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Abstract

We give a new model of learning motivated by smoothed analysis (Spielman and Teng,
2001). In this model, we analyze two new algorithms, for PAC-learning DNFs and agnostically
learning decision trees, from random examples drawn from a constant-bounded product distri-
butions. These two problems had previously been solved using membership queries (Jackson,
1995; Gopalan et al, 2005). Our analysis demonstrates that the “heavy” Fourier coefficients
of a DNF suffice to recover the DNF. We also show that a structural property of the Fourier
spectrum of any boolean function over “typical” product distributions.

In a second model, we consider a simple new distribution over the boolean hypercube, one
which is symmetric but is not the uniform distribution, from which we can learn O(logn)-depth
decision trees in polynomial time.

1 Introduction

The core machine learning task of efficient binary classification from random training examples
was crisply formulated in Valiant’s PAC model [15] and follow-up models such as Agnostic
learning [11]. Yet polynomial-time PAC and agnostic learning of simple Boolean concepts have
defied the best efforts of researchers in computational learning theory, even for simple functions
f ∶ {−1,1}n → {0,1} such as Juntas, functions that depend on a few, e.g. log log logn, bits (let
alone decision trees or DNFs), and even when the input is assumed to be uniform over {−1,1}n.
Nonetheless, children and small animals are capable of learning concepts, such as classifying
images of cats and dogs, that seem much more advanced than DNFs.

In a stronger interactive model, Jackson [7] showed how to learn DNFs over product distribu-
tions using membership queries, black-box evaluations of the target function f at polynomially
many arbitrary inputs x, chosen by the algorithm. However, in many real-world situations, one
would like to learn from random examples alone.

The basic setup for learning from random examples is as follows. An algorithm is given
polynomially many training examples ⟨(xi, f(xi))⟩mi=1 for some unknown target function1 f ∶
{−1,1}n → {0,1}, where the examples xi are drawn independently from some distribution D

∗This work was performed while visiting Microsoft Research New England
†Affliation starting from Fall 2009: Department of Computer Science, University of Southern California, Los

Angeles, CA.
1We implicitly assume that multiple occurrences of the same example x will share the same label. However, this

is a simplifying assumption and any algorithm which agnostically learns in this model can be generalized to learn
from joint distributions over x × {0,1} (see, e.g., [5]).
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on {−1,1}n. The goal is to output a hypothesis h ∶ {−1,1}n → {0,1} with low error err(h) =
Prx∼D[h(x) ≠ f(x)] on future examples from the same distribution. Learning is with respect
to a concept class C of g ∶ {−1,1}n → {0,1}. Define opt = ming∈C err(g). A polytime algorithm
agnostically learns [11] C over D if for any f ∶ {−1,1}n → {0,1}, with high probability over
poly(1/ε) many training examples, it outputs h with error ≤ opt + ε. If the algorithm succeeds
only under the further assumption that opt = 0 (i.e., assuming f ∈ C), then it PAC learns C over
D [15].

In the original distribution-free formulation of PAC and agnostic learning, learners must
succeed for any distribution D. However, a natural simplifying assumption is that the bits
of x are independent. Let us require that the distribution over x ∈ {−1,1}n is a (constant-
bounded) product distribution Dµ with parameter µ ∈ [c − 1,1 − c]n i.e., the individual bits xi
are independent and µi = Ex∼Dµ[xi] ∈ [c − 1,1 − c] for some constant c > 0.

Since learning theory lacks efficient algorithms that learn interesting classes of functions over
product distributions, it is natural to try to relax these assumptions somehow. Using special
properties that hold for random decision trees, with high probability, Jackson and Servedio
[8] show how to PAC-learn random log-depth decision trees over the uniform distribution. We
achieve stronger results regarding arbitrary target functions, by considering nonuniform product
distributions.

1.1 Smoothed product distributions

Motivated by smoothed analysis [14], we define learning C with respect to smoothed product
distributions as follows. Again an arbitrary function f ∶ {−1,1}n → {0,1} is chosen, but a
product distribution is chosen whose parameters are specified only up to a proscribed accuracy.
Formally, for some constant c, µ is chosen from uniformly at random from a cube of side 2c,
µ ∈ µ̄ + [−c, c]n, where µ̄ may be arbitrary. The algorithm must succeed for any (f, µ̄) (in the
case of PAC learning, it is further assumed f ∈ C), with high probability over the chosen µ and
polynomially many i.i.d. samples from Dµ. Section 1.5 provides formal definitions.

Unfortunately, learning with respect to arbitrary (f, µ) requires learning with respect to
adversarial pairs, as well. Since many real-world learning problems are not actually adversarial,
it is arguably reasonable to assume that the parties selecting f and µ are not completely coor-
dinated – they may be correlated but not to high precision.2 Put another way, for any f the set
of “hard” distributions Dµ, or at least those where our algorithms fail, are few and far between
in the sense that there cannot be too many of them on the whole or even many concentrated in
any small region. We give two polynomial-time algorithms for learning over smoothed product
distributions, one that PAC learns DNFs and one that agnostically learns decision trees. See
Theorems 7 and 9.

1.2 Overview of the approach

For any product distribution µ ∈ (−1,1)n, every function f ∶ {−1,1}n → R can be written
uniquely as,

f(x) = ∑
S

f̂µ(S)χS,µ(x), where χS,µ(x) =∏
i∈S

xi − µi√
1 − µ2

i

.

With standardized coordinates, zi = (xi −µ)(1−µ2
i )−1/2, (mean 0 and variance 1), f̂µ(S) is sim-

ply the coefficient of ∏i∈S zi in multilinear polynomial f(x) = ∑S f̂µ(S)∏i∈S zi. An appealing
property of this “Fourier” representation is that f̂µ(x) = Ex∼Dµ[f(x)χS,µ(x)]. The first chal-
lenge is finding the important or so-called “heavy” coefficients of the target function, namely the

2In fact, it is common in machine learning to assume a friendly coordination between f and D via “margin”
assumptions that state that there is no data near the boundary between positive and negative examples.
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sets S such that ∣f̂µ(S)∣ is large. This is the standard first step in learning DNFs and decision
trees, usually performed by the Kushilevitz-Mansour algorithm [12] that employs membership
queries. We analyze a simple feature construction algorithm showing that it will succeed in
finding these heavy coefficients (at least on sets ∣S∣ = O(logn)), for any bounded f , for most
product distributions.

For some types of functions, such as polynomial-sized decision trees, it is known that the
coefficients of magnitude ∣f̂µ(S)∣ ≥ poly(ε/n) and size ∣S∣ < O(log(n/ε)) suffice to ε-approximate
f . However, for more complex functions such as DNFs or agnostically learn decision trees, the
heavy coefficients are only weak learners and some time of boosting is employed. Unfortunately,
boosting is problematic in the smoothed product distribution setting because the first weakly
accurate hypothesis h1 that is learned would depend on µ, and further attempts to generate
weakly accurate hypotheses would fail to satisfy the independence between the new target
function and distribution. 3

Instead, we show a new property about PAC learning of DNFs and agnostic learning of
decision trees. In particular, the heavy coefficients of a DNF f are enough to recover a good
approximation to f directly (without further access to f) and similarly, the heavy coefficients
of any Boolean function f suffice to match the error of the most accurate decision tree approx-
imation to f .
Finding heavy coefficients. As a simple example, consider the polynomial f(x) = ∑i∈T xi
(mod 2) = 1

2
− 1

2 ∏i∈S(−xi), the parity of some unknown set of bits, T . Under the uniform
distribution D0, there is only one nonzero coefficient, ∣f̂0(T )∣ = 1

2
(aside from the constant

coefficient f̂0(∅)). On the other hand, under a nonuniform product distribution, for instance
say each µi ∈ {−1/

√
2,1/

√
2}, then ∣f̂µ(S)∣ = 2−∣T ∣/2 for each S ⊆ T and f̂µ(S) = 0 for each S /⊆ T .

By estimating the coefficients of singleton sets S = {xi}, it is easy to recover T in polynomial
time, for ∣T ∣ = O(logn)-sized parities.

More generally, we show the following structural Fourier property of arbitrary bounded
functions under smoothed product distributions. For any f ∶ {−1,1}n → [−1,1], and any µ̄ ∈
(2c − 1,1 − 2c)n, with high probability over uniformly random µ ∈ µ̄ + [−c, c]n, for each large
coefficient ∣f̂µ(T )∣ ≥ β, every S ⊆ T is large, ∣f̂µ(S)∣ ≥ α, as well. Here β > α and both are of
order c−O(∣T ∣), see Lemma 3. This gives a simple method of finding all the heavy coefficients:
starting with S = {∅}, for each S ∈ S and i /∈ S, if ∣f̂µ(S ∪ {i})∣ ≥ α, then add S ∪ {i} to the
collection S. This process repeats until no further sets are added to S.

1.2.1 Learning from the heavy coefficients alone

Let us first give some intuition about why the heavy coefficients information-theoretically suffice,
and then roughly describe the efficient learning algorithms. For simplicity, consider the uniform
distribution f̂0(S) = f̂(S) and χS(x) = ∏i∈S xi. Further, suppose we are given explicitly all
coefficients whose magnitude is at least ε, i.e., we are given f>ε = ∑S∶∣f̂(S)∣>ε f̂(S)χS(x). By
Parseval’s inequality, there are at most 1/ε2 such coefficients and hence ∣f>ε(x)∣ ≤ 1/ε for any
x. Of course, we may not be able to estimate any coefficient exactly, but we can estimate it to
arbitrary precision. The actual property we will use is that the coefficients of the estimate are
within ε of the true coefficient, since ∥f̂ − f̂>ε∥∞ = maxS ∣f̂(S) − f̂>ε(S)∣ ≤ ε.

It is well-known that if C is a conjunction, such as x1 ∧ ¬x3 ∧ x7 = 1+x1
2

1−x3
2

1+x7
2

, then
∥Ĉ∥1 = ∑S ∣Ĉ(S)∣ = 1. (This also implies that if g is a decision tree with t leaves, which can be
written as the sum of at most t conjunctions, ∥ĝ∥1 ≤ t). We now state a simple lemma about
DNFs. This lemma implies that the heavy coefficients are enough to determine the DNF.

3This is the general case and not pathological, otherwise every DNF could be written as a majority of individual
attributes, since boosting produces a majority of weak hypotheses and our analysis shows that there is almost always
a weakly correlated bit xi.
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Lemma 1. Let f be a t-term DNF and let g ∶ {−1,1}n → [0,1]. Then, over the uniform
distribution on x ∈ {−1,1}n,

E[∣g(x) − f(x)∣] ≤ (2s + 1)∥f̂ − ĝ∥∞.

Proof. Let f = C1 ∨C2 ∨ . . . ∨Ct.

E[∣g(x) − f(x)∣] = E[(1 − f)g + f(1 − g)] since f(x) ∈ {0,1} and g(x) ∈ [0,1]
= E[g − f + 2(1 − g)f]

≤ E [g − f + 2∑t

i=1
(1 − g)Ci] because f ≤ ∑Ci and (1 − g) ≥ 0

= E [g − f + 2∑t

i=1
(f − g)Ci] because (Ci = 1) ⇒ (f = 1)

≤ ∥ĝ − f̂∥∞ + 2∑t

i=1 E[(f − g)Ci] because E[g − f] = ĝ(∅) − f̂(∅)

≤ ∥ĝ − f̂∥∞ + 2∑t

i=1
∥f̂ − ĝ∥∞ ∥Ĉi∥1

because v ⋅w ≤ ∥v∥∞∥w∥1

Using ∥Ĉi∥1 = 1 completes the proof.

Of course, more work needs to be done in order to efficiently find such an approximation.
Also, a similar statement shows that, for any Boolean function f , the best decision tree can be
approximated from its heavy Fourier coefficients.
Efficient approximation from heavy coefficients. Gopalan et al apply a gradient projection
method for optimization over functions with low L1 norm, a relaxation of decision trees and
conjunctions. Such functions can always be approximated by sparse polynomials and hence
succinctly represented. We employ the same approach here. For learning DNFs, we combine
the optimization with the “reliable” DNF learning approach of Kalai et al [9]. The idea is to do
a relaxation to a convex set of functions. Consider the set of functions,

G = {g ∶ {−1,1}n → [0,1] ∣ ∥ĝ∥1 ≤ t} .

Now, in the case of decision trees, the goal will be to minimize, E[f>ε+g−2f>εg] over G. The key
properties of such an optimization problem are (1) the objective function is a convex function
of g (in fact it is linear), (2) the set G is a convex set, and (3) (approximate) membership in
G can be determined efficiently. This last point is somewhat subtle. Given an explicit sparse
polynomial represented by its list of nonzero coefficients, it is easy to check if ∑S ∣ĝ(S)∣ ≤ t. It
is more difficult to check that g is bounded in [0,1]. However, for learning, it suffices that g is
nearly bounded which can be verified in polynomial time. In analogy with the fact that convex
functions can often be efficiently minimized over convex sets, the convex objective function (of
functions) can be approximately minimized over something approximating G. Interestingly, the
reliable approach to learning DNF resembles recent work in complexity theory on fooling DNF
[2].

