
one cannot expect to obtain better than a-regret efficiently in the online setting.

PLAYING GAMES WITH APPROXIMATION ALGORITHMS 5

the 5-BS only needs to be computed once for a particular problem and then can be
reused for all future instances of that problem. Given a $-BS, the standard reduction
from the bandit setting to the full-information setting gives:

REsuLT 1.2. For any 8-BS and any a-approximation oracle to an offline linear-
optimization problem and any T,Ty > 1, wy,wa,... € W, the (bandit) algorithm in
Figure 4.1 outputs s1,S2,... € S achieving

To+T TodT ”
! .1 O(n(a
E T Z c(sp,we) | — amin Z (s, w) = ((\3//;))
t=To+l t=To+1

The algorithm makes poly(n,T) calls to the approzimation oracle. We also show, in
84.1, that the assumption of a BS is necessary.

ResuLT 1.3. There is no polynomial-time black-box reduction from an
a-approximation algorithm for a general linear optimization problem (without addi-
tional input) to a bandit algorithm guaranteeing low «-regret.

We note that the above regret is sub-optimal in terms of the 7" dependence. Fur-
thermore, recent work [8, 4, 1] presents algorithms for online linear optimization that
achieve the optimal v/T regret even in the bandit setting (these results either do not
explicitly consider the computational issues or assume access to an exact optimization
oracle). Achieving improved regret for bandit algorithms using approximation oracles
remains an open problem.

2. Formal definitions. We formalize the natural notion of an n-dimensional
linear optimization problem.

DEFINITION 2.1. An n-dimensional linear optimization problem consists of a
convex compact set of feasible weight vectors W C R™, a set of feasible decisions S,
and a cost function ¢ : S x W — [0, 1] that is linear in its second argument.

Due to the linearity of ¢, there must exist a mapping ® : S — R”™ such that
c(s,w) = ®(s) - w for all s € S,w € W. In the case where the standard basis is
contained in W, we have

®(s) = (c(s,(1,0,...,0)),...,¢(s,(0,...,0,1))).

More generally, the mapping ® can be computed directly from ¢ by evaluating ¢
at any set of vectors whose span includes WW. We will assume that we have access to
® and c interchangeably. Note that previous work represented the problem directly
as a geometric problem in R™, but in our case we hope that making the mapping ®
explicit clarifies the algorithm.

An a-approzimation algorithm A (a > 1) for such a problem takes as input any
vector w € W and outputs A(w) € S such that ¢(A(w), w) < aminges (s, w). To
ensure that the min is well-defined, we also assume ®(S) = {®(s) | s € S} is compact.

Define a projection oracle Iy : R™ — J, where II;(x) = argmin, . ; ||z — 2| is the
unique projection of = to the closest point z in the set J.

Define W, = {aw|a > 0,w € W} C R™. Note that W, is convex, which follows
from the convexity of /. We assume that we have an exact projection oracle Ilyy, .
This is generally straightforward to compute. In many cases, W = [0,1]", in which
case W, is the positive orthant and IIyy, (w)[i] is simply max(w[i],0), where w]i]
denotes the ith component of vector w. More generally, given a membership oracle
to W (and a point wy € W and appropriate bounds on the radii of contained and
containing balls), one can approximate the projection to within any desired accuracy
e > 0 in time poly(n,log(1/€)).

6 S. M. KAKADE, A. T. KALAI, AND K. LIGETT

We also assume, for convenience, that A : W, — S because we know that A(w)
can be chosen to be equal to A(aw) for any a > 0, and finding a such that aw € W
is a one-dimensional problem. (Again, given a membership oracle to W one can find
v € W which is within e of being a scaled version of w using time poly(n,1/e)).
However, the restriction on the approximation algorithm’s domain is important be-
cause many natural approximation algorithms only apply to restricted domains such
as non-negative weight vectors.

In an online linear optimization problem, there is a sequence wi,ws,...,€ W
of weight vectors. Due to the linearity of the problem, an offiine optimum can be
computed using an exact optimizer, that is, minges % Zthl D(s) - wy = minges P(s) -

(% ZtT:1 wt) gives the average cost of the best single decision if one had to use a

single decision during all time periods ¢t = 1,2,...,T. Similarly, an c-approximation
algorithm, when applied to % Zthl wy, gives a decision whose average cost is not more
than a factor « larger than that of the offline optimum.

DEFINITION 2.2. In a full-information online linear optimization problem, there
is an unknown sequence of weight vectors wy,ws,... € W (possibly chosen by an
adversary). On each period, the decision-maker chooses a decision sy € S based on
S1,W1, S2,Wa,...,St_1,Ws_1. LThen wy is revealed and the decision-maker incurs cost
c(se,wy).

Finally, we define the bandit version of the problem, in which the algorithm finds
out only the cost of its decision, ¢(s¢, w;), but not w; itself.

DEFINITION 2.3. In a bandit online linear optimization problem, there is an
unknown sequence of weight vectors wi,wa,... € W (possibly chosen by an adver-
sary). On each period, the decision-maker chooses a decision sy € S based only upon
s1,c(wy, 81), -+, St—1, c(wi—1,81—1). Then only the cost c(s¢,w;) is revealed.

