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ABSTRACT
Given data drawn from a mixture of multivariate Gaus-
sians, a basic problem is to accurately estimate the mix-
ture parameters. We provide a polynomial-time algorithm
for this problem for the case of two Gaussians in n dimen-
sions (even if they overlap), with provably minimal assump-
tions on the Gaussians, and polynomial data requirements.
In statistical terms, our estimator converges at an inverse
polynomial rate, and no such estimator (even exponential
time) was known for this problem (even in one dimension).
Our algorithm reduces the n-dimensional problem to the
one-dimensional problem, where the method of moments is
applied. One technical challenge is proving that noisy esti-
mates of the first six moments of a univariate mixture suffice
to recover accurate estimates of the mixture parameters, as
conjectured by Pearson (1894), and in fact these estimates
converge at an inverse polynomial rate.

As a corollary, we can efficiently perform near-optimal
clustering: in the case where the overlap between the Gaus-
sians is small, one can accurately cluster the data, and when
the Gaussians have partial overlap, one can still accurately
cluster those data points which are not in the overlap re-
gion. A second consequence is a polynomial-time density
estimation algorithm for arbitrary mixtures of two Gaus-
sians, generalizing previous work on axis-aligned Gaussians
(Feldman et al, 2006).

Categories and Subject Descriptors
G.3 [Probability and Statistics]: multivariate statistics

General Terms
Algorithms, Theory

∗Microsoft Research New England. Part of this work was
done while the author was at Georgia Institute of Tech-
nology, supported in part by NSF CAREER-0746550, SES-
0734780, and a Sloan Fellowship.
†This research was supported in part by a Fannie and John
Hertz Foundation Fellowship. Part of this work was done
while the author was an intern at Microsoft Research New
England.
‡This research was supported in part by an NSF Gradu-
ate Research Fellowship. Part of this work done while at
Microsoft Research New England.

Copyright is held by the author/owner(s).
STOC’10,June 5–8, 2010, Cambridge, Massachusetts, USA.
ACM 978-1-4503-0050-6/10/06.

Keywords
Gaussians, Finite Mixture Models, method of moments

1. INTRODUCTION
The problem of estimating the parameters of a mixture of

Gaussians has a rich history of study in statistics and more
recently, computer science. This natural problem has appli-
cations across a number of fields, including agriculture, eco-
nomics, medicine, and genetics [27, 21]. Consider a mixture
of two different multinormal distributions, each with mean
µi ∈ Rn, covariance matrix Σi ∈ Rn×n, and weight wi > 0.
With probability w1 a sample is chosen from N (µ1, Σ1),
and with probability w2 = 1 − w1, a sample is chosen from
N (µ2, Σ2). The mixture is referred to as a Gaussian Mix-
ture Model (GMM), and if the two multinormal densities
are F1, F2, then the GMM density is,

F = w1F1 + w2F2.

The problem of identifying the mixture is that of estimating
ŵi, µ̂i, and Σ̂i from m independent random samples drawn
from the GMM.

In this paper, we prove that the parameters can be es-
timated at an inverse polynomial rate. In particular, we
give an algorithm and polynomial bounds on the number of
samples and runtime required under provably minimal as-
sumptions, namely that w1, w2 and the statistical distance
between the Gaussians are all bounded away from 0 (The-
orem 1). No such bounds were previously known, even in
one dimension. Our algorithm for accurately identifying the
mixture parameters can also be leveraged to yield the first
provably efficient algorithms for near-optimal clustering and
density estimation (Theorems 3 and 2) for mixtures of two
Gaussians. We start with a brief history, and then give the
formal definition of the learning problem we consider and
our main results and approach.