1.3 Part II: Learning from diversity

Many distributions have dependencies among the bits resulting from an underlying “diversity”
in a population. For example, consider a medical problem such as predicting whether someone
will get diabetes from an attribute vector, including, say, age, height, and weight. It is clear
that an individual’s attributes will be correlated – children tend to be younger, shorter and
lighter than adults. As a second example, consider classifying email as SPAM or not based
on a {0,1}n vector which indicates the absence or presence of n different words in an email.
There is a large variance in email length and the number of distinct words in an email. On the
other hand, if the data were coming from the uniform distribution, most examples would have
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a 1/2 ± n−1/2 fraction of 1’s. Hence, in many situations there is an underlying diversity in the
population which may be quantified by a single parameter, e.g., age or size, and this diversity
leads to dependencies between attributes.

As a simplified model of this phenomenon, consider the following distribution ρc on x ∈
{0,1}n, for any constant c ∈ (0,1/2].

ρc(x) =
1
2c ∫

1
2+c

1
2−c

p∣x∣(1 − p)n−∣x∣dp, ∣x∣ = ∑xi.

To generate an example from this type of distribution, first a p ∈ [1/2 − c,1/2 + c] is chosen
uniformly at random. Then an example x ∈ {0,1}n is chosen from the p-biased product distribu-
tion νp (the product distribution in which Ex∼νp[xi] = p for each i). We give an algorithm that
PAC-learns depth-O(logn) trees over ρc.

The distribution ρc is not completely realistic, but it captures one aspect of real (nonuni-
form) distributions. We start with this simple distribution, but extensions to other related
distributions (e.g., not centered around bias 1/2) are likely possible. The main result here is
the following.

Theorem 2. Fix any constant c > 0. Then there is a polynomial M such that, for any δ ∈ (0,1),
n, d ≥ 1, and any depth-d decision tree f , for m ≥ M(2dn log 1/δ) examples (xi, f(xi)) where
each xi is chosen independently from ρc, with probability ≥ 1 − δ, the algorithm described in
Section 2.4 outputs a polynomial exactly equivalent to f and runs in time poly(m).

The first step in our algorithm is to reduce this model to a related model suggested earlier and
independently by Arpe and Mossel [1], in which it is assumed that one has access to k different
example oracles representing samples from different p-biased distributions. If one reinterprets
their results in our setting, then in polynomial time one can learn k = O ( logn

log logn
)-Juntas, i.e.,

arbitrary functions that depend on only k relevant bits. Note that O(logn)-depth decision
trees include O(logn)-Juntas as a special case. More generally, our algorithm learns sparse, low
degree integer polynomials.

1.4 Organization

We first focus on learning from smoothed product distributions. Section 1.5 gives preliminaries
for this problem. Section 1.7 gives an algorithm for finding the “heavy” Fourier coefficients in
the smoothed product distribution model. Section 1.8 gives an algorithm for approximating a
DNF from its heavy coefficients. Section 1.9 gives an algorithm for approximating any function
as well as the best decision tree, i.e., agnostically learning decision trees, from its heavy Fourier
coefficients. Note that these latter two sections are not specific to any smoothed analysis – they
simply show how to learn from heavy coefficients alone. For example, it could be used to replace
boosting in Jackson’s DNF learning algorithm (though our algorithm is not simpler).

Section 2 discusses the model of learning from diversity and is self-contained.

1.5 Preliminaries

Let N = {1,2, . . . , n}. We consider examples (x, y) with x ∈ {−1,1}n and y ∈ {0,1}. A product
distribution Dµ over {−1,1}n is parameterized by its mean vector µ ∈ [−1,1]n, where µi =
Ex∼Dµ[xi] and the bits are independent. The uniform distribution is D0. We say Dµ is c-
bounded if µi ∈ [c − 1,1 − c] for all i.

We denote Prx∼Dµ by Prµ and Ex∼Dµ by Eµ for brevity. Let χS,µ(x) = ∏i∈s(xi−µi)/
√

1 − µ2
i .

This normalization gives Eµ[χ{i},µ(x)] = 0 and E[χ2
{i},µ(x)] = 1, and hence by independence

E[χS,µ(x)] = 0 and E[χ2
S,µ(x)] = 1 for S ≠ ∅. When µ is understood from context, we write just

χS(x).
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Define the inner product ⟨f, g⟩µ = Eµ[f(x)g(x)]. By independence ⟨χS,µ, χT,µ⟩µ = 0 for
S ≠ T and ⟨χS,µ, χS,µ⟩µ = 1. Hence, the 2n different χS ’s form an orthonormal basis for the
set of real-valued functions on {−1,1}n with respect to ⟨⟩µ. We define the Fourier coefficient
(relative to µ), for any S ⊆ N ,

f̂µ(S) = Eµ[f(x)χS,µ(x)]. (1)

Also observe that f̂0(S) is the standard Fourier coefficient over the uniform distribution, and
that, for any µ ∈ [−1,1]n,

f(x) = ∑
S⊆N

f̂µ(S)χS,µ(x).

When µ is understood from context we write simply f̂ = f̂µ.
Henceforth we write ∑S to denote ∑S⊆N and ∑∣S∣=d to denote the sum over S ⊆ N such that

∣S∣ = d. Similarly for ∑∣S∣>d, and so forth. It can be shown that ⟨f, g⟩µ = ∑S⊆N f̂(S)ĝµ(S), and
Parseval’s equality,

⟨f, f⟩µ = ∑
S⊆N

f̂2
µ(S) = Eµ[f2(x)].

This implies that for any f ∶ {−1,1}n → [−1,1], ∑S f̂2
µ(S) ≤ 1. It is also useful for bounding

Eµ[(f(x) − g(x))2] = ∑S(f̂(S) − ĝµ(S))2.
It will also be helpful to think of f̂ ∈ R2n as a vector in 2n-dimensional Euclidean space, and

we will use the following quantities: ∥f̂∥2 =
√
∑S f̂2(S), ∥f̂∥1 = ∑S ∣f̂(S)∣, ∥f̂∥∞ = maxS ∣f̂(S)∣,

and ∥f̂∥0 = ∣{S ∣ f̂(S) ≠ 0}∣.
Fix any constant c ∈ (0,1/2). We assume we have some fixed 2c-bounded product distribution

µ̄ ∈ [2c − 1,1 − 2c]n and that a perturbation ∆ ∈ [−c, c]n is chosen uniformly at random and the
resulting product distribution has µ = µ̄ +∆. Note that Dµ is c-bounded.

A disjunctive normal form (DNF) formula is an OR of ANDs, e.g., f(x) = (x1 ∧ ¬x3) ∨
(x2 ∧ x3 ∧ x10) ∨ x4. The negation of a DNF is a conjunctive normal form (CNF) formula,
e.g.,(¬x1 ∨x3) ∧ (¬x2 ∨¬x3 ∨¬x10) ∧¬x4. For the definition of a binary decision trees, see, e.g.,
[12]. The size of a decision tree is defined to be the number of leaves.

1.6 Fourier properties of smoothed product distributions

The following lemmas show that, with high probability, for every coefficient f̂µ(S) that is suffi-
ciently large, say ∣f̂(S)∣ > β, it is very likely that all subterms T ⊆ S have ∣f̂(T )∣ > α, for some
α < β. In other words, with high probability, all sub-coefficients of large f̂(S) will be pretty
large.

Lemma 3. Let f ∶ {−1,1}n → [−1,1]. Let α,β ≥ 0, d ∈ N. Let c ∈ (0,1/2), µ̄ ∈ [2c − 1,1 − 2c]n,
and µ = µ̄ +∆ where ∆ ∈ [−c, c]n is chosen uniformly at random. Then,

Pr∆∈[−c,c]n [∃T ⊆ U ⊆ N such that ∣U ∣ ≤ d ∧ ∣f̂µ(T )∣ ≤ α ∧ ∣f̂µ(U)∣ ≥ β] ≤ α1/2β−5/2(2/c)2d.

The proof of this lemma is deferred to Appendix A. In order to prove it, we give a continuous
variant of Schwartz-Zippel lemma. This lemma states that a nonzero degree-d multilinear func-
tion cannot be too close to 0 (or any other value) too often over x ∈ [−1,1]n. In particular, this is
a nonconcentration bound saying that a nonzero multilinear polynomial cannot be concentrated
near 0 (or it’s mean or any real value).

Lemma 4. Let g ∶ Rn → R be a degree-d multilinear polynomial, g(x) = ∑∣S∣≤d ĝ(S)∏i∈S xi.
Suppose that there exists S ⊆ N with ∣S∣ = d and ∣ĝ(S)∣ ≥ 1. Then for a uniformly chosen
random x ∈ [−1,1]n, and for any ε > 0,

Prx∈[−1,1]n [ ∣g(x)∣ ≤ ε ] ≤ 2d
√
ε.
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Proof. WLOG let say ĝ(D) = 1 for D = {1,2, . . . , d} for we can always permute the terms and
rescale the polynomial so that this coefficient is exactly 1. We first establish that,

Prx∈[−1,1]n[∣g(x)∣ ≤ ε] ≤ Prx∈[−1,1]n [∣∏
i∈D

xi∣ ≤ ε] . (2)

In other words, the worst case is a monomial. To see this, write,

g(x) = x1g1(x2, x3, . . . , xn) + g2(x2, x3, . . . , xn).

Now, by independence imagine picking x by first picking x2, x3, . . . , xn (later we will pick x1).
Let γi = gi(x2, . . . , xn) for i = 1,2. Then, consider the two sets I1 = {x1 ∈ R ∶ ∣x1γ1 + γ2∣ ≤ ε} and
I2 = {x1 ∈ R ∶ ∣x1γ1∣ ≤ ε}. These are both intervals, and they are of equal width. However, I2 is
centered at the origin. Hence, since x1 is chosen uniformly from [−1,1], we have that for any
fixed γ1, γ2, Prx1∈[−1,1][x1 ∈ I1] ≤ Prx1∈[−1,1][x1 ∈ I2], because I2 ∩ [−1,1] is at least as wide as
I1 ∩ [−1,1]. Hence it suffices to prove the lemma for those functions where ĝ(S) = 0 for all S
for which 1 ∉ S. (In fact, this is the worst case.) By symmetry, it suffices to prove the lemma
for those functions where ĝ(S) = 0 for all S for which i ∉ S, for i = 1,2, . . . , d. After removing
all terms S that do not contain D we are left with the function xD, establishing (2). Now, for
a loose bound, one can use Markov’s inequality:4

Pr[∣xD ∣ ≤ ε] = Pr [∣xD ∣−1/2 ≥ ε−1/2] ≤ E[∣∏D xi∣−1/2]
ε−1/2 = ε1/22d.

In the last step, E[∣∏D xi∣−1/2] = E[∣x1∣−1/2]d by independence and symmetry, and a simple
calculation based on the fact that ∣x1∣ is uniform from [0,1] gives E[∣x1∣−1/2] = 2.

An interesting property of this bound is that it does not hold for inputs chosen over the
discrete hypercube {−1,1}n. For example, the function f(x) = 1+x1 is 0 on half of the discrete
hypercube but 0 on a measure-0 fraction of the solid cube. This lemma is also a bit stronger
than what holds for (non-multilinear) polynomials [3, 4] – here one can see that the polynomial
xd1 is too concentrated for our purposes.

1.7 Finding the heavy coefficients

For simplicity, we suppose that the algorithms have exact knowledge of µ. In general, these
parameters can be estimated to any desired inverse-polynomial accuracy in polynomial time.
The algorithm is below.

4A tight bound, Pr[∣x1 . . . xd∣ ≤ ε] = ε∑d−1i=0 logi 1
ε
, follows from Pr[∣x1x2 . . . xi+1∣ ≤ ε] = ∫

1

0 Pr[∣x1x2 . . . xi∣ ≤ ε
t
]dt and

induction.
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Algorithm Greedy feature construction.
Inputs: (x1, y1), . . . , (xm, ym) ∈ Rn × {−1,1}, degree d ≥ 1, and µ ∈ (−1,1)n.

1. Let S0 ∶= {∅}.

2. For k = 1,2, . . . , d ∶
(a) Let

Sk ∶= Sk−1 ∪
⎧⎪⎪⎨⎪⎪⎩
S ∪ {i} ∣ S ∈ Sk−1 ∧

RRRRRRRRRRR

1
m

m

∑
j=1

yjχS∪{i},µ(xj)
RRRRRRRRRRR
≥m−1/3

⎫⎪⎪⎬⎪⎪⎭
.

(b) If ∣Sk ∣ >m then abort and output FAIL.

3. Output the following polynomial p ∶ {−1,1}n → R,

p(x) = ∑
S⊆Sn

⎛
⎝

1
m

m

∑
j=1

yjχS∪{i},µ(xj)
⎞
⎠
χS,µ(x).

A “heavy” coefficient is simply one with large magnitude ∣f̂(S)∣. A “large” set is one for
which ∣S∣ is large, and a small set has ∣S∣ small. We now argue that the Greedy Feature
Construction (GFC) algorithm finds all heavy coefficients on small sets S.