The performance of an online algorithm is measured by comparing its cost on a
sequence of weight vectors with the cost of the best static decision for that sequence.

DEFINITION 2.4. The a-regret of an algorithm that selects decisions s1,...sp € S
is defined to be

T T
1 1
a-regret(sy,wy ..., ST, Wr) = T E c(sg, wy) — OLISIélg T g c(s,wy).
t=1 t=1

The term regret by itself refers to 1-regret.

For z,y € R™ and W C R"™, we say x dominates y if x - w < y-w for all w € W
(equivalently, for all w € W,).*

Define K C R™ to be the convex hull of ®(S),

K= {Z:jm(si)

Note that mingcx @ - w = minges ¢(s,w) for all w € W. The cost of any point in K
can be achieved by choosing a randomized combination of decisions s € S. However,
we must find such a combination of decisions and compute projections in our setting,
where our only access to S is via an approximation oracle.

s; €S, 20721/\1:1}

4Note that this definition differs from the standard definition in R™ where = dominates y if
z[i] > y[é] for all ¢ but resembles the game-theoretic notion of dominant strategies.

PLAYING GAMES WITH APPROXIMATION ALGORITHMS 7

3. Full-information algorithm. We now present our algorithm for the full-
information setting. Define z; = z; — nwy. Intuitively, one might like to play z; on
period t 4+ 1 because z; has less cost than z; against w;. Unfortunately, z; may not
be feasible. In the GREEDY PROJECTION algorithm of Zinkevich, the decision played
on period t + 1 is the projection of z; into the feasible set. Our basic approach is to
implement an approximate projection algorithm and play the approximate projection
of z; on step (¢ + 1).

There are a number of technical challenges to this approach. First, we only
have access to an a-approximation oracle with which to implement this. Due to the
multiplicative nature of this approximation, we proceed by attempting to project into
the set aK, where aK = {azx|x € K}. Second, even if we could do this perfectly
(which is not possible), this would still not result in a feasible decision. We then must
find a way to play a feasible decision.

We can intuitively view our algorithm as follows. The algorithm keeps track of a
parameter z;, which we can think of as the attempt to project z;—1 into aK (though
this is not done exactly, as x; is not even in aK). We show that if the algorithm
actually were allowed to play z; then it would have low a-regret. Our algorithm uses
this x; to find a randomized feasible decision s;. We show that the expected cost of
this random feasible decision s; is no larger than that of the infeasible x;.

Our algorithm for the full-information setting is based on the approximate pro-
jection routine defined in Figure 3.3.

ALGORITHM 3.1. The algorithm is given a learning parameter n. On period 1, we
choose an arbitrary s1 (which could be selected by running the approzimation oracle
on any input) and let x1 = ®(s1). On period t, we play s; and let

(I‘t+1, St+1) = APPROX—PROJ(Z’t — NWt, St, illt).

It may be helpful to the reader to note that the sequence x; is deterministically
determined (if the approximation oracle is deterministic) by the sequence of weights
wi,...,Wws_1, while s; is necessarily randomized.

In §3.1, we show that if we had a particular kind of approximate projection
algorithm, then the x; values produced by that algorithm would have (hypothetical)
low a-regret. In §3.2, we show how to extend the domain of any approximation
algorithm, which allows us to construct such an approximate projection algorithm:
the APPROX-PROJ algorithm used in Algorithm 3.1. We also show that the cost of the
(infeasible) decision z; it produces can only be larger than the expected cost incurred
by the feasible decision s; it also generates. This will allow us to prove our main
theorem in the full-information setting:

THEOREM 3.2. Consider an n-dimensional online linear optimization problem
with feasible set S and mapping ® : S — R™. Let A be an a-approximation algorithm
and take R,W >0 such that | ®(A(w))|| < R and ||w|| < W for all w € W.

For any fired wy,ws,...wp € W and any T > 1, with learning parameter n =

2
%, approzimate projection tolerance parameter § = %, and learning rate

parameter A = %,

T
1 .1 (o +2)RW
— — — < - 7
E c(shwt)] o min él c(s,wy) < Wi

t=1

Algorithm 3.1 achieves expected a-regret at most

E

8 S. M. KAKADE, A. T. KALAI, AND K. LIGETT

F1G. 3.1. An approximate projection oracle, for convexr set J C R™ and 6 = 0, returns a point
119 (2) € R™ that is closer to any point y € J than z is, that is, Vy € J |11 (2) — y|| < ||z — y]|.

Each period, the algorithm makes at most 4(a + 2)?T calls to A and ®. We present
the proof of Theorem 3.2 in §3.3. To get Result 1.1 in the introduction, we note that
it is possible to get a priori bounds on W and R by a simple change of basis so that
RW = O(n). It is possible to do this from the set W alone. In particular, one can
compute a 2-barycentric spanner (BS) ey,...,e, for W [2] and perform a change of
basis so that ®(eq),..., P(e,) is the standard basis (as we describe in greater detail in
§4). By the definition of a 2-BS, this implies that W C [—2,2]" and hence W = 2,/n
is a satisfactory upper bound. Since we have assumed that all costs are in [0,1] and
the standard basis is in W, this implies that ®(S) C [0, 1]™ and hence R = /n is also
a valid upper bound. The guarantees with respect to every window of T' consecutive
periods hold because our algorithm’s guarantees hold starting at arbitrary (s;,x:)
such that E[®(s;)] dominates z; (recall, s; is necessarily randomized).