1.1 Brief history
In one of the earliest GMM studies, Pearson [23] fit a

mixture of two univariate Gaussians to data (see Figure
1) using the method of moments. In particular, he com-
puted empirical estimates of the first six (raw) moments
E[xi] ≈ 1

m

Pm
j=1 xi

j , for i = 1, 2, . . . , 6 from sample points
x1, . . . , xm ∈ R. Using only the first five moments, he solved
a cleverly constructed ninth-degree polynomial by hand from
which he derived a set of candidate mixture parameters. Fi-
nally, he heuristically chose the candidate set of parameters
among them whose sixth moment most closely agreed with
the empirical estimate.
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Figure 1: A fit of a mixture of two univariate Gaus-
sians to the Pearson’s data on Naples crabs [23].
The hypothesis was that the data was in fact a mix-
ture of two different species of crabs. Although the
empirical data histogram is single-peaked, the two
constituent Gaussian parameters may be estimated.
This density plot was created by Peter Macdonald
using R [20].

Later work showed that “identifiability” is theoretically
possible – every two distinct mixtures of Gaussians (i.e. the
mixtures are not equivalent after some permutation of the
labels) have different probability distributions [26]. How-
ever, this work shed little light on convergence rates: this
result is based on demonstrating that distinct mixtures of
Gaussians exhibit different behavior in the density tails, and
even obtaining a single sample from the density tails could
require an enormous number of random samples. In fact,
previous work left open the possibility that distinguishing
between GMMs that are ε-different (see Theorem 1 for our
definition of ε-close) might require an amount of data that
grows exponentially in 1/ε.

The problem of clustering is that of partitioning the points
into two sets, with the hope that the points in each set are
drawn from different Gaussians. Given an accurate clus-
tering of sufficiently many points, one can recover good esti-
mates of the mixture parameters. Starting with Dasgupta [5],
a line of computer scientists designed polynomial time algo-
rithms for identifying and clustering in high dimensions [2,
7, 30, 14, 1, 4, 31]. However, even if we were given the pa-
rameters of the mixture, we could not hope to cluster many
points accurately unless the Gaussians have little overlap
(statistical distance near 1). Thus this line of work must
make such an assumption in order to cluster, and learn good
estimates for the mixture from such a clustering. Here we
are able to learn good estimates of the mixture parameters
for a GMM of two Gaussians without clustering, and we do
so using provably minimal assumptions on the GMM.

There is a vast literature that we have not touched upon
(see, e.g., [27, 21]), including the popular EM and K-means
algorithms.

1.2 Main results
In identifying a GMM F = w1F1+w2F2, three limitations

are immediately apparent:

1. Since permuting the two Gaussians does not change

the resulting density, one cannot distinguish permuted
mixtures. Hence, at best one hopes to estimate the
parameter set, {(w1, µ1, Σ1), (w2, µ2, Σ2)}.

2. If wi = 0, then one cannot hope to estimate Fi because
no samples will be drawn from it. And, in general,
at least Ω(1/ min{w1, w2}) samples will be required in
order to obtain any reasonable estimate.

3. If F1 = F2 (i.e., µ1 = µ2 and Σ1 = Σ2) then it is
impossible to estimate wi. If the statistical distance
between the two Gaussians is ∆, then at least Ω(1/∆)
samples will be required.

Hence, the number of examples required will depend on the
smallest of w1, w2, and the statistical distance between F1

and F2 denoted by D(F1, F2) (see Section 2 for a precise
definition).

Our goal is, given m independently drawn samples from a
GMM F , to construct an estimate GMM F̂ = ŵ1F̂1 + ŵ2F̂2.
We will say that F̂ is accurate to within ε if |ŵi − wi| ≤ ε

and D(Fi, F̂i) ≤ ε for each i = 1, 2. This latter condition
is affine invariant and more appealing than bounds on the
difference between the estimated and true parameters. In
fact for arbitrary Gaussians, estimating parameters, such as
the mean µ, to any given additive error ε is impossible with-
out further assumptions since scaling the data by a factor
of s will scale the error ‖µ − µ̂‖ by s. We would like the
algorithm to succeed in this goal using polynomially many
samples. And we would also like the algorithm itself to be
computationally efficient, i.e., a polynomial-time algorithm.

Our main theorem is the following.