Lemma 5. For any constant c > 0, there exists a univariate polynomial u, such that for any
ε, δ > 0, n, d ≥ 1, µ̄ ∈ [2c − 1,1 − 2c], and any f ∶ {−1,1}n → [−1,1], the GFC algorithm run
with m = u(log(n)2d/εδ) samples, with probability ≥ 1−δ, outputs degree-d polynomial p(x) with
∣p̂µ(S)− f̂µ(S)∣ ≤ ε for each S with ∣S∣ ≤ d, and such that p̂µ(S) = 0 for each S with ∣f̂µ(S)∣ ≤ ε/2.
GFC is a polynomial-time algorithm.

The proof of this lemma is deferred to Appendix A.

1.8 Learning CNF from heavy coefficients

In this section, fix a constant-bounded product distribution µ ∈ [c− 1,1− c]n. It will be slightly
easier to describe the algorithm in terms of learning CNFs, f(x) = D1(x) ∧ . . . ∧Dt(x), where
each Di(x) is a disjunction, e.g., x3 ∨ ¬x7. Since the negation of a DNF is a CNF of the same
size, learning CNFs and learning DNFs are equivalent problems. The algorithm for learning
CNF from heavy coefficients is given below.

We define a penalty function for being outside of the range [0,1], Φ ∶ R→ R,

Φ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − 1 if x > 1
0 if x ∈ [0,1]
−x if x < 0

φ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if x > 1
0 if x ∈ [0,1]
−1 if x < 0

.

It will be helpful to try to find a function h ∶ {−1,1}n → [0,1], and this penalty will be useful
in approximately achieving this goal. Note that Φ is convex. It will also be helpful to consider
the φ. While Φ is not differentiable, it is easy to verify that φ(x) ∈ ∇Φ(x) is a subgradient of Φ,
which formally means,

Φ(x) −Φ(x0) ≥ φ(x0)(x − x0), (3)

for any x0, x ∈ R.
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Let target function f(x) = D1(x)D2(x) . . .Ds(x), where s is known to the algorithm5 and
each Di(x) ∈ {0,1} is a disjunction, e.g., (x3 ∨ ¬x7 ∨ x9). Our goal is to find a function h ∶
{−1,1}n → {0,1} such that Prµ[h(x) ≠ f(x)] ≤ ε.

For this algorithm, we assume that we begin with an approximation of the heavy coefficients
of f . In particular, we suppose that we start with a polynomial p such that maxS∶∣S∣≤d ∣p̂(S) −
f̂(S)∣∞ ≤ τ and such that ∥p̂∥0 ≤ 8/τ2, which the previous section explains how to find. It turns
out that this will be enough and we will not need direct access to f , however one must consider
f for the purposes of analysis.

Define Kd by,
Kd = {g ∶ {−1,1} → R ∣ deg(g) ≤ d and ∥ĝ∥1 ≤ 1} .

In Section 1.11, we give the projection algorithm which computes projµ,Kd(g) = arg minh∈Kd ∥ĥµ−
ĝµ∥2.

Algorithm CNF Appx.
Input: n, d, T,R,Λ1,Λ2 ≥ 1, η, τ,G > 0, µ ∈ (−1,1)n, black-box access to polynomial
p ∶ {−1,1}n → R.

• For i = 1,2, . . . ,R:

1. Let Hi = h1h2⋯hi−1 (H1 = 1)
2. Let g1

i = 0.
3. For j = 1,2, . . . , T :

gj+1
i = projµ,Kd (EKMµ(gji − η(Hi −Λ1p +Λ2φ(gji )),1 + ηG, τ, δ/(RT )))

4. Let hi ∶ {−1,1}n → {−1,1} be hi(x) = I[ 1
T ∑

T
j=1 g

j
i (x) ≥ 1

2
].

• Output hypothesis h(x) = h1h2⋯hR.

Theorem 6. Let c ∈ (0,1) be a constant. Let µ ∈ [c−1,1−c]n. Let f ∶ {−1,1}n → {0,1} compute
an s-term DNF. Let ε, δ,B > 0. Take R = 6s/ε, Λ1 = 36R/ε, Λ2 = 40Λ2

1R/ε, d = log(20s/ε)/c,
ε0 = ε/(20sΛ1) = ε3/(4320s2), G = 1+Λ1B +Λ2, τ = (ε0Λ1/16)2, T = (4Gε0Λ1)2, and η =

√
T /G.

Let p ∶ {−1,1}n → [−B,B] be such that ∣f̂µ(S) − p̂µ(S)∣ ≤ ε0 for all sets of size ∣S∣ ≤ d and
p̂(S) = 0 for ∣S∣ > d. Then with probability ≥ 1 − δ, the CNF Appx algorithm outputs h with
Prµ[h(x) ≠ f(x)] ≤ ε. The runtime of the algorithm is polynomial in nB log(1/δ)/ε times the
amount of time to evaluate p.

The proof of this theorem is deferred to Appendix B. However, using it, we are now able to
analyze our DNF learning algorithm.

Theorem 7. For any constant c > 0, there is a univariate polynomial u such that, for any DNF
f ∶ {−1,1}n → {0,1} of size s terms, any ε, δ > 0, and any µ̄ ∈ [2c−1,1−2c]n, there is an algorithm
that takes at most u(ns/(εδ)) examples from Dµ with uniformly random µ ∈ µ̄+[−c, c]n, runs in
time u(ns/(εδ)), and, with probability ≥ 1− δ, outputs a hypothesis h with Prµ[h(x) ≠ f(x)] ≤ ε.
The probability here is taken over the random choice of µ and m i.i.d. samples from product
distribution Dµ.

Proof. We describe an algorithm for learning a CNF. The reduction is trivial – replace f and h
with 1 − f and 1 − h, respectively.

5A standard “doubling trick” can be applied to generalize to the case when s is not known.
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Let ε0 = ε3/(4320s2), δ0 = δ/2. The algorithm first calls the Greedy Feature Construction
algorithm with degree d = log(20s/ε)/c and m = poly(log(n)2d/(ε0δ0)), so that, with probability
≥ 1 − δ0, we get an estimate p such that ∣p̂µ(S) − f̂µ(S)∣ ≤ ε0 for each S with ∣S∣ ≤ d, and such
that p̂(S) = 0 for each S with ∣f̂(S)∣ ≤ ε0/2. By Parseval, there can be at most 4/ε20 different
coefficients of magnitude greater than ∣f̂(S)∣ > ε/2. For each of these ∣p̂(S)∣ ≤ 1 + ε0. Hence,

∣p(x)∣ ≤ ∑
∣S∣≤d

∣p̂µ(S)∣ ⋅ ∣χµ,S(x)∣ ≤
4
ε20

(1 + ε0) (
2
c
)
d

.

In the above, we have used ∣χS,µ(x)∣ ≤ (2/c)∣S∣, which follows from the fact that ∣χ{i},µ(x)∣ ≤
2−c√

1−(1−c)2
≤ 2/c for any i ∈ N , and x ∈ {−1,1}n, by the definition of χ. Let B = 4

ε20
(1 + ε0) ( 2

c
)d =

poly(s/ε). Next we run the CNF Appx algorithm on p with the parameters ε, δ0,B and those
given in Theorem 6. With probability ≥ 1 − δ/2, this will succeed in outputting a hypothesis
with error at most ε. Both the Greedy Feature Construction and the CNF Appx algorithms run
in polynomial time.

1.9 Agnostically learning decision trees from heavy coefficients

At this point, it will be helpful to define Kdt,

Kdt = {g ∶ {−1,1} → R ∣ deg(g) ≤ d and ∥ĝ∥1 ≤ t} .

Note that Kd =Kd1, for our earlier definition of Kd.

Algorithm DT Appx.
Input: n, d, t, T,Λ ≥ 1, η, τ,G > 0, µ ∈ (−1,1)n, black-box access to polynomial
p ∶ {−1,1}n → R.

1. Let g1 = 0.

2. For j = 1,2, . . . , T :

gj+1 = projµ,Kdt (EKMµ(gj − η(Λφ(gji ) + 1 − 2p),1 + ηG, τ, δ/T ))

3. Let g = 1
T ∑

T
j=1 g

j .

4. Draw m samples x1, x2, . . . , xm from Dµ.

5. Choose θ ∈ [0,1] so as to minimize ∑mi=1 (I[g(xi) ≥ θ](1 − p(xi)) + I[g(xi) < θ]p(xi)).

6. Output hypothesis h(x) = I[g(x) ≥ θ].

Theorem 8. Let c ∈ (0,1) be a constant. Let s, n ≥ 1, ε, δ,B > 0, and µ ∈ [c − 1,1 − c]n. Let
f ∶ {−1,1}n → {0,1} be a binary function. Take d = 2

c
log 8s

ε
, t = 4d, Λ = 33

ε
, G = 1 + 2B + Λ,

η = G−1T −1/2, ε0 = ε
60t

, T = 16G2

ε20
, τ = ε20

256t
, and m = 8

ε3
log2 1

δ
. Let p ∶ {−1,1}n → [−B,B] be such

that ∣f̂µ(S)− p̂µ(S)∣ ≤ ε0 for all sets of size ∣S∣ ≤ d and p̂(S) = 0 for ∣S∣ > d. Then with probability
≥ 1− δ, the DT Appx algorithm outputs h with err(h) ≤ opt+ ε. The runtime of the algorithm is
polynomial in nB log(1/δ)/ε times the amount of time to evaluate p.

The proof of this theorem is deferred to Appendix C. However, using it, we are now able to
analyze our agnostic decision tree learning algorithm.
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Theorem 9. For any constant c > 0, there is a univariate polynomial u such that, for any
f ∶ {−1,1}n → {0,1} and any s ≥ 1, ε, δ > 0, and any µ̄ ∈ [2c − 1,1 − 2c]n, there is an algorithm
that takes at most u(ns/(εδ)) examples from Dµ with uniformly random µ ∈ µ̄ + [−c, c]n, runs
in time u(ns/(εδ)), and, with probability ≥ 1 − δ, outputs a hypothesis h with err(h) ≤ opt + ε.
The probability here is taken over the random choice of µ and m i.i.d. samples from product
distribution Dµ.

Proof. Let ε0 = ε
60t

, δ0 = δ/2. The algorithm first calls the Greedy Feature Construction algo-
rithm with degree d = 2

c
log 8s

ε
and m = poly(log(n)2d/(ε0δ0)), so that, with probability ≥ 1− δ0,

we get an estimate p such that ∣p̂µ(S)−f̂µ(S)∣ ≤ ε0 for each S with ∣S∣ ≤ d, and such that p̂(S) = 0

for each S with ∣f̂(S)∣ ≤ ε0/2. Exactly as in the proof of Theorem 7, ∣p(x)∣ ≤ 4
ε20
(1+ ε0) ( 2

c
)d . Let

B = 4
ε20
(1+ ε0) ( 2

c
)d = poly(s/ε). Next we run the DT Appx algorithm on p with the parameters

ε, δ0,B and those given in Theorem 6. With probability ≥ 1−δ/2, this will succeed in outputting
a hypothesis with error at most ε. Both the Greedy Feature Construction and the CNF Appx
algorithms run in polynomial time.

1.10 Fourier gradient descent

Both our DNF and agnostic decision tree learners can be viewed in a common framework as a
general Fourier “gradient descent” algorithm of a convex loss function L(f) over an arbitrary
fixed product distribution Dµ, which is a generalization of the algorithm of Gopalan et al [5].
Let R{−1,1}n denote the set of functions from {−1,1}n to R. Again note that Kd = Kd1, for
our earlier definition of Kd. Note that 0 ∈ Kdt and ∥f̂∥2 ≤ ∥f̂µ∥1 ≤ t for each f ∈ Kdt. We also
suppose that the product distribution parameters µ have been fixed.

Let L ∶ R{−1,1}n → R denote a convex loss function, meaning that for any λ ∈ [0,1] and
g, h ∶ {−1,1}n → R, L(λg + (1 − λ)h) ≥ λL(g) + (1 − λ)L(h). The goal is to (approximately)
minimize the loss over Kdt, minf∈Kdt L(f). Since we do not assume that L is differentiable, we
consider a subgradient descent type of algorithm. We suppose we have access to two things. First,
we assume we have black-box access to a bounded “sugradient” function Γ ∶ R{−1,1}n ×{0,1}n →
[−G,G], for some G ≥ 0. By subgradient, we mean:

∀f, g ∶ {−1,1}n → R L(g) ≥ L(f) +Eµ[Γ(f, x)(g(x) − f(x))]. (4)

This is similar to the gradient bound for convex differentiable u on Euclidean space, where
u(x′) ≥ u(x) +∇u(x) ⋅ (x′ − x). Let Γf(x) = Γ(f, x). This connection can be made precise when
one considers f̂ ∈ R2n as a vector in Euclidean space and Γf as the gradient of L(f̂). More
generally, L may not be differentiable and any subgradient (tangent plane lying below L) will
do.