3.1. Approximate Projection. We first define the notion of approximate pro-
jection. Because we only have access to an a-approximate oracle, given z € R™, we
cannot find the closest point to z in K or even in aK = {azx|z € K}.

Note that for a closed convex set J C R™, if IT;(z) = z, then

This is essentially the separating hyperplane theorem (where 2 — 2z is the normal vector
to the separating hyperplane). Also note that II;(z) =z if z € J.

Our approximate projection property, illustrated in Figure 3.1, relaxes the above
condition. Due to the computational issues associated with optimizing over K even
with access to an ewact optimization oracle (o = 1), ® our projections will be
parametrized by an additional §. Define the set of j-approximate projections to be,
for 6 > 0 and any z € R",

5(z) = {z € R™ | (m—z)':cglz}leil}(x—z)-y—i-ﬂ.

5We are not assuming that K is defined by a finite number of hyper-planes—it can be quite
round.

PLAYING GAMES WITH APPROXIMATION ALGORITHMS 9

It is important to note that we have not required an approximate projection to be
in J. However, note that in the case where the projection is in J, and § = 0, it
is exactly the projection, that is, I1%(2) N J = {II;(z)}. While we refer to it as
an approximate projection, it is also clearly related to a separation oracle. From a
hyperplane separating z from J, one can take the closest point on that hyperplane to
z as an approximate projection. The difficulty is in finding a feasible such point.

We now bound the a-regret of the hypothetical algorithm which projects with
I ... The proof is essentially a straightforward extension of Zinkevich’s proof [16].
This lemma shows that indeed this hypothetical algorithm has a graceful degradation

in quality.

LEMMA 3.3. Let K C R" be a convex set such that Vo € K, ||z|| < R. Let
wi,...,wr € R™ be an arbitrary sequence. Then, for any initial point x1 € K and
any sequence xi,Ta,...,xrp such that xyy1 € HiK(mt — nwy),

T T
1 (a+1)2R% q w? 4
Ttilxt-wt—amln— E xZ - ’l1)1§_27’711 —T:E Wy

Proof. Let z* = oargmin, g Zthlx “wy, so ¥ € oK. We will bound our
performance with respect to x*. Define the sequence z} by 2z} = z; and zj,; =
Ty — nwy, so that x, € 2 - (x}). We first claim that |z — 2*||? < |z} — 2*||? + 26,
that is, our attempt at setting x; to be an approximate projection of x; onto aK does
not increase the distance to z* significantly:

() — 2%)? = (&) — 20) + (2 — ™))
= (2} — 20)? + (2 —)2 + 2(2} — 20) - (¢ — 2¥)
>0+ (zp —a*)?—26

dloq

The last line follows from the definition of approximate projection and the fact that
¥ e akK.
Hence, for any ¢ > 1, because x;,; = xy — nw; we have
(w11 — %) < (2p — nwy — %)% + 26
= (2 —)2 + Pwi — 2nw; - (2 — %) + 20
and thus
(xp — %)% — (w411 — %)% + n?w? + 20
2n ’
Using a telescoping sum of the above and the fact that

(w1 = a")? < (lzall + [l2"])* < (@ + 1)*R?,

wy - (xg —x*) <

we get

T T
(c —|— 1)2R? LN 2
th wt—arm%t 19; Wy < ———— 52_: h T_
as desired. O
Note that if we set n = 1/v/T, the sum of the first two terms of this bound
would be O(1/v/T). However, the last term, %, would be O(6v/T). Hence, we need

to achieve an approximation quality of § = O(1/T) in order for the a-regret of our
(infeasible) z; values to be O(1/V/T).

10 S. M. KAKADE, A. T. KALAI, AND K. LIGETT

3.2. Constructing the Algorithm. One simple method to (approximately)
find a the projection of z into a convex set J, given an exact optimization oracle
for J, is as follows. Start with a point in € J. Then choose the search direction
v =1x — 2, and find a minimal point 2’ € J in the direction of v, that is, 2’ € J such
that 2’-v < minyey y-v (or, equivalently, such that (' —2)-v < minye;(y —2)-v). It
can be seen that if x is not minimal in the direction of v, then there must be a point on
the segment joining &’ and z that is closer to z than x was. Then repeat this procedure
starting at /. In the case where z € J, this will be still be useful in representing z
nearly as a combination of points output by the minimization algorithm.b

Note that in our case if v € W,, then our approximation oracle is able to find a
feasible s € S such that

®(s) v < amin®(s')-v= min z-v.
s’eS reaK
Loosely speaking, our oracle is able to perform minimization with respect to the set
J = aK (or better). This is essentially how our algorithm will use the approximation
oracle. However, as mentioned before, many approximation algorithms can only han-
dle non-negative weight vectors or weight vectors from some other limited domain.
Hence, we must extend the domain of the oracle when v ¢ W,.