Theorem 1. For any n ≥ 1, ε, δ > 0, and any GMM
F = w1F1 + w2F2 in n dimensions, using m independent
samples from F , there is an algorithm that outputs GMM
F̂ = ŵ1F̂1 + ŵ2F̂2 such that, with probability ≥ 1 − δ (over
the samples and randomization of the algorithm), is ε-close
- i.e. there is a permutation π : {1, 2} → {1, 2} such that,

D(F̂i, Fπ(i)) ≤ ε and |ŵi − wπ(i)| ≤ ε, for each i = 1, 2.

And the runtime (in the Real RAM model) and number of
samples drawn by Algorithm 2 is at most
poly(n, 1

ε
, 1

δ
, 1

w1
, 1

w2
, 1

D(F1,F2)
)

Due to space considerations, we do not give the algorithm
here but we give a detailed algorithm for the case in which
F is in isotropic position in Algorithm 4, and the algorithm
in the above theorem begins with a step where samples are
used to put the distribution (nearly) in isotropic position,
which suffices for the analysis.

Our primary goal is to understand the statistical and com-
putational complexities of this basic problem, and the dis-
tinction between polynomial and exponential is a natural
step. While the order of the polynomial in our analysis
is quite large, to the best of our knowledge these are the
first bounds on the convergence rate for the problem in this
general context. In some cases, we have favored clarity of
presentation over optimality of bounds. The challenge of
achieving optimal bounds (optimal rate) is very interesting,
and will most likely require further insights and understand-
ing.

As mentioned, our approximation bounds are in terms
of the statistical distance between the estimated and true
Gaussians. To demonstrate the utility of this type of bound,
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Figure 2: Mixtures of two multinormal distributions,

with varying amounts of overlap. Our algorithm will

learn the parameters in all cases, and hence be able to

cluster when possible.

we note the following corollaries. For both problems, no
assumptions are necessary on the underlying mixture. The
first problem is simply that of approximating the density F
itself.

Corollary 2. For any n ≥ 1, ε, δ > 0 and any GMM
F = w1F1 + w2F2 in n dimensions, using m independent
samples from F , there is an algorithm that outputs a GMM
F̂ = ŵ1F̂1 + ŵ2F̂2 such that with probability ≥ 1 − δ (over
the samples and randomization of the algorithm)

D(F, F̂ ) ≤ ε

And the runtime (in the Real RAM model) and number of
samples drawn from the oracle is at most poly(n, 1

ε
, 1

δ
).

The second problem is that of clustering the m data points.
In particular, suppose that during the data generation process,
for each point x ∈ Rn, a secret label yi ∈ {1, 2} (called
ground truth) is generated based upon which Gaussian was
used for sampling. A clustering algorithm takes as input
m points and outputs a classifier C : Rn → {1, 2}. The er-
ror of a classifier is minimum, over all label permutations, of
the probability that the the label of the classifier agrees with
ground truth. Of course, achieving a low error is impossible
in general. For example, suppose the Gaussians have equal
weight and statistical distance 1/2. Then, even armed with
the correct mixture parameters, one could not identify with
average accuracy greater than 3/4, the label of a randomly
chosen point. However, it is not difficult to show that given
the correct mixture parameters, the optimal clustering al-
gorithm (minimizing expected errors) simply clusters points
based on which Gaussian has a larger posterior probability.
We are able to approach the error rate of this classifier and
achieve near optimal clustering without a priori knowledge
of the distribution parameters. See Section 6 for precise
details.

Corollary 3. For any n ≥ 1, ε, δ > 0 and any GMM
F = w1F1 + w2F2 in n dimensions, using m independent
samples from F , there is an algorithm that outputs a classi-
fier CF̂ such that with probability ≥ 1− δ (over the samples
and randomization of the algorithm), the error of CF̂ is at

most ε larger than the error of any classifier, C′ : Rn →
{1, 2}. And the runtime (in the Real RAM model) and num-
ber of samples drawn from the oracle is at most poly(n, 1

ε
, 1

δ
)

In a recent extension of Principal Component Analysis,
Brubaker and Vempala [4] give a polynomial-time clustering
algorithm that will succeed, with high probability, whenever
the Gaussians are nearly separated by any hyperplane. (See
2c for an example.) This algorithm inspired the present
work, and our algorithm follows theirs in that both are in-
variant to affine transformations of the data. Figure 2d il-
lustrates a mixture where clustering is possible although the
two Gaussians are not separable by a hyperplane.