Second, we assume we have access to a projection oracle, which when given a function f ,
finds the closest g ∈Kdt to f ,

projµ,Kdt(f) = arg min
g∈Kdt

∥ĝ − f̂∥2,

which returns the closest function in Kdt to f . The projection routine is described in Section
1.11. It is probably easiest to first understand the algorithm at its conceptual level, ignoring
runtime and efficient representation. One may even think of the functions being represented by
their 2n different Fourier coefficients. However, we will shortly describe how to implement it
efficiently.

The gradient projection method [13] (sometimes called the projected subgradient method) in
this context, chooses a sequence of functions, starting with an arbitrary f1 ∈Kdt and then taking
f (i+1) = projµ,Kdt(f

i − ηΓfi), where η > 0 is a step size. However, in order to be efficient, we
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will need an explicit sparse representation of f i and Γfi . In particular, the f i’s are represented
by a list of nonzero Fourier coefficients. As we will see, the projection operation never increases
the number of nonzero coefficients, i.e., ∥projµ,Kdt(f)∥0 ≤ ∥f̂∥0. The projection operation is
described in Section 1.11. Finally, in order to represent Γfi succinctly, we will use an extension
of the Kushilev-Mansour routine for extracting heavy coefficients of a function. The extension,
described in Section 1.12, handles product distributions.

Algorithm Fourier gradient descent.
Inputs: T ≥ 1, ε, δ, η,G > 0, black-box Γ ∶ R{−1,1}n → [−G,G], black box projK ∶ R{−1,1}n →
K. Output: h ∈K.

1. Let f1 = 0

2. For i = 1,2, . . . , T ∶

f i+1 = projµ,Kdt (EKMµ(f i − ηΓfi , t + ηG, ε, δ))

3. Output h = 1
T ∑

T
i=1 f

i

Lemma 10. Let µ ∈ [−1,1]n, δ,G, t ≥ 0, T ≥ 1. Let loss L ∶ R{−1,1}n → R and subgradient
Γ ∶ Kdt → [−G,G] satisfy (4). Take η = G−1T −1/2. Then, with probability ≥ 1 − Tδ, the Fourier
gradient descent algorithm outputs h ∈K with

L(h) ≤ min
f∈Kdt

L(f) + 2
tG√
T
+ 8ε

1
2 t

3
2 .

This Lemma is a more general presentation of the approach used by Gopalan et al, which
was based on Zinkevich’s analysis of a general gradient projection algorithm [16]. We give a
proof in Appendix D.

The definition and analysis of the EKM algorithm is deferred to Section 1.12, where the
following is shown.

Lemma 11. For any n ≥ 1, B, ε, δ > 0, µ ∈ (−1,1)n, f ∶ {−1,1}n → [−B,B], given m =
poly(n,B/ε, log(1/δ)) calls to f , with probability ≥ 1 − δ, the Extended Kushilevitz-Mansour
EKMµ(f,B, ε, δ) algorithm outputs a polynomial p ∶ {−1,1}n → R such that,

∥p̂µ − f̂µ∥∞ ≤ ε,

and ∥p̂∥0 ≤ 8B2/ε2. The runtime of EKM is polynomial in m.

We now generalize a procedure used by Gopalan et al [?] to keep the coefficients of a poly-
nomial bounded in L1 norm.

1.11 Projection

The projection operation is defined with respect to a product distribution µ, which determines
the Fourier basis. (Alternatively, it could be defined simply for vectors in R2n .) Consider the
following function.

Definition 1. Given a function f and ` ≥ 0, define soft-threshold(f, µ, d, `) as the function g
where

ĝµ(S) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f̂µ(S) − `, if f̂µ(S) and ∣S∣ ≤ d ≥ `
f̂µ(S) + `, if f̂µ(S) ≤ −` and ∣S∣ ≤ d
0, otherwise.

(5)
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This procedure is sometimes referred to as soft thresholding in practice. As we will show,
projµ,Kdt(f) = soft-threshold(f, µ, d, `) for the smallest ` ≥ 0 such that ∥ soft-threshold(f, `))∥1 ≤
t. This is equivalent to the following continuous procedure. If ∥f̂µ∥1 ≤ t output f . Otherwise,

a) Start decreasing the magnitudes of all nonzero Fourier coefficients of f by equal amounts.

b) If some coefficient reaches 0, it then stays at 0.

c) Continue this till we reach a g where ∥ĝ∥1 = t.
Lemma 12. If f is represented by a list of nonzero coefficients, projµ,Kdt(f) can be computed
in time O(∥f̂∥0 log ∥f̂∥0) [5].

Proof. We first argue that projµ,Kdt(f) = soft-threshold(f, µ, d, `) for the smallest ` ≥ 0 such
that ∥ soft-threshold(f, µ, d, `)∥1 ≤ t. We then argue that this can be computed efficiently.

Let f ∶ {−1,1}n → R and let g = projµ,Kdt(f). By compactness of Kdt, and by strict convexity
of ∥f̂ − ĝ∥2, g exists and is unique. By definition of Kdt, ĝ(S) = 0 for all S of size ∣S∣ > d. Hence,
∥f̂ − ĝ∥2

2 = ∑∣S∣≤d(f̂(S) − ĝ(S))2 + ∑∣S∣>d f̂
2(S). Since the latter sum does not depend on g,

WLOG we may assume f̂(S) = 0 for all sets of size ∣S∣ > d. We may also assume WLOG that
f̂(S) ≥ 0 for each S, in which case it is easy to see that ĝ(S) ∈ [0, f̂(S)].

Now, suppose there exist two sets S,T such that f̂(S) − ĝ(S) > f̂(T ) − ĝ(T ). Then, because
y = x2 is a strictly convex function, for sufficiently small ε > 0, the quantity (f̂(S) − ĝ(S))2 +
(f̂(T )− ĝ(T ))2 would strictly decrease if we decreased ĝ(T ) by ε and increased ĝ(S) by ε. Since
g minimizes ∥f̂ − ĝ∥2 over Kdt, it must be that this change would cause g to no longer be in
Kdt. However, notice that this decrease/increase by ε does not increase ∥ĝ∥1 unless ε > ĝ(T ).
Put another way, if ĝ(T ) > 0, then we can modify g by a sufficiently small ε to decrease ∥f̂ − ĝ∥2

while keeping g ∈Kdt, which would be a contradiction. Therefore, we conclude that

f̂(S) − ĝ(S) > f̂(T ) − ĝ(T ) ⇒ ĝ(T ) = 0.

This implies that for some ` ≥ 0, for all S either f̂(S)− ĝ(S) = ` or f̂(S)− ĝ(S) < ` and ĝ(S) = 0,
which means that g = soft-threshold(f, µ, d, `).

The algorithm can be implemented in exactly the same manner as that of Gopalan et al,
except that we first zero out all f̂(S) for ∣S∣ > d. After that, if ∥f̂∥1 ≤ t, the answer is simply
projµ,Kdt(f) = f = soft-threshold(f, µ, d,0). Otherwise, let k = ∥f̂∥0 and sort the sets so that
0 < ∣f̂(S1)∣ ≤ ∣f̂(S2)∣ ≤ . . . ≤ ∣f̂(Sk)∣, which can be done in time O(k log k). For each i ≤
k, let ai = (k − i)∣f̂(Si)∣ + ∑j≤i ∣f̂(Si)∣. It is easy to see that ai is nondecreasing, that all k
ai’s can be computed in one linear-time pass through the nonzero coefficients of f , and that
ai = ∥f̂∥1 − ∥ soft-threshold(f, µ, d, f̂(Si))∣1. Also, it is easy to see that the desired ` satisfies
∥f̂∥1 − ∥ soft-threshold(f, µ, d, `)∣1 = ∥f̂∥1 − t. Hence, if ai ≤ ∥f̂∥1 − t ≤ aj , then the desired ` is
in [∣f̂(Si)∣, ∣f̂(Sj)∣]. After finding the range ` ∈ [ai, aj), the exact value of ` is determined by a
simple formula. Finally, the soft-threshold(f, d, µ, `) is computed in linear time.

Another useful property shown by Gopalan et al is that two functions which are close in L∞
norm become close in L2 norm after projection onto the L1 ball. In our context, we use the
following modification for the degree-d constrained L1 ball.

Lemma 13. Let f, g ∶ {−1,1}n → R be functions such that ∥f̂ − ĝ∥∞ ≤ ε. Then,

∥projµ,Kdt(f) − projµ,Kdt(g)∥
2
2 ≤ 4εt.

Proof. Again, WLOG, suppose f̂(S) = ĝ(S) = 0 for all sets S of size ∣S∣ > d. Now, suppose that
a = projµ,Kdt(f) = soft-threshold(f, d, µ, `1) and b = projµ,Kdt(g) = soft-threshold(g, d, µ, `2).
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WLOG suppose `1 ≤ `2. Next, let c = soft-threshold(g, d, µ, `1). Next, we claim ∥a − c∥∞ ≤
∥f̂ − ĝ∥∞. This is because, on a term by term basis, moving any two real numbers f̂(S) and
ĝ(S) both a distance ` closer to 0 can only decrease the distance between the two numbers.
Notice that b = soft-threshold(c, d, µ, `2 − `1). Next, we claim that ∥b − c∥∞ ≤ ε. The reason is
that we know that c is within L∞ distance ε of b, which has L1 norm at most t. Hence, if we
move all coordinates ε closer to 0, the resulting function will certainly be within Kdt. Finally,

∥a − b∥2
2 ≤ ∥a − b∥1 ⋅ ∥a − b∥∞ ≤ (∥a∥1 − ∥b∥1) ⋅ ∥a − b∥∞ ≤ 2t∥a − b∥∞.

Using ∥a − b∥∞ ≤ ∥a − c∥∞ + ∥b − c∥∞ ≤ ε + ε completes the proof.

1.12 Extended Kushilevitz-Mansour

The Kushilevitz-Mansour (KM) algorithm approximates the heavy coefficients of a polynomial.
Another way to state this is that it outputs a sparse approximation which is correct to within
ε on all the coefficients of the polynomial. Just to see why this could be possible in polynomial
time, note that by Parseval, there can be at most O(1/ε2) coefficients whose magnitude is
greater than ε/2, the remaining coefficients may be approximated by 0. Lemma 11 is a direct
generalization of KM can be given whose bounds are independent of degree or the particular
product distribution.

First consider estimating any coefficient f̂µ(S). In general, χS,µ may be very large for large
∣S∣ and nonuniform µ. However, given m i.i.d. samples ⟨(xj , f(xj))⟩mj=1 with xj ∼ Dµ, (1) gives
a simple means of estimating f̂µ(S):

Prx1,x2,...,xm∼Dµ

⎡⎢⎢⎢⎣

RRRRRRRRRRR
f̂µ(S) −

1
m

m

∑
j=1

f(xj)χS,µ(xj)
RRRRRRRRRRR
≥ ε

⎤⎥⎥⎥⎦
≤ B2

mε2
(6)

This follows from Chebyshev’s inequality combined with the fact that the variance is additive
and that E[f2(x)χ2

S,µ(x)] ≤ B2. The above approximation is from random examples. We can
get better bounds, using membership queries, as follows. Fix S and consider distribution µ′

where µ′i = µiI[i ∈ S]. So µ′ is uniform over the coordinates of the set S and like µ otherwise. A
simple calculation reveals that f̂µ(S) = f̂µ′(S)∏i∈S

√
1 − µ2

i . Hence,

f̂µ(S) = Eµ′[f(x)χS,µ′(x)] = Eµ′[f(x)χS,0(x)]. (7)

Since χS,0 ∈ {−1,1}, and since we can easily sample from µ′ for any known µ and S, Chernoff
bounds guarantee that 1

m ∑
m
j=1 f(xj)χS,0(xj) will be within ε of f̂µ(S) for any bounded f ∶

{−1,1}n → [−B,B], with probability ≥ 1 − 2e−mε
2/(2B2), for m samples drawn from µ′. The

above bounds show that it is enough to find a small set of candidate coefficients – estimating
these coefficients is not difficult. The latter bound shows that a coefficient can be estimated
with probability to accuracy ε with probability ≥ 1 − δ in time poly(B/ε, log(1/δ).

The KM algorithm is extremely simple. For a vector α ∈ ⋃ni=0{0,1}i, the algorithm would
like to estimate the sum of the Fourier mass of coefficients beginning with vector α. Formally,
define ∣α∣ to be the number of bits in α, make the following definitions,

Tα = {1 ≤ i ≤ ∣α∣ ∣ αi = 1}
Uα = {1 ≤ i ≤ ∣α∣ ∣ αi = 0}
Vα = {∣α∣ + 1, ∣α∣ + 2, . . . , n}
ζα = ∑

S∶ Tα⊆S⊆Tα∪Vα
f̂2
µ(S).

The algorithm outputs a list of candidate coefficients which may be large. The remaining
coefficients not output should all have magnitude less than ε.
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The algorithm is simple – it outputs the following recursive function applied initially to the
empty string.