Extending the domain. We would like to find a feasible s € S that satisfies the
search condition ®(s) - v < aminges P(s') - v for a general v € R™, but this is not
possible only given an a-approximation oracle that runs on only a subset of R"™.
Instead, we attempt to find a (potentially infeasible) x € R™ which does satisfy this
search condition, and we also attempt to find an s € § which dominates z, meaning
that for all w € W, ¢(s,w) < - w. More precisely, we will construct the following
oracle:

DEFINITION 3.4. An extended approximation oracle B : R" — & x R" is a
function such that, for all v € R™, if B(v) = (s,z), then x - v < aminges ®(s') - v
and ®(s) dominates x.

Figure 3.2 depicts an extended approximation oracle. The following lemma
demonstrates that one can construct an extended approximation oracle from an ap-
proximation oracle.

LEMMA 3.5. Let A : Wy — § be an a-approximation oracle and suppose
[@(s")]| < R for all 8 € S. Then the following is an extended approxzimation or-
acle: If v € Wy, then B(v) = (A(v), ®(A(v))), else B(v) is

My, (v) —v)

(,4(nW+ (1)), @(A(Iy, (0))) + Re+ 1) e 5

Proof. For the case where v € W, by definition, B(v) = (A(v), ®(A(v))) suffices.
Hence, assume v ¢ W,.. Let w = Iy, (v), s = A(w), and & = ®(s) + (a+ 1) Ryyo=rr

[fw—v[]

Then we must show (a) z-v < aminges ®(s') - v and (b) ®(s) dominates x.
We have assumed that A is an a-approximation oracle with domain W, , and
therefore it can accept input w. By the definition of a-approximation, we have w -

SNote that representing a given feasible point as a convex combination of feasible points is
similar to randomized metarounding [5]. It would be interesting to extend their approach, based on
the ellipsoid algorithm, to our problem and potentially achieve a more efficient algorithm. Related
but simpler issues arise in [6].

PLAYING GAMES WITH APPROXIMATION ALGORITHMS 11

Fic. 3.2. An approzimation algorithm run on vector w € W always returns a point s € S
such that the set oK 1is contained in the halfspace tangent to ®(s) whose normal direction is w.
An extended approximation algorithm, as illustrated here, takes any w € R™ as input and returns
a point x € R™ such that aK is contained in the halfspace tangent to x with normal vector w. In
addition, it returns an s € S such that ®(s) dominates x.

D(s) < aw - P(s') for all s € S. By the bound R, we also have that —a|jv — w||R <
alv—w) - ®(s') for all s’ € S. Adding these two gives, for all s’ € S,

av-®(s") > w-®(s) — allv—w||R
(w—v)
lw —]|

(w —v)

[[w =]l

=v-z+(w—v) ®(s)— (a+1)R ‘v —allv—w||R

>v-z—|lw—v|R—(a+1)R “(v—w)—allv—w|R

=V -X.

This is what we need for part (a) of the lemma. The second-to-last line follows from
the fact that (v —w)-w = 0. To see this, note that since w is the projection of v onto
Wy, we have (v —w) - (w' — w) < 0 for any w’ € Wy. Since 0 € W, this implies
that (v —w) - (—w) < 0. Since 2w € Wy, this implies that (v —w) - w < 0, and hence
(v—w) -w=0.

This also means that (v —w) - (W' —w) = (v —w) -w’ <0 for all w’ € W4, which
directly implies (b), that is, (x — ®(s)) -w’ > 0 for all w’ € W. O

Note that the magnitude of the output z is at most | ®(s)||+ (a+1)R < (a+2)R;
this bound will be useful for bounding the runtime of our algorithm.

The approximate projection algorithm. Using this extended approximation ora-
cle, we can define our APPROX-PROJ algorithm, which we present in Figure 3.3. The
following lemma shows that the algorithm returns both a valid approximate projec-
tion (which could be infeasible) and a random feasible decision that dominates the
approximate projection (assuming that ® of the algorithm’s input s dominated the
algorithm’s input z).

LEMMA 3.6. Suppose APPROX-PROJ(2,s,z) returns (z',s"). Then o’ € T 1 (2).
If s is a random variable such that E[®(s)] dominates x, then E[®(s")] will dominate
z'.

It is straightforward to see that the x returned by APPROX-PROJ satisfies the
approximate projection condition. The subtlety is in obtaining a feasible solution

12 S. M. KAKADE, A. T. KALAI, AND K. LIGETT

Input: z,z € R", s € S, and an a-approximation algorithm A (and parameters ¢ > 0,
A€ 0,1)).

Output: (2/,s") €%, x S

Define B to be the extended approximation oracle obtained from A using Lemma 3.5.
APPROX-PROJ(z, s, x)

1 Let (t,y) :== B(x — 2)

2 ifrx-(x—2)<d+y-(x—2)

3 then return (z, s)

s with probability 1 — A

t with probability A

5 return APPROX-PROJ(z, ¢, Ay + (1 — A\)z)

4 else ¢ =

Fic. 3.3. A recursive algorithm for computing approximate projections.

with the desired properties. It turns out that ¢ returned by B in line 1 does not
suffice, as this ¢ only dominates y, but not necessarily x. However, our randomized
scheme does suffice.