KM(α, θ) = if ζα > θ then
if ∣α∣ = n then output α, else output KM(α0, θ);KM(α1, θ).

This high-level description of the KM algorithm [12] can be extended to product distributions
without change, except in the definition of ζα, as discussed by Bellare [?] and Jackson [6].

Lemma 11. In the case of product or uniform distributions, the same argument shows that if we
could exactly compute ζα in unit time, then for θ = (ε/2)2, (a) every coefficient of magnitude at
least ε/2 will be found and (b) the runtime of the algorithm is polynomial. It remains to show
how to estimate ζα with probability 1−δ, to within arbitrary ε > 0 in time poly(n,B/ε, log(1/δ)).

We now give a simple means of estimating this quantity that is slightly different than previous
suggestions and has the advantage that the number of samples required can be bounded by a
polynomial that does not depend on ∣S∣ or the particular product distribution. WLOG, suppose
T = {1,2, . . . , a}, U = {a+1, a+2, . . . , b}, and V = {b+1, . . . , n}. It is not difficult to see that one
formula for estimating ζ is the following,

ζ = Ex,x̄∼Dµ [f(x)f((x̄1, . . . , x̄b, xb+1, . . . , xn))χT,µ(x)χT,µ(x̄)] . (8)

In the above, x, x̄ are drawn independently from the product distribution Dµ. The difficulty in
using this bound to estimate ζ using several independent random pairs of samples x, x̄ is that
χT,µ(x) may be exponentially large in ∣T ∣, unlike χT,0(x) ∈ {−1,1} for the uniform distribution.
In this case, it is not clear if Chebyshev’s inequality suffices. Instead, the “trick” again will be
to sample those bits xi, i ∈ T , uniformly at random and the rest of the bits according to the
product distribution parameters.

Again let µ′ = (0,0, . . . ,0, µa+1, µa+2, . . . , µn) ∈ [−1,1]n be the parameters of the hybrid
product distribution which is uniform on the first a bits and agrees with µ on the last n−a bits.
Then we also claim,

ζ = Ex,x̄∼Dµ′ [f(x)f((x̄1, . . . , x̄b, xb+1, . . . , xn))χT,µ′(x)χT,µ′(x̄)
a

∏
i=1

(1 − µ2
i )] . (9)

Since µ′i = 0 for i ∈ T , χT,µ′(x)χT,µ′(x̄) = χT,0(x)χT,0(x̄) ∈ {−1,1}. To see (9), note that all
terms in the right hand side of (9) cancel except for,

∑
S∶ T⊆S⊆T∪V

f̂2
µ(S)Ex,x̄∼Dµ′ [χS,µ(x)χS,µ(x̄)χT,0(x)χT,0(x̄)]

a

∏
i=1

(1 − µ2
i )

Using the fact that for S ⊇ T , χS,µ(x) = χT,µ(x)χS∖T,µ(x) together with (7) gives (9). Finally,
Chernoff-Hoeffding bounds give that using m = 2B4

ε2
log 2

δ
i.i.d. pairs of samples ⟨xj , x̄j⟩mj=1 from

D′µ, with probability ≥ 1 − δ, the following will be within an additive ε of ζ:

1
m

m

∑
j=1

f(xj)f(x̄j1, x̄
j
2, . . . , x̄

j
b, x

j
b+1, . . . , x

j
n))χT,0(xj)χT,0(x̄j)

a

∏
i=1

(1 − µ2
i ).

This concludes the proof.

Note in the case of the uniform distribution, the estimates and (8) and (9) are identical.

2 Part II: Learning from diversity

Let us first return to the setting of learning from diversity. We use a different notation more
suitable for this part.
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2.1 Preliminaries

For x ∈ {0,1}n and S ⊆ [n] = {1,2, . . . , n}, let x[S] = ∏i∈S xi denote a conjunction. We consider
t-sparse, degree-d, B-bounded, integer multilinear polynomials f(x) = ∑ti=1 bix[Si], where the
sets Si ⊆ [n] are distinct, bi ∈ Z, ∣bi∣ ≤ B, and ∣Si∣ ≤ d. We say f is in canonical form if the
sets are arranged in order of size, breaking ties lexicographically. The constant coefficient is the
coefficient in front of the term x[∅], e.g., 17 + 3x1 + 7x8 + 9x1x11 + 17x3x5 is in canonical form
and the constant coefficient is 17. Let the mindegree of the polynomial be ∣S1∣. The mindegree
terms are those terms whose degree equals ∣S1∣. We similarly define the mindegree of a univariate
polynomial to be the smallest degree of a nonzero term, e.g., the min-degree of 3x2 + 17x4 + x9

is 2.
Let ∣x∣ = ∑i ∣xi∣ and the p-biased product distribution be denoted by νp(x) = p∣x∣(1 − p)∣x∣.

Let ρc(x) = 1
2c ∫

1/2+c
1/2−c νp(x)dp. We may abuse notation and say that a polynomial is degree-d

when it is degree ≤ d or t-sparse when it is ≤ t-sparse.
The size of a decision tree is defined to be the number of leaves. We define the depth of the

root of the tree to be 0. Thus a depth-d tree computes a degree-d multilinear polynomial. It
is easy to see that a depth-d decision tree f ∶ {0,1}n → {−1,1} computes a degree-d, 3d-sparse,
2d-bounded integer multilinear polynomial.

2.2 Intuition

Suppose that the function to be learned was a parity on logn bits, f(x) = ∏i∈S(2xi − 1). If
we restrict ourselves to examples which have a 1/2 − c fraction of 1’s, then a simple argument
shows that the bits in S will be correlated with f while the other bits will not. More generally,
it can be shown that for any O(log(n))-Junta, there will be some p ∈ [1/2− c,1/2+ c] such that
among examples with pn 1’s, at least one of the relevant bits will have an inverse-polynomial
correlation. Once one finds a relevant bit, one can recursively solve the Junta problem using
divide and conquer. This intuition is misleadingly simple, however, because an actual depth-
O(log(n)) tree can in general depend on all n bits. Hence, it is not enough to identify the
relevant bits.

To illustrate our approach, consider the two functions below.

f1(x) = x1 − x2x3x4

f2(x) = x1x2 − x2x3 + x3x4 − x4x1

As mentioned, the first step is to use the model of multiple random sources (as in [1]): we can
simulate draws from any p-biased distribution we want, for p ∈ [1/2− c,1/2+ c]. This is done by
(somewhat carefully) partitioning the examples based on the number of 1’s. Now notice that,

g1(p) = Ex∼νp[f1(x)] = p − p3

g2(p) = Ex∼νp[f2(x)] = 0

The above polynomials g1, g2 may be estimated by interpolation. In the case of f1, g1

reveals that there are degree-1 and degree-3 terms (and perhaps others) in f1. To find one,
we can further look at Ex∼νp[f1(x)∣xi = 1] for some i –if we pick a relevant bit i, then the
interpolated function will change (for example i = 1 gives a conditional expectation of 1 − p3).
By conditioning on further variables, we can find degree-d terms in time and sample complexity
exponential in d. However, f2 illustrates that the approach just described is not enough, because
Ex∼νp[f2(x)∣xi = 1] = 0 for all i.

The key “trick” is to look at Ex∼νp[f2(x)]. Note that for any x ∈ {0,1}n (using x2
i = xi),

f2
2 (x) = x1x2 + x2x3 + x3x4 + x4x1 − 3x1x2x3 + . . .. The point is that now there all degree-2
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terms have the same sign, and hence Ex∼νp[f2
2 (x)] = 4p2 + . . ., so cancelation cannot make the

polynomial 0. Intuition is coming from the fact is if f is nonconstant yet the mean of f is constant
across all p-biased distributions, then the variance cannot be constant. In statistics, the term
heteroscedasticity refers to the fact that the variance of a function may be different on different
regions of the input. This is essentially what we are taking advantage of here. Interestingly, the
(nonorthogonal) representation of polynomials over {0,1}n, e.g., f(x) = x1x2x3 as a monomial,
is used for this part due to certain appealing properties not possessed by the more common
Fourier representation. Some further intuition may be gleaned from Figure 1 in the Appendix.

2.3 Algorithm

The algorithm learns sparse low-degree integral polynomials. For simplicity, we assume that
that the algorithm is given all of the relevant parameters, c, n, t,B as input (we take them to
be global variables). If c is not known in advance, it may be estimated to any sufficient inverse
polynomial accuracy in polynomial time. The assumption that t and B are known may be
removed using the doubling trick (run the algorithm starting with a low estimates – each time
it fails, double them and restart). We prove the following generalization of Theorem 1.

Theorem 14. Fix any constant c > 0. Then there is a polynomial M such that, for any
δ ∈ (0,1), n, d, t,B ≥ 1, and any t-sparse B-bounded degree-d integer polynomial f ∶ {0,1}n → Z,
for m ≥ M(2dntB log 1/δ) examples (xi, f(xi)) where each xi is chosen independently from
ρc, with probability ≥ 1 − δ, the algorithm described in section 2.4 outputs a polynomial exactly
equivalent to f and runs in time poly(m).

2.4 Algorithm description and analysis

As mentioned in the introduction, a useful trick in recovering a polynomial over {0,1}n is
squaring it, because the mindegree coefficients all are squared.

Observation 15. Let f(x) = ∑i aix[Si] be a multilinear polynomial in canonical form. Let
f2(x) = ∑i bix[Ti] be the canonical representation of f2(x). Then S1 = T1 and bi > 0 for all
mindegree terms, i.e., terms where ∣Si∣ = ∣S1∣.

The above observation follows from the fact that x2
i = xi and hence x[S]x[T ] = x[S ∪ T ].

The algorithm learns the decision tree as a polynomial. Let f(x) = ∑ti=1 aix[Si] be a integer
polynomial in canonical form. Say it is degree ≤ d and B-bounded. We assume that we are
given as input m samples (xi, f(xi)), for i = 1,2, . . . ,m, where xi are independently drawn from
ρc. The goal is to output exactly the same polynomial in canonical form. We will do this by
identifying the nonzero coefficients one at a time, in canonical order.
Computing the first coefficient. The first useful fact is that if we are told the first nonzero
canonical set, i.e., S1, then we can compute its coefficient a1 using samples and time exponential
in d. Even this is not obvious (as opposed to the standard Fourier representation). In particular,
it is not clear how to do this for polynomial-sized decision trees (as opposed to O(logn)-depth
trees). Roughly speaking, the coefficient estimation is done by clustering the examples based
on the different fractions of 1’s and using interpolation. More precisely, in Section 2.5, we give
more general procedure that does what we call T -interpolation.

Definition 2. For a multilinear polynomial g(x) = ∑i aix[Si] and T ⊆ [n], let the T -interpolation
of g be the polynomial,

g⟨T ⟩(p) = ∑
i

aip
∣Si∖T ∣

It is clear that the constant coefficient of f⟨S1⟩(p) is equal to a1. Hence, given the first set
with nonzero coefficient for any function, we can estimate that coefficient. The algorithm for
efficiently performing T interpolation is given in Section 2.5, but we state its guarantee here.
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Lemma 16. For any constant c ∈ (0,1/2), there is a polynomial M such that, for any δ ∈ (0,1),
n, t, d,B ≥ 1, T ⊆ [n] with ∣T ∣ ≤ d, and any degree-d t-sparse B-bounded integer multilinear poly-
nomial g, using m ≥M(2dtBn log(1/δ)) examples (x1, g(x1)), . . . , (xm, g(xm)), with probability
≥ 1 − δ, algorithm T -interpolation outputs the T -interpolation polynomial g⟨T ⟩(p).

Define the jth residual fj(x) = ∑ti=j aix[Si]. By the above, it suffices to identify the sets Si
in canonical order, because we can then estimate aj as the constant coefficient of fj⟨Sj⟩. Notice
that once we have computed (ai, Si) for i = 1,2, . . . , j − 1, we can evaluate the jth residual
fj(xi) = f(xi) − ∑j−1

k=1 akx
i[Sk] and thus translate samples (xi, f(xi)) to samples (xi, fj(xi)).

So it remains to describe how we find the canonically first term in the j residual, i.e., Sj .
Finding the canonically first set. We begin, as suggested by Observation 15, by computing
the ∅-interpolation of f2

j , f2
j⟨∅⟩(p), from the data, using algorithm T -interpolation. The

result is a degree ≤ 2d integer polynomial in p. If it is identically 0, we output the polynomial
fj−1 and we are done. Otherwise, let d′ be the mindegree of f2

j⟨∅⟩. By Observation 15, we
have that d′ is equal to the mindegree of f2

j and fj . This follows directly from the fact that
all coefficients of mindegree terms of f2

j are positive – there is no cancelation when substitute
xi = p for all i. Let Sj = {i1, i2, . . . , id′} with i1 < i2 < . . . < id′ . Notice that i1 ∈ [n] is the smallest
index such that the mindegree of f2

j⟨{i1}⟩ is d′ − 1, i2 ∈ {i1 + 1, i1 + 2, . . . , n} is the smallest index
such that the mindegree of f2

j⟨{i1,i2}⟩ is d′ − 2, and so forth. This gives a means for identifying
the set Sj using at most n calls to T -interpolation.

To complete the description of the algorithm, we need to describe the T -Interpolation algo-
rithm. A formal analysis of runtime and proof of Theorem 14 is given in Appendix E.3.

2.5 T -Interpolation algorithm

Algorithm T -interpolation.
Input: T ⊆ [n] and (x1, y1), (x2, y2), . . . , (xm, ym) ∈ {0,1}n ×Z.
(also assumes knowledge of n, d ≥ 1, and c ∈ (0,1/2))

1. For i ∶= 0,1,2, . . . , d:

(a) Let pi ∶= 1
2
− c + i 2c

d

(b) Let Di ∶= ∅. (* FILTER DATA SUBSET Di ⊆ {1,2, . . . ,m} *)
(c) For j = 1,2, . . . ,m:

If xj[T ] = 1 then with probability νpi(x
j)

8nρc(xj) , let Di ∶=Di ∪ {j}.

(d) Let yi ∶= 1
∣Di∣ ∑j∈Di y

j .

2. Lagrange interpolation: Let r ∶ R→ R be,

r(p) =
d

∑
i=0

yi∏
j≠i

p − pj
pi − pj

.

3. Collect terms to write r(p) = ∑dk=0 ckp
k.

4. Round each coefficient of r to the nearest integer and output the resulting polynomial.

Steps (b) and (c) create a subset of the data, with indices Di which appears to be drawn from
the distribution νpi conditioned on the fact that all bits in T are 1. This is done by rejection

sampling. In order to see that the algorithm is well-defined, one must verify that νpi(x
j)

8nρc(xj) ∈ [0,1],
which is what Lemma 18 of Appendix E states. Second, we need to explain how one computes

this ratio. It is easy to compute νpi(xj) = p
∑k xjk
i (1−pi)∑k 1−xj

k exactly. Computing ρc(x) exactly
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involves the straightforward expansion and integration of a univariate degree-n polynomial.

3 Conclusions

We have made progress on the problems of learning DNF and decision trees from random
examples, by introducing algorithms and new models in which to analyze them. From a practical
point of view, perhaps the most limiting assumption from ours and prior work is that the
distribution is a product distribution. It would be interesting to see if the smoothed analysis
paradigm could be extended beyond product distributions.
Acknowledgments. We would like to thank Ran Raz, Madhu Sudan, Ryan O’Donnell, and
Prasad Tetali for very helpful comments.
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A Analysis of the Greedy Feature Construction algorithm

It will be convenient to define a partially normalized Fourier coefficient,

f̄µ(S) =
f̂µ(S)

∏i∈S
√

1 − µ2
i

.

Note that if µ ∈ [c − 1,1 − c]n then we have,

∣f̂µ(S)∣ ≤ ∣f̄µ(S)∣ ≤
∣f̂µ(S)∣

(1 − (1 − c)2)∣S∣/2 ≤ ∣f̂µ(S)∣
c∣S∣/2

(10)

In this notation, we also have,

f(x) = ∑
S

f̄µ(S)∏
i∈S

(xi − µi)

Hence, for any µ = µ̄ +∆,

∑
S

f̄µ(S)∏
i∈S

(x − µ) = ∑
S

f̄µ̄(S)∏
i∈S

((xi − µ̄i) +∆i).

Collecting terms gives a means for translating between product distributions µ = µ̄ +∆:

f̄µ(S) = ∑
T⊇S

f̄µ̄(T ) ∏
i∈T∖S

∆i (11)

The following simple lemma proves useful for the analysis.

Lemma 17. Take any c ∈ (0,1/2), µ̄ ∈ [c−1,1−c]n and let µ = µ̄+∆, where ∆ is chosen uniformly
at random from [−c, c]n. Let f ∶ Rn → R be any multilinear function f(x) = ∑S f̄µ(S)(x − µ).
Then for any T ⊆ U ⊆ N , a, b > 0,

Pr∆∈[−c,c]n[∣f̄µ(T )∣ ≤ a ∣ ∣f̄µ(U)∣ ≥ b] ≤
√
a

b
(4/c)∣U∖T ∣/2.

(For events A,B, we define Pr[A∣B] = 0 in the case that Pr[B] = 0.) The proof uses a
common technique in smoothed analysis: reordering the order of picking random variables.

Proof. For any set S ⊆ N , let ∆ = (∆[S],∆[N ∖ S]) where ∆[S] ∈ [−c, c]∣S∣ represents the
coordinates of ∆ that are in S. Let V = U ∖T . The main idea is to imagine picking ∆ by picking
∆[N ∖ V ] first (and later picking ∆[V ]). Now, we claim that once ∆[N ∖ V ] is fixed, f̄µ(U) is
determined. This follows from (11), using the fact that S ∖U ⊆ N ∖ V :

f̄µ(U) = ∑
S⊇U

f̄0(S) ∏
i∈S∖U

µi.

On the other hand f̄µ(T ) is not determined only from ∆[N ∖V ]. Once we have fixed ∆[N ∖V ],
it is now a polynomial in ∆[V ] using (11) again:

g(∆[V ]) = f̄µ(T ) = ∑
S⊇T

f̄µ̄(S) ∏
i∈S∖T

∆i.
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Clearly g is a multilinear polynomial of degree at most ∣V ∣. Most importantly, the coefficient
of ∏i∈V ∆i in g is exactly ∑S⊇T∪V f̄µ̄(S)∏i∈S∖(T∪V ) ∆i = f̄µ(U), since T ∪ V = U . Hence,
the choice f̄µ(S) can be viewed as a degree-d polynomial in the random variable ∆[V ] with
leading coefficient f̄µ(U), and we can apply Lemma 4. So, suppose that ∣f̄µ(U)∣ > b. Let
g′(x) = b−1c−∣V ∣g(xc), so the coefficient of ∏i∈V xi in g′ is (b−1c−∣V ∣)c∣V ∣f̄µ(U) ≥ 1. By lemma 4,

Pr∆[V ]∈[−c,c]∣V ∣[∣g(∆[V ])∣ ≤ a] = Prx∈[−1,1]∣V ∣[∣g′(x)∣ < ab−1c−∣V ∣] ≤
√
a

b
c−∣V ∣/22∣V ∣.

Below is the proof of Lemma 3.

Proof of Lemma 3. Since µ is c-bounded, for any S ⊆ N with ∣S∣ ≤ d, ∣f̂µ(S)∣ ≤ ∣f̄µ(S)∣ ≤
c−d/2∣f̂µ(S)∣, (see (10)), it suffices to show that, for any a, b > 0,

Pr∆∈[−c,c]n [∃T ⊆ U ⊆ N such that ∣U ∣ ≤ d ∧ ∣f̄µ(T )∣ ≤ a ∧ ∣f̄µ(U)∣ ≥ b] ≤ a1/2b−5/24dc−3d/2.

This is because for a = αc−d/2 and b = β, ∣f̂µ(U)∣ ≥ β implies ∣f̄µ(U)∣ ≥ b, and ∣f̂µ(T )∣ ≤ α implies
∣f̄µ(U)∣ ≤ a. We can bound the above quantity by the union bound using Lemma 17. It is at
most,

∑
∣U ∣≤d
T⊆U

Pr[∣f̄µ(T )∣ ≤ a ∧ ∣f̄µ(U)∣ ≥ b] = ∑
∣U ∣≤d
T⊆U

Pr[∣f̄µ(T )∣ ≤ a ∣ ∣f̄µ(U)∣ ≥ b]Pr[∣f̄µ(U)∣ ≥ b]

≤ ∑
∣U ∣≤d

∑
T⊆U

a1/2b−1/2(4/c)∣U∖T ∣/2 Pr[∣f̄µ(U)∣ ≥ b]

≤ 2da1/2b−1/2(4/c)d/2 ∑
∣U ∣≤d

Pr[∣f̄µ(U)∣ ≥ b]

= 2da1/2b−1/2(4/c)d/2 E[∣{U ∣ ∣U ∣ ≤ d ∧ ∣f̄µ(U)∣ ≥ b}∣]

All probabilities in the above are over ∆ ∈ [−c, c]n. Finally, there can be at most c−db−2 different
U ⊆ N such that ∣f̄µ(U)∣ ≥ b since ∑S f̄2

µ(S) ≤ c−d∑S f̂2
µ(S) ≤ c−d for all µ by Parseval’s

inequality. Hence, the expected number of such U is at most c−db−2 and we have the lemma.

Below is the proof of Lemma 5.

Proof of Lemma 5. Define the estimate of f̂µ(S) (based on the data) to be,

e(S) = 1
m

m

∑
j=1

yjχS,µ(xj).

By equation (1), we have that E[e(S)] = f̂µ(S), for any fixed S,µ, where the expectation is
taken over the m data points. Of course, steps (3a) and (4) only evaluate e(S) on a small
number of sets, but it is helpful to define e for all S.

Let t =m−1/3 and τ =m−1/3/4. We define the set of gingerbread features to be,

G = {S ⊆ N ∣ ∣S∣ ≤ d ∧ ∣f̂µ(S)∣ ≥ ε} .

These are the features that we really require for a good approximation. We define the set of
breadcrumb features to be,

B = {B ⊆ S ∣ S ∈ G} .
These are the features which will help us find the gingerbread features. The set of pebble features
is,

P = {∅} ∪ {S ⊆ N ∣ ∣S∣ ≤ d, ∣f̂µ(S)∣ ≥ t − τ} .
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These are the features that might possibly be included in Sn on a “good” run of the algorithm.
Note that, by Parseval’s inequality, ∣P ∣ ≤ 1+ (t− τ)−2 ≤ 1+ 2t−2 ≤ 3t−2. We will argue that, with
high probability, G ⊆ Sn ⊆ P . In order to do this, we also consider the set of candidate features,

C = P ∪ {S ∪ {i} ∣ S ∈ P, i ∈ N} .

These are the set of all features that we might possibly estimate (evaluate e(S)) on a “good”
run of the algorithm. Let us formally call a run of the algorithm “good” if, (a) ∣f̂µ(S)−e(S)∣ ≤ τ
for all S ∈ C and (b) ∣f̂µ(S)∣ ≥ t + τ for all S ∈ B. First, we claim that (a) implies Sn ⊆ P . This
can be seen by induction, arguing that Si ⊆ P for all i = 0,1, . . . , n. This is trivial for i = 0. If
it holds for i, then for i + 1, we have that the set of features on iteration i that are estimated
will all be in C, hence will all be within τ of correct. Hence, for any of these features that is in
C ∖ P , we will have ∣e(s)∣ < t and it will not be included in Si. Second we claim that (a) and
(b) imply that B ⊆ Sn. The proof of this is similarly straightforward by induction. So (a) and
(b) imply that G ⊆ Sn ⊆ P , since G ⊆ B. Note that since ∣P ∣ ≤ 3t−2 < m, the algorithm will not
abort and output FAIL in this case.

It remains to show that the probability of a good run is at least 1 − δ, which we do by the
union bound over the two events (a) and (b). By Lemma 3 property (b) fails with probability
at most,

(t + τ)1/2ε−5/2(2/c)2d ≤ 2m−1/6ε−5/2(2/c)2d ≤ δ/2,
for m = poly(2d/(δε)). Finally, it remains to show that (a) fails with probability at most δ/2.
First, we need to bound ∣χS,µ(xj)∣ for each S ∈ C. Observe that ∣χ{i},µ(x)∣ ≤ 2−c√

1−(1−c)2
≤ 2/c for

any i ∈ N , and x ∈ {−1,1}n, by the definition of χ. This means that ∣χS,µ(x)∣ ≤ (2/c)d for all
S ∈ C, x ∈ {−1,1}n. Finally, by Chernoff-Hoeffding bounds, the probability of ∣e(S) − f̂µ(S)∣ ≥ τ
on any fixed S is at most 2e−mτ

2/(2(2/c)2d). It suffices for this to hold simultaneously for each
element of C (note that C depends on µ but does not depend on the specific choices of the
algorithm), hence the probability of failure of (a) is at most,

2e−mτ
2(c/2)2d/2∣C ∣ ≤ 2e−m

1/3(c/2)2d/32n∣P ∣ ≤ 2e−m
1/3(c/2)2d/32(3nt−1/2) = 6e−m

1/3(c/2)2d/32nm1/18.

This is at most δ/2 for m = poly(2c log(n)/δ).

B Analysis of CNF Appx algorithm

We now prove Theorem 6.

Proof of Theorem 6. Say f = D1D2⋯Ds. Consider the following objective function, for g, u ∶
{−1,1}n → R, H ∶ {−1,1}n → {0,1},

obj(g,H,u) = Eµ[g(x)H(x) +Λ1(1 − g(x))u(x) +Λ2Φ(g(x)))].