Proof. [of Lemma 3.6] The return condition of APPROX-PROJ states that 2’ (z' —
z) <54y - (¢ —z). Using the definition of an extended approximation oracle, we
then get

(2 —2) < 5+amig<1>(s’) (2! —2)
s'e

: / /
<d+ min ¢ (2’ —2)
as desired.

The proof of the second property proceeds by induction on the number of recursive
calls made by APPROX-PROJ. The base case holds trivially. Now suppose the induc-
tive hypothesis holds (E[®(s)] dominates x). We will show that if (¢,y) = B(z — z),
the resulting E[A®(¢) + (1 — A\)®(s)] dominates Ay + (1 — \)z.

We observe:

ow=MN+1-Nz) w
=l w+(1—Nz-w

>AO(t) - w+ (1 - ANz -w

> AD(t) - w+ (1 — NE[®(s)] - w
=EX®(t)+ (1 = N)P(s)] - w

= E[®(s)] - w.

Thus, if APPROX-PROJ terminates, the desired conditions will hold. O

3.3. Analysis. Our next lemma allows us to bound the number of calls Algo-
rithm 3.1 makes to A and ® on each period.
LEMMA 3.7. Suppose that \,6 > 0 and the magnitudes of all vectors output by

the extended approximation oracle are < %\/g and ||z|| < 1 %. Then APPROX-

— 2 . .
PROJ(z, s,x) terminates after at most % iterations.

Proof. The analysis is reminiscent of that of the perceptron algorithm (see, e.g.,
Dunagan and Vempala [9]). Let H = %\/g To bound the number of recursive

PLAYING GAMES WITH APPROXIMATION ALGORITHMS 13

calls to APPROX-PROJ, it suffices to show that the non-negative quantity ||z — z||?
decreases by at least an additive AJ on each call and that ||z|| remains below H on
successive calls. The latter condition holds because ||z, [|y|| < H so || Ay+(1—N)z| <
M +(1-XNH =H.

Notice that if the procedure does not terminate on a particular call, then

(x—y) (r—2) >4
This means that the decrease in (z — 2)? in a single recursive call is

(=27 = Qy+(1—=Nz—2)°=(z—2)° = Ay —=2) + (& - 2))*
=2z —y) - (z—2) = Ny —x)?
> 206 — A2 (y —)2,

Also, ||y — z|| < 2H. Combining this with the previous observation gives
(x—2)2 =y + (1 =Xz —2)2>2\ — A\24H? = \6.

Hence the total number of iterations of APPROX-PROJ on each period is at most
l—z[|?/(Ad). O

This lemma gives us a means of choosing A\. We are now ready to prove our main
theorem about full-information online optimization.

Proof. [of Theorem 3.2] Take n = (O‘;;F%R ,0 = (CH% ,and \ = ﬁ Since

x1 = ®(s1), by induction and Lemma 3.6, we have that E[<I>(+)] dominates z; for

all t. Hence, it suffices to upper-bound Zthl z¢ - wy. By Lemma 3.6, we have that
xy € 12 4 (2—1) on each period, so by Lemma 3.3 we get

1 1)°R* 0
E[a-regret] < T (% + Tﬁ + gTW2> .

Applying our chosen values of n and 6, this gives an a-regret bound of %((a +
DRWVT + RWVT) = (QH# as desired.

Now, as mentioned, the extended approximation oracle from Lemma 3.5 has the

property that it returns vectors of magnitude at most H = %\/g = (a+2)R. Fur-

thermore, it is easy to see that all vectors z; have ||z¢|| < H, by induction on ¢. Then
by Lemma 3.7, the total number of iterations of APPROX-PROJ period ¢ is at most
(2H||z — 2[|/6)? < (2(a + 2)RnW/5)? = 4(a + 2)*T. O

4. Bandit algorithm. We now describe how to extend Algorithm 3.1 to the
partial-information model, where the only feedback we receive is the cost we incur at
each period. Flaxman et al. [10] also use a gradient descent style algorithm for online
optimization in the bandit setting, but the details of their approach differ significantly
from ours. The algorithm we describe here requires access to an exploration basis
€1,...,e, € S, which is simply a set of n decisions such that ®(e;),...,P(e,) span
R™. (If no such decisions exist, one can reduce the problem to a lower-dimensional
problem.) Following previous approaches, we will (probabilistically) try each of these
decisions from time to time. As in the work of Dani and Hayes [7], we will assume that
®(e;) is the standard ith basis vector, that is, e;[i] = 1 and e;[j] = 0 for j # i. This
assumption makes the algorithm cleaner to present, and is without loss of generality
because we can always use ®(e;) as our basis for representing R"™.

14 S. M. KAKADE, A. T. KALAI, AND K. LIGETT

Given d,71,v > 0 and an initial point $§; as input, set &y = ®(5;). Perform a change
of basis so that ®(e1),...,®(ey,) is the standard basis.

fort=1,2,...
With probability +, > exploration step
Choose i € {1,...,n} uniformly at random.
st = ey := P(e;).
Play(s;).
Observe ¢; = c(st, wy).
Wy = (nly/v)D(e;).
(.’i’t+1, §t+1) = APPROX-PROJ(!’%t — mi)t, §t7 ii't)
else, with probability 1 — v, > exploitation step
St 1= 843Xt 1= Ty
Play/(s).
Observe ¢; = c(st, wy).
’lIJt = 0.