The rough idea is to minimize obj(g,Hi, p), over g ∈Kd and to argue four parts: (a) obj(g,Hi, p) ≈
obj(g,Hi, f), (b) there is a g ∈ Kd such that obj(g,Hi, f) is small, (c) the algorithm will find
gi such that obj(gi,Hi, f) is small, and (d) if obj(gi,Hi, f) is small, then we make progress.
Part (a). The idea is to minimize obj(g,Hi, p) over g ∈ Kd. We first observe that for any
g ∈Kd,

∣E[g(x)f(x)] −E[g(x)p(x)]∣ =
RRRRRRRRRRRR
∑
∣S∣≤d

ĝ(S)(f̂(S) − p̂(S))
RRRRRRRRRRRR
≤ ∑

∣S∣≤d
∣ĝ(S)∣ε0 ≤ ε0.

Hence, for any g ∈Kd,
∣obj(g,Hi, p) − obj(g,Hi, f)∣ ≤ ε0Λ1 (12)
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Part (b). Clearly the false positive rate of Hi, E[Hi(1− f)] is decreasing in i, since Hi+1 ≤Hi.
Now E[Hi(1 − f)] ≤ ∑sk=1 E[Hi(1 −Dk)]. Therefore, there must be one conjunction Dk such
that E[Hi(1 −Dk)] ≥ 1

s E[Hi(1 − f)], i.e., Dk covers a 1/s fraction of the false positives of Hi.
Now E[1 −Dk] ≤ (1 − c)s, where s is the size of Dk. Hence, if 1

s E[Hi(1 − f)] > (1 − c)d, then
s ≤ d. Since Dk ∶ {−1,1}n → {0,1}, and Dk ≤ f , obj(Dk,Hi, f) ≤ E[Hi − 1

s
(1 − f)Hi]. Next we

claim,

min
g∈Kd

obj(g,Hi, f) ≤ E[Hi −
1
s
(1 − f)Hi] + (1 − c)d

min
g∈Kd

obj(g,Hi, p) ≤ E[Hi −
1
s
(1 − f)Hi] + (1 − c)d + ε0Λ1 (13)

If s ≤ d then Dk ∈ Kd, the first equation holds. On the other hand, if s > d, this means that
1
s E[Hi(1− f)] < (1− c)d, and the first equation holds because 1 ∈Kd and obj(1,Hi, f) = E[Hi].
The second equation follows from (12). Hence, while Hi has a significant false positive rate, the
objective will be noticeably smaller than E[Hi].
Part (c). We will use generic Fourier gradient descent analysis of Section 1.10, Lemma 10 in
particular. The iteration in step 3 of the CNF learning algorithm is exactly the same as the
Fourier gradient descent algorithm in Section ??, for the following Γ:

Γ(g, x) =H(x) −Λ1p(x) +Λ2Φ(g(x)).

Hence, it suffices to show that Γ satisfies equation (4) with respect to L(g) = obj(g,Hi, p):

L(g1) − L(g2) = E[(g1 − g2)Hi −Λ1(g1 − g2)p +Λ2(Φ(g1) −Φ(g2))]
≥ E[(Hi −Λ1p +Λ2φ1(g2))(g1 − g2)] by eq. (3)
= E[Γ(g2, x)(g1(x) − g2(x))]

Finally, we note that ∣Γ(g, x)∣ ≤ G = 1 + Λ1B + Λ2 for g ∈ Kd, since ∣H(x)∣ ≤ 1 and ∣p(x)∣ ≤ B.
Hence, Lemma 10 implies that step 3 of the CNF recovery algorithm will, with probability
≥ 1−δ/R, output gi which satisfies obj(gi,Hi, p) ≤ ming∈Kd obj(g,Hi, p)+2G/

√
T +8

√
τ . By our

choice of G,T, τ , 2G/
√
T + 8

√
τ ≤ ε0Λ1. By (13), this means,

obj(gi,Hi, p) ≤ E[Hi −
1
s
(1 − f)Hi] + (1 − c)d + 2ε0Λ1 ≤ 2. (14)

By the union bound, with probability ≥ 1 − δ, the algorithm will achieve this on all R rounds.
Part (d). Suppose this is the case. In particular, obj(gi,Hi, p) ≤ 2 will give us obj(gi,Hi, f) ≤ 3
and upper bounds on E[Φ(gi)] and the false negative rate. Note that, since f(x),Hi(x) ∈ {0,1},

∣(1 − gi(x))f(x)∣ ≤ 1 +Φ(gi(x))
∣gi(x)Hi(x)∣ ≤ 1 +Φ(gi(x))

∣E[giHi +Λ1(1 − gi)f]∣ ≤ (1 +Λ1)(1 +E[Φ(gi)])
−(1 +Λ1)(1 +E[Φ(gi)]) +Λ2 E[Φ(gi)] ≤ obj(gi,Hi, f) ≤ 3

This gives, E[Φ(g)](Λ2 − Λ1 − 1) ≤ 4 + Λ1 or E[Φ(gi)] ≤ 4+Λ1
Λ2−Λ1−1

. We now argue that there
will be few false negatives, i.e., E[(1 − hi)f] = Pr[gi ≤ 1/2 ∧ f = 1] is small. In particular,
gi(x)Hi(x) ≥ −Φ(gi(x)), so

3 ≥ obj(gi,Hi, f) ≥ E[giHi +Λ1(1 − g)f] ≥ E[−Φ(gi) +Λ1(1 − gi)f].

Rearranging terms, E[(1 − gi)f] ≤ Λ−1
1 (3 +E[Φ(gi)]) . Now,

E[(1 − gi)f] ≥ Pr [gi(x) ≤
1
2
∧ f(x) = 1] 1

2
+E [((1 − g)f)−] ,
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where (z)− = z if z < 0 and 0 otherwise. Using the fact that E[((1 − gi)f)−] ≥ −E[Φ(gi)] gives,

E[(1 − hi)f] = Pr [gi(x) ≤
1
2
∧ f(x) = 1] ≤ 2Λ−1

1 (3 +E[Φ(gi)]) + 2 E[Φ(gi)].

So, in summary, we have argued that, E[Φ(gi)] ≤ 4+Λ1
Λ2−Λ1−1

and E[(1 − hi)f] ≤ 6Λ−1
1 + (2 +

2Λ−1
1 )E[Φ(gi)]. This implies a bound on the total false negative rate, E[(1 − h)f] ≤ R(6Λ−1

1 +
(2 + 2Λ−1

1 )E[Φ(gi)]) ≤ ε/3, for our choice of Λ1,Λ2,R.
To bound the total error, we use,

err(h) = E[(1−f)h+h(1−f)] = E[h−f]+2 E[(1−h)f] ≤ E[h−f]+2R(6Λ−1
1 +(2+2Λ−1

1 )E[Φ(gi)]).

Thus, it suffices to show that E[h−f] ≤ ε/3 or E[(1−f)h] ≤ ε/3. Clearly E[Hi] and E[(1−f)Hi]
are each nonincreasing in i (sinceHi+1 ≤Hi). We have already assumed that (14) holds for each i,
implying obj(gi,Hi, f) ≤ E[Hi− 1

s
(1−f)Hi]+(1−c)d+3ε0Λ1 by (12). Hence, if E[(1−f)Hi] ≥ ε/3,

then

E[Hi] −
1
3s
ε + (1 − c)d + 3ε0Λ1 ≥ obj(gi,Hi, f)

≥ E[giHi +Λ1(1 − gi(x))f(x)]
≥ E[Hi+1] −Λ1 E[Φ(gi)]

E[Hi] −
1
3s
ε + (1 − c)d + 3ε0Λ1 +Λ1 E[Φ(gi)] ≥ E[Hi+1]

Let ε2 = 1
3s
ε−(1− c)d −3ε0Λ1 −Λ1

4+Λ1
Λ2−Λ1−1

. By our earlier bound on E[Φ(gi)], the above implies
that E[Hi+1] ≤ E[Hi] − ε2. Since E[Hi] ∈ [0,1], this decrease can only occur for at most 1/ε2
iterations. A simple calculation shows that 1/ε2 ≤ R = 6s/ε.

Finally, the runtime of the algorithm is dominated by step 3, which is executed RT =
poly(ns/ε) times. Each call to EKM takes time polynomial in ns log(1/δ)/ε, by Lemma 11.

C Analysis of Agnostic DT Appx algorithm

Proof of Theorem 8. Consider the following objective function, for g, u ∶ {−1,1}n → R,

obj(g, u) = Eµ[g(x)(1 − u(x)) + (1 − g(x))u(x) +ΛΦ(g(x))] = E[g + u − 2gu +ΛΦ(g)].

Again, the rough idea is to minimize obj(g, p), over g ∈ Kdt and to argue four parts: (a)
obj(g, p) ≈ obj(g, f), (b) there is a g ∈ Kdt such that obj(g, f) is near opt, (c) the algorithm
will find g such that obj(g, f) is near opt, and (d) we output h with error near obj(g, f), all
with high probability.
Part (a). We first observe that for any g ∈Kdt,

∣E[g(x)f(x)] −E[g(x)p(x)]∣ =
RRRRRRRRRRRR
∑
∣S∣≤d

ĝ(S)(f̂(S) − p̂(S))
RRRRRRRRRRRR
≤ ∑

∣S∣≤d
∣ĝ(S)∣ε0 ≤ ε0t.

Hence, for any g ∈Kdt,

∣obj(g, p) − obj(g, f)∣ = ∣E[(p(x) − f(x))(1 − 2g(x))]∣ ≤ ε0(1 + 2t) ≤ ε/20 (15)

In the above, we have used the fact that the function 1 − 2g is in Kd(1+2t).
Part (b). Consider the function g∗ ∶ {−1,1}n → {0,1}, which is computed by the decision tree
f∗ truncated as follows: each internal node of f∗ at depth d is replaced by a leaf of value 0.
Next notice that ∥ĝ∗µ∥0 ≤ 4d, i.e., there can be at most 4d nonzero Fourier coefficients of g∗ –
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a property which holds for any depth-d decision tree since each of the 2d leaves contributes to
at most 2d nonzero terms. Also, since Parseval implies that each coefficient is at most 1, we
also have ∥ĝ∗µ∥1 ≤ 4d. Hence, g∗ ∈ Kdt for t = 4d. Next note that the probability of a random
x reaching any particular truncated node is at most (1 − c/2)d ≤ e−cd/2, since the probability of
taking any branch is (1 ± µi)/2 ∈ [c/2,1 − c/2]. Since there are at most s truncations and each
truncation leads to a discrepancy with f∗ of at most 1, we have Eµ[∣g∗(x)−f∗(x)∣] ≤ se−cd/2 = ε/8.
Finally, since f, f∗ are binary, E[f(1 − f∗) + (1 − f)f∗] = opt and,

obj(g∗, f) = obj(f∗, f) +E[(g∗(x) − f∗(x))(1 − 2f(x))]
≤ opt +E[∣g∗(x) − f∗(x)∣]
≤ opt + ε/8.

Using (15),
obj(g∗, p) ≤ obj(g∗, f) + ε/20 ≤ opt + ε/8 + ε/20. (16)

Part (c). As in the analysis of DNFs, we again use Lemma 10. The iteration in step 3 of the
DT learning algorithm is exactly the same as the Fourier gradient descent algorithm in Section
1.10, for the following Γ:

Γ(g, x) = 1 − 2p(x) +Λφ(g(x)).
Hence, it suffices to show that Γ satisfies equation (4) with respect to L(g) = obj(g, p):

L(g1) − L(g2) = E[(g1 − g2)(1 − 2p) +Λ(Φ(g1) −Φ(g2))]
≥ E[(1 − 2p +Λφ(g2))(g1 − g2)] by eq. (3)
= E[Γ(g2, x)(g1(x) − g2(x))]

Finally, we note that ∣Γ(g, x)∣ ≤ G = 1 + 2B + Λ. Hence, Lemma 10 implies that step 3 of
the DT recovery algorithm will, with probability ≥ 1 − δ/2, output g which satisfies obj(g, p) ≤
ming∈Kd obj(g, p) + 2tG/

√
T + 8

√
τt3. By our choice of G,T, t, τ , 2tG/

√
T + 8

√
τt3 ≤ ε0t = ε/60.

By (16), this means that with probability ≥ 1 − δ/2,

obj(g, p) ≤ opt + ε/8 + ε/15. (17)

Part (d). Suppose the above holds. In particular, obj(g, p) ≤ 2 will give us obj(g, f) ≤ 3 (by
(15)) and the following upper bounds on E[Φ(g)]. Note that, since f(x),1 − f(x) ∈ {0,1}, and
since ∣g(x)∣, ∣1 − g(x)∣ ≤ 1 +Φ(g),

obj(g, f) ≥ Eµ[−1 −Φ(g(x)) +ΛΦ(g(x))]
3 ≥ −1 +E[Φ(g)](Λ − 1)

This gives, E[Φ(g)] ≤ 4
Λ−1

. For f(x), g(x) ∈ {0,1}, it is easy to see that ∣f(x) − g(x)∣ = I[f(x) ≠
g(x)] = f(x)(1 − g(x)) + (1 − f(x))g(x). More generally, since f(x) ∈ {0,1},

∣f(x) − g(x)∣ ≤ f(x)(1 − g(x)) + (1 − f(x))g(x) + 2Φ(g(x)).