(41, 8041) = (&4, 8¢).

Fi1c. 4.1. Algorithm for the bandit setting.

DEFINITION 4.1. A set {x1,22,...2m} C S is a B-barycentric spanner (BS) for
S C R™ if, for every x € S, x can be written as * = f1x1 + ... + BmTm for some
b1y, Bm € [-5,5]. Note that we only need to construct a BS once for any problem,
and then can re-use it for all future instances of the problem.

Awerbuch and Kleinberg [2] prove that every compact S has a 1-BS of size n,
and, moreover, give an algorithm for finding a size-n (1+¢)-BS using poly(n, log(1/€))
calls to an exact minimization oracle M : R” — S, where M (v) € argmin s ®(s) - v.
Unfortunately, as we show in §4.1, one cannot find such a BS using a minimizer
(exact or approximate) whose domain is not all of R™. Moreover, we show that one
cannot guarantee low regret for the bandit problem using just a black-box optimization
algorithm A : W, — S.

Hence, we assume that we are given a ($-BS for the problem at hand as part of
the input. We feel that this is a reasonable assumption. For example, note that it is
easy to find such a basis for TSP and set cover with 8 =poly(n): In the case of set
cover, one can take the n covers consisting of all sets but one.” In the case of TSP,
we can start with any tour o that visits all the edges at least once and consider o,
for each edge e which is the same as o but traverses e an additional two times.

We present the algorithm for the bandit setting in Figure 4.1. We remark that our
approach is essentially the same as previous approaches and can be used as a generic
conversion from a black-box full-information online algorithm to a bandit algorithm.
Previous approaches also worked in this manner, but the analysis depended on the
specific bounds of the black-box algorithm in a way that, unfortunately, we cannot
simply reference.

THEOREM 4.2. For o, > 1, integer T > 0 and any ws,...,wr, given an
a-approzimation oracle and a 3-BS, the algorithm in Figure 4.1 with n = (‘g\}%}%,

7If any of these is not a cover, that set must be mandatory in any cover and we can simplify the
problem. If this set of covers is not linearly independent, then we can reduce the dimensionality of
the problem and use the fact that if 7" is a (possibly linearly dependent) 8-BS for S and R is a y-BS
for T then R is a (y8|T|)-BS for S.

PLAYING GAMES WITH APPROXIMATION ALGORITHMS 15

§ = T3, and v = (4aB)?/3>nT /3 achieves an expected a-regret bound in the
bandit setting of

Ela-regret] < Tn(aB)*/3T71/3.

The conversion from full-information to bandit is similar to other conversions
[2, 14, 7]. Note that in the description of the algorithm, s; is what is played at step
t. Also note that #;,1 may be viewed as an approximate projection of Z; when it is
generated in exploitation steps as well as in exploration steps, since z; € H‘Sa g (&—nwy)
for w; = 0. We first prove a lemma:

LEMMA 4.3. Let J C R"™ be a convexr set such that V& € J, ||&|| < R. Let

wi,...,wp € R™ be an arbitrary sequence and w1, ..., Wt be a sequence of random
variables such that Ely|&q, W1, ..., 31, Wi_1,3¢] = wy and E[w?] < D%. Then, for
any wnitial point 1 € J and any sequence 1,3, ... such that T441 € HiJ(ﬁt — nwy),

2n

T T
1)2R? 5
Zit-wt] —amin2x~wt < u—FT;—FgD?T—I—QaRDﬁ.

Proof. By Lemma 3.3, we have that

N3

T T

1)2R? 1)
Zﬁi't~ﬁ)t7aminzznwt S u+T_+
t=1 el 2n n

T
St
t=1
Taking expectations of both sides gives

T T

1)2R?)
3 @ -w —aF [min w-d@y| < et VPR 70 | Mg,
— ved 2n n 2

It thus suffices to show that

zeJ

T T
E [min E x - u}t] > mif]l E x-w, —2RDVT. (4.1)
HAS
t=1 t=1

Now, for any = € J,

T

Zx~(wt—wt)

t=1

T

g Wy — Wy

t=1
T
>
t=1
This gives us a means of upper-bounding the difference between the minima. Namely,
T 2 T
Z'{I)t*wt] SE (Zﬁztwt>
t=1 t=1

— Z E [(d; — wy)?] . (4.3)

t=1

<]

<R . (4.2)

2
E

16 S. M. KAKADE, A. T. KALAI, AND K. LIGETT

The last equality follows from the fact that
E[(wh - wtl)(wt2 - wtz)] =0

for t; < tq, which follows from the martingale-like assumption that E[wy, —wy, |, , we, | =
0. Finally,

E[(w; — wi)?] < E[7 + 2||de[]Jwe]| + w7]
< D?>+2D?% + D?
= 4D?

In the above we have used the facts that E[|u;|]? < E[w?] < D? and ||w||? = E[w]? <
E[@?] < D?. Hence, we have that the quantity in (4.3) is upper bounded by 47'D?,
which, together with (4.2), establishes (4.1). O

Proof. [of Theorem 4.2] We remark that the parameter + in the statement of the
theorem may be larger than 1, but in this case the regret bound is greater than 1 and
hence holds for any algorithm.

Note that in the conversion algorithm the expected value of w; is wy, and this is
true conditioned on all previous information as well as #;. Since Lemma 3.6 implies
#y41 € T2 (24 — miby), we can apply Lemma 4.3 to the sequence #,. This gives

1 2 P2 5
<O DR 10 M ey 4 90 RDVT.
i 2n no 2

To apply the lemma, we use the bound D = ny~ /2. This holds because ¢, € [0,1],

so E[@?] < v(nf;/v)? + (1 —+)0 < n?/v. Also, we use the bound of R = 3,/n. Hence

_ (a+1)R

T DVT

T T

> Elde - wi] - ameiglz z-wy < (o +1)RDVT 4 nT?? + 2aRDVT
=

t=1 =

we choose n and § = nnT /3, which simplifies the above equation to

< 4aRDVT + nT?/3.

Substituting the values of D and R gives an upper bound of 4afn?/2y=1/2y/T + T%.

Next, as in the analysis of the full-information algorithm, E[®(8;)] dominates
E[#:] by Lemma 3.6. Thus,

T T
Z Ele(8, wy)] — amiLI}Zx cwy < 4afn®2yTV2T 4 nT?/3,
rE
t=1

t=1

Finally, we have that E[c(s:, wi)] < E[e(8, we)] + v because with probability 1 — +,
$; = s; and in the remaining case the cost is in [0, 1]. Putting these together implies

T T
Z Ele(sg, -we)] — ami§z z-wy < 4afn® Py VAT 4 nT?3 4 4T.
re
t=1

t=1

Choosing v = (4a3)*/3nT~1/3 (note that if this quantity is larger than 1, then the
regret bound in the theorem is trivial) gives a bound of 2n(4aBT)?/? 4+ nT?/? <
n(afT)?/? as in the theorem. O

PLAYING GAMES WITH APPROXIMATION ALGORITHMS 17

4.1. Difficulty of the black-box reduction. We now point out that it is
impossible to solve the bandit problem with general algorithms (approximation or
exact) without an exploration basis (that is, if our only access to S is through a
black-box optimization oracle). The counterexample is randomized. We will take

W= {weR" | w[l] €0,1] and |Jw|* < 2(w[1])?}.

The set S will consist of two points: s = (1/2,0,...,0) as well as a second point s’ =
(1,0,...,0) —u where ||u|| = 1 and u[1] = 0. The mapping ® is the identity mapping.
The cost sequence will be constant w; = (1,0, ...,0) + u. Hence ¢(s,w;) = 1/2 while

c(s’,wy) = 0. Now, suppose we as algorithm designers know that this is the setup but
w is chosen uniformly at random from the set of unit vectors with u[1] = 0.

OBSERVATION 4.4. For any bandit algorithm that makes k calls to black-box
optimization oracle A, any o > 0, with probability 1 — ke=1" over u, the algorithm
has a-regret 1/2 on a sequence of arbitrary length.

Proof. No information is conveyed by the costs returned in the bandit setup of our
example—they are always 1/2 if s’ has not been discovered, while the minimal cost
is 0. Thus the algorithm must find some w € W such that ¢(s, w) > ¢(s’,w) (whence
an exact optimization algorithm must return s’). Without loss of generality, we can
scale w so that w[l] = 1 and |Jw|| < 2. Hence, we can write w = (1,0,0...,0) +v
where v[1] = 0 and |jv]| < 1. In this case, w-s = 1/2, while w-s' =1 —u-v. For
u a random unit vector and any fixed ||v] < 1, it is known that Pr[u-v > 1/2] is
exponentially small in n. A very loose bound can be seen directly, since for a ball of
dimension n, this probability is

L) 2de [(3/4)% da
L= =2de = 00—) da

o Ve 3\
- 2 4

which is O(e=%17). O

5. Conclusions and Open Problems. We present a reduction converting ap-
proximate offline linear optimization problems into approximate online sequential lin-
ear optimization problems that holds for any approximation algorithm, in both in the
full-information setting and the bandit setting.

Our algorithm can be viewed as an analog to Hannan’s algorithm for playing
repeated games against an unknown opponent. In our case, however, we cannot
compute best responses but only approximately best responses.

The problem of obtaining similar results for interesting classes of non-linear op-
timization problems remains open.

REFERENCES

[1] J. ABERNATHY, E. HAZAN, AND A. RAKHLIN, Competing in the dark: An efficient algorithm
for bandit linear optimization, in Proceedings of the 21st Annual Conference on Learning
Theory (COLT), 2008.

[2] B. AWERBUCH AND R. KLEINBERG, Adaptive routing with end-to-end feedback: Distributed
learning and geometric approaches, in Proceedings of the 36th ACM Symposium on Theory
of Computing (STOC), 2004.

18 S. M. KAKADE, A. T. KALAI, AND K. LIGETT

[3] M.-F. BALCAN AND A. BLuM, Approzimation algorithms and online mechanisms for item
pricing, in Proceedings of the 7th ACM Conference on Electronic Commerce (EC), 2006.

[4] P. BARTLETT, V. DaNI, T. P. HAYEs, S. M. KAKADE, A. RAKHLIN, AND A. TEWARI, High
probability regret bounds for bandit online optimization, in Proceedings of the 21st Annual
Conference on Learning Theory (COLT), 2008.