To see the above, just check that ∣1 − g(x)∣ ≤ 1 − g(x) + 2Φ(g(x)) and ∣g(x)∣ ≤ g(x) + 2Φ(g(x)).
Therefore,

E[∣f − g∣] ≤ E[f(1 − g) + (1 − f)g + 2Φ(g)] ≤ obj(g, f) + 8
Λ − 1

Now (17) and (15) give,

obj(g, f) ≤ obj(g, p) + ε/20 ≤ opt + ε(1
8
+ 1

15
+ 1

20
) < opt + ε/4.

24



Thus, E[∣f − g∣] ≤ opt + ε/4 + 8
Λ−1

≤ opt + ε/2, for our choice of Λ.
Now, as observed by Kalai et al [10], for any x ∈ R, y ∈ {0,1}, and uniformly random θ ∈ [0,1],

Prθ∈U [0,1][I[x ≥ θ] ≠ y] ≤ ∣x − y∣.

The reason is that I[x ≥ θ] ≠ y iff I[x ≥ θ] ≠ I[y ≥ θ] iff θ lies between x and y, which happens
with probability at most ∣x−y∣ (since part of the interval [x, y] or [y, x] may lie outside of [0,1]).
Therefore, if we choose a uniformly random threshold θ ∈ [0,1],

Eθ∈[0,1][err(I[g ≥ θ])] = Eθ∈[0,1] [Prµ[f(x) ≠ I[g(x) ≥ θ]]] ≤ opt + ε/2.

Since a random threshold would have low expected error, there must be some threshold θ∗ ∈ [0,1]
which achieves this error rate, err(I[g ≥ θ∗]) ≤ opt+ε/2. Step 5 of the algorithm is simply solving
this problem. Note that this problem is just a 1-dimensional agnostic learning of a threshold
function, i.e., agnostic learning over X = R, C = {f(x) = I[x ≥ θ] ∣ θ ∈ [0,1]}, with an arbitrary
distribution over X × {0,1}. The VC dimension of this class is 1. By the VC theorem, if we
choose the best threshold on a sample of size m, with probability ≥ 1−δ/2, the error of the chosen

threshold will be within
√

log(2m+1)+log(8/δ)
m

ε/2 of the error of the best threshold, which we have
already argued is at most opt + ε/2. Therefore, with probability ≥ 1 − δ (by the union bound
over the two “bad” events, each of which happens with probability ≤ δ/2), the final hypothesis
h will have err(h) ≤ opt + ε.

Finally, the the algorithm makes T calls to EKM and projection which take time polynomial
in n log(1/δ)/ε, by Lemma 11, plus an additional O(m logm) time to find the best threshold
(easy after sorting based on g(xj)).

D Proof of Lemma 10

We omit µ in f̂µ since it remains fixed throughout the proof. The first useful property of
projections, used by Zinkevich [16], is:

∀f ∈Kdt, g ∈ R{−1,1}n h = projµ,Kdt(g) ⇒ ∥ĥ − f̂∥2 ≤ ∥ĝ − f̂∥2. (18)

This is a general property of projection onto a convex set in Euclidean space.
Let gi+1 = f i − ηΓfi and hi = projµ,Kdt(g

i). Notice that ∣f(x)∣ ≤ t for any f ∈Kdt and hence
∣gi(x)∣ ≤ t + ηG. With probability ≥ 1 − Tδ, all calls to EKM succeed in finding a function ui =
EKM(gi, t+ ηG, ε, δ) which satisfies ∥ûi − ĝi∥∞ ≤ ε. Let us consider the case where this happens

(the other case may be considered failures). By Lemma 13, this implies that ∥f̂ i − ĥi∥2

2
≤ 4εt.

Take any minimum f∗ ∈ arg minf∈Kdt L(f). By (18, we have that for every i, ∥ĥi − f̂∗∥2 ≤
∥ĝi − f̂∗∥2. Hence

∥f̂ i − f̂∗∥2
2 − ∥ĥi+1 − f̂∗∥2

2 ≥ ∥f̂ i − f̂∗∥2
2 − ∥ĝi+1 − f̂∗∥2

2

= (f̂ i − f̂∗)2 − (f̂ i − f̂∗ − ηΓ̂fi)2

= 2η⟨Γfi , f i − f∗⟩ − η2⟨Γfi ,Γfi⟩2

≥ 2η(L(f i) − L(f∗)) − η2G2

The last step follows by (4) and the fact that ⟨Γfi ,Γfi⟩2 = E[Γ2
fi
(x)] ≤ G2. Next,

∥f̂ i+1 − f̂∗∥2 − ∥ĥi+1 − f̂∗∥2 = ⟨f i+1 − f∗, f i+1 − f∗ + hi+1 − f∗⟩
≤ ∥f̂ i+1 − ĥi+1∥

2
∥f̂ i+1 − f̂∗ + ĥi+1 − f̂∗∥

2
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We have already taken ∥f̂ i+1 − ĥi+1∥2 ≤ 2
√
εt and ∥f̂∗∥2 ≤ ∥f̂∗∥1 ≤ t (similarly for f i+1 and ĥi+1),

using the triangle inequality, the above is at most 2
√
εt(4t). Hence,

∥f̂ i − f̂∗∥2 − ∥f̂ i+1 − f̂∗∥2 ≥ 2η(L(f i) − L(f∗)) − η2G2 − 8ε
1
2 t

3
2 .

Summing over i = 1,2, . . . , T , gives:

∥f̂∗∥2 − ∥f̂T+1 − f̂∗∥2 ≥ 2η
T

∑
i=1

(L(f i) − L(f∗)) − T (η2 + 8ε
1
2 t

3
2 ).

Rearranging terms and using the facts that ∥f̂∗∥2 ≤ t2, we have,

1
T

T

∑
i=1

L(f i) − L(f∗) ≤ t2

2Tη
+ η2G2 + 8ε

1
2 t

3
2 .

By our choice η = tG−1T −1/2, the RHS above is at most 2tGT −1/2 +8ε
1
2 t

3
2 . Finally, by convexity,

we have,

L(
T

∑
i=1

f i) ≤ 1
T

T

∑
i=1

L(f i) ≤ L(f∗) + 2tGT −1/2 + 8ε
1
2 t

3
2 .

E Formal proofs for Part II: Learning from diversity

Lemma 18. For any c ∈ (0,1/2), n ≥ 2, p ∈ [1/2 − c,1/2 + c], and any x ∈ {0,1}n,

ρc(x) ≥
1

8n
νp(x).

Proof. We consider two cases.
Case 1: p ≥ 1/2. Take any α ∈ [p − c/n, p] ⊆ [p(1 − 2c/n), p]. Our first goal is to show that, for
any x ∈ {0,1}n,

να(x) ≥
1
4
νp(x) (19)

Note that we can write ρc as,

ρc(x) = Eβ∈[1/2−c,1/2+c][νβ(x)],

where β is chosen uniformly from [1/2 − c,1/2 + c]. Hence, if (19) holds, this implies that
ρc(x) ≥ 1

2n
1
8
Dγµ(x) because at least a 1/(2n) fraction of α ∈ [1/2−c,1/2+c] satisfy α ∈ [p−c/n, p].

Thus, for this case it remains to show that (19) holds.
Since α ≤ p, we have that, for each x,

(α)∣x∣(1 − α)n−∣x∣
(p)∣x∣(1 − p)n−∣x∣ ≥ (1 − 2c

n
)
∣x∣

≥ (1 − 1/n)n.

Using the fact that (1 − 1/n)n ≥ 1/4, we get (19).
Case 2: p < 1/2. This case follows by symmetry.
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Figure 1: Examples of decision trees for learning from diversity. Right edges correspond to xi = 1.
a) As we increase the bias p, the expected value of the function increases. b) The expected value
of the function is 0 for all biases, but the variance changes as we change p. This is a three-valued
function. While ±1-valued functions cannot have this problem, such behavior occurs in the residual
difference between the target function f and a polynomial approximation.) c) The expected value
is 0 for all biases, and the variance is nearly 1 for almost all biases.

E.1 Interpolation

In this section we review how many samples we need to estimate coefficients of a univariate
polynomial through interpolation at regularly spaced points (of course one may do a bit better
by choosing irregularly spaced points). Let P ∶ R → R be a univariate polynomial of degree
≤ d with coefficients ci, i.e., P (γ) = ∑dk=0 ckγ

k. Let 0 ≤ a < b ≤ 1 be reals. Let γ0, γ1, . . . , γd be
γi = a+i b−ad , equally-spaced points between a and b. Then the lagrange interpolating polynomial
representation of P is,

P (γ) =
d

∑
i=0

f(γi)∏
j≠i

γ − γj
γi − γj

=
d

∑
k=0

(
d

∑
i=0

Cikf(γi))γk. (20)

Where here C ∈ R(d+1)×(d+1) is a matrix that depends on a, b, and d.

Lemma 19. For any a, b ∈ [0,1], d ≥ 1, and i, k ∈ {0,1, . . . , d},

∣Cik ∣ < ( 4e
b − a)

d

.

Proof. Consider ∏j≠i(γ − γj) as a univariate polynomial in d. It is not difficult to see that its
coefficients have magnitude at most 2d, since, by expansion each is the sum of at most 2d terms,
each with magnitude at most 1 (because each γj ∈ [0,1]). It remains to bound the denominator,
∣∏j≠i γi − γj ∣ ≥ ( b−a

2e
)d .

∏
j≠i

∣γi − γj ∣ = ∏
j≠i

(∣j − i∣b − a
d

) = i!(d − i)!(b − a
d

)
d

= d!
(d
i
)dd

(b − a)d > d!
2ddd

(b − a)d.

In the above we have used the fact that (d
i
) ≤ 2d. Finally, using the well-known fact that

d! ≥ (d/e)d for any integer d, we have that,

∏
j≠i

∣γi − γj ∣ > (b − a
2e

)
d

.

E.2 Proof of lemma 16

By Lemma 19 of Appendix E.1 and (20), it suffices to show that yi is within τ ′ = 1
2(d+1) (2e/c)

d
τ

of ∑i aip
∣Si∖T ∣
i = Ex∼µpi [f(x)∣x[T ] = 1] to ensure that we round each coefficient to the correct

integer. Hence, it suffices to show that the subsamples in each Di represent xj drawn indepen-
dently from the distribution µpi conditioned on x[T ] = 1 (our estimate is unbiased), and that
there are sufficiently many samples (our estimate is accurate). We begin with the first part.
For the first part, suppose first that we removed the condition that xj[T ] = 1 in line 1(c) of the
algorithm and let the set D′

i be the set of examples that would have passed the rejection test
so Di = {j ∈ D′

i∣xj[T ] = 1}. Then it is clear that the examples xj for j ∈ D′
i are distributed
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independently according to µpi , because xj are sampled from distribution ρc rejection sampling
was done with appropriate weights. Moreover, the presence or absence of different j’s in D′

i is
independent, and the expected size is

E[∣D′
i∣] =mEx∼ρc [

µpi(x)
8nρc(x)

] = m

8n
.

In other words, each j is added to D′
i with probability 1/8n, independently. Now, the further

restriction that xj[T ] = 1 means that each j in D′
i appears in Di with probability p∣T ∣

i and each
example appearing in Di is drawn from the desired distribution, namely the distribution µpi
conditioned on the fact that x[T ] = 1. Thus we have shown that yi is an unbiased estimate of
Ex∼µpi [f(x)∣x[T ] = 1]. To show that it is accurate with high probability, we need to argue that
it has large enough size, with high probability. We can think of the size of Di as being chosen
first, and then the samples next. In this manner, we need merely to apply Chernoff-Hoeffding
bounds twice.

By the previous reasoning, each j is added to Di independently with probability p
∣T ∣
i /8n ≥

(1/2− c)d/8n. By Chernoff-Hoeffding bounds, for sufficiently large polynomial M , we have that
with probability ≥ 1−δ/(2d+2), we will have at least log((4d+4)/δ)(τ ′)−2 elements in any given
Di, since 1/τ ′ is polynomial in 2d/τ . Conditioned on the number of elements being at least this
large, again by Chernoff-Hoeffding bounds, we have that our estimate of yi will be accurate to
within τ ′ with probability at least 1 − δ/(2d + 2). By the union bound, the probability of any
failure is at most the probability that any of the d + 1 sets Di is too small or that any of the
d + 1 estimates based on these sets is off by more than τ ′.

E.3 Proof of Theorem 14

Each fj is a ≤ t-sparse, B-bounded, degree ≤ d multilinear integer polynomial. We simply need
to bound the failure probability of estimating the canonically first nonzero term in each fj by
δ/t and then we can apply the union bound. In estimating the first nonzero term, the algorithm
makes at most n calls to T -interpolate, and then an additional call to estimate the value of its
coefficient. The calls are to f2

j , which is a degree-2d, t2-sparse, B2t2-bounded integer multilinear
polynomial. Hence, by Lemma 16, it will succeed with probability ≥ δ/t for m polynomial in
22dt4B2 log(t/δ) = poly(2dtB log(1/δ)).
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