[5] R. CARR AND S. VEMPALA, Randomized metarounding, Random Struct. Algorithms, 20 (2002),
pp. 343-352.

[6] D. CHAKRABARTY, A. MEHTA, AND V. VAZIRANI, Design is as easy as optimization, in 33rd
International Colloquium on Automata, Languages and Programming (ICALP), 2006.

[7] V. Dant aND T. P. HAYES, Robbing the bandit: Less regret in online geometric optimization
against an adaptive adversary., in Proceedings of the 17th ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2006.

[8] V. Dani, T. P. HAYES, AND S. M. KAKADE, The price of bandit information for online opti-
mization, in Advances in Neural Information Processing Systems 20 (NIPS), 2007.

[9] J. DUNAGAN AND S. VEMPALA, A simple polynomial-time rescaling algorithm for solving linear
programs, Mathematical Programming, 114 (2008), pp. 101-114.

[10] A. FraxMmaN, A. Kaval, AND H. MCMAHAN, Online convex optimization in the bandit set-
ting: gradient descent without a gradient, Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, (2005), pp. 385-394.

[11] M. X. GOEMANS AND D. P. WILLIAMSON, Improved approzimation algorithms for mazimum cut
and satisfiability problems using semidefinite programming, J. ACM, 42 (1995), pp. 1115—
1145.

[12] J. HANNAN, Approzimation to Bayes risk in repeated play, in Contributions to the Theory of
Games, M. Dresher, A. Tucker, and P. Wolfe, eds., vol. III, Princeton University Press,
1957, pp. 97-139.

[13] A. KALAI AND S. VEMPALA, Efficient algorithms for online decision problems, J. Comput. Syst.
Sci., 71 (2005), pp. 291-307.

[14] H. McMAHAN AND A. BLUM, Online geometric optimization in the bandit setting against an
adaptive adversary, in Proceedings of the 17th Annual Conference on Learning Theory
(COLT), 2004.

[15] H. ROBBINS, Some aspects of the sequential design of experiments, in Bulletin of the American
Mathematical Society, vol. 55, 1952.

[16] M. ZINKEVICH, Online convexr programming and generalized infinitesimal gradient ascent, in
Proceedings of the 20th International Conference on Machine Learning (ICML), 2003.

Appendix A. Example where “follow-the-leader” fails. First consider
the set § = {1,2,...,n} and the cost sequence (1,1,...,1) (repeated T/n times),
(1,0,...,0) (repeated T'/n times), (0,1,0,...,0) (repeated T'/n times),. .., (0,...,0,1)
(repeated T'/n times). Notice that a selection of decision, each period, which costs
1 is always a valid (o = 2)-approximation to the leader on the previous examples.
Moreover, its cost is T' while the cost of the best (in fact every) s € S is 27'/n, hence
giving large a-regret. Unfortunately, adding perturbations of O(v/T) as in follow-the-
leader will not significantly improve matters. When 7'/n > /T, a choice of decision
which costs 1 each period is still an «)-approximation for, say, o = 3.

Of course, one may be suspicious that no common approximation algorithms
would have such peculiar behavior. We now give a similar example based on the
standard greedy set cover approximation algorithm A (a = logm) applied to the
online set cover problem described earlier. The example has n/2 covers of size 2:

Si =S\ Sn+1—i, for : = 1,2,...,n. Furthermore, suppose the sets are of increasing
size |9;| = (0.440.2:=1)m and |S;US;| < 0.9m forall 1 < i,j < n wherei # n+1—5.8

The sequence of costs (weight) vectors is divided into n/2 phases j =0,1,...,n/2—1,
each consisting of 27 /n identical cost vectors. In phase j = 0, all sets have cost 1.
For phase j = 1,...,n/2—1: the cost of the 2j —1 sets Si,...,5; and Sp—j41,...,5n
are all 1, while the costs of the remaining sets are all 0.

8To design such a collection of sets (for even n and m = 5(n — 1)), take S; to be a uniformly
random set of the desired size m for i = 1,...,n/2, and S, 4+1—; to be its complement. It is not hard
to argue that, with high probability, the randomized construction obeys the stated properties.

PLAYING GAMES WITH APPROXIMATION ALGORITHMS 19

In this example, following the leader with greedy set cover will have an average
per-period cost of at least 0.1. In particular, during the first 10% of any phase j > 1,
either greedy’s first choice will be S,_;, in which case it’s second choice will be S;
(because any other set covers at most 90% of the remaining items, and S;’s cost so
far is at most 10% more than that of any other set), or greedy’s first choice will be
one of S,_ji1,...,Sp; in either case it pays at least 1 during that period. Hence,
following the leader pays at least 0.1+ %n in expectation on average, while the cover
Sy/2 U Sy 241 has an average cost of only 4/n, which is far from matching greedy’s
a = logm approximation ratio (for n = 6(m)).

Also note that perturbations on the order of O(v/T) will not solve this problem.
It would be very interesting to adapt Hannan’s approach to work for approximation
algorithms, especially because it is more efficient than our approach. However, we
have not found a solution that works across problems.