1.3 Outline of Algorithm and Analysis
The problem of identifying Gaussians in high dimensions

is surprising in that much of the difficulty seems to be present
in the one-dimensional problem. We first briefly explain our
reduction from n to 1 dimensions, based upon the fact that
the projection of a multivariate GMM is a univariate GMM
to which we can apply a one-dimensional algorithm.

When the data is projected down onto a line, each pair
(mean, variance) recovered in this direction gives some di-
rect information about the corresponding (mean, variance)
pair in n dimensions. Lemma 12 states that for a suitably
chosen random direction1, two different Gaussians (statisti-
cal distance bounded away from 0) will project down to two
reasonably distinct one-dimensional Gaussians, with high
probability. For a single Gaussian, knowing the approxi-
mate value of the projected mean and variance in O(n2)
linearly independent directions is enough to recover a good
approximation for the Gaussian. The remaining challenge
is identifying which univariate Gaussian in one projection
corresponds to which univariate Gaussian in another projec-
tion; one must correctly match up the many pairs of univari-
ate Gaussians in each one-dimensional problem. In practice,
the mixing weights may be somewhat different, i.e., |w1−w2|
is bounded from 0. In such cases, matching would be quite
easy because each one-dimensional problem should have one
Gaussian with weight close to the true w1. In the general
case, however, we must do something more sophisticated.
The solution we employ is simple but certainly not the most
efficient – we project to O(n2) directions which are all very
close to each other, so that with high probability the means
and variances change very little and are easy to match up.
The idea of using random projection for this problem has
been used in a variety of theoretical and practical contexts.
Independently, Belkin and Sinha considered using random
projections to one dimension for the problem of learning a
mixture of multiple identical spherical Gaussians [3].

We now proceed to describe how to identify univariate
GMMs. Like many one-dimensional problems, it is algo-
rithmically easy because simple brute-force algorithms (like
that of [10]) will work. The surprising difficulty is proving
that such brute force algorithms cannot return wrong (or
spurious) estimates. What if there were two mixtures where
all four Gaussians were at least ε-different in statistical dis-
tance, yet the resulting mixtures were exponentially close in
statistical distance? Ruling out this possibility is, in fact, a
central hurdle in this work.

1The random direction is not uniform but is chosen in accor-
dance with shape (covariance matrix) of the data, making
the algorithm affine invariant.



We appeal to the old method of moments. In particular,
the key fact is that univariate mixtures of two Gaussians
are polynomially robustly identifiable–that is, if two mixtures
have parameter sets differing by ε then one of the low-order
moments will differ: i.e.

��Ex∼F [xi]− Ex∼F ′ [xi]
�� will be at

least poly(ε) for some i ≤ 6.

Polynomially Robust Identifiability (In-
formal version of Theorem 4): Consider two
one-dimensional mixtures of two Gaussians, F, F ′,
where F ’s mean is 0 and variance is 1. If the pa-
rameter sets differ by ε, then at least one of the
first six raw moments of F will differ from that
of F ′ by poly(ε).

Using this theorem, a brute force search will work correctly:
First normalize the data so that it has mean 0 and variance
1 (called isotropic position). Then perform a brute-force
search over mixture parameters, choosing the one whose mo-
ments best fit the empirical moments and this will necessar-
ily be a good estimate for the parameters. We now describe
the proof of Theorem 4. The two ideas are to relate the sta-
tistical distance of two mixtures to the discrepancy in the
moments, and deconvolution.

1.3.1 Relating statistical distance and discrepancy
in moments

If two (bounded or almost bounded) distributions are sta-
tistically close, then their low-order moments must be close.
However, the converse is not true in general. For example,
consider the uniform distribution over [0, 1] and the distri-
bution whose density is proportional to | sin(Nx)| over x ∈
[0, 1], for very large N . Crucial to this example is that the
difference in the two densities oscillate many times, which
cannot happen for mixtures of two univariate Gaussians.
Lemma 8 shows that if two univariate GMMs have non-
negligible statistical distance, then they must have a non-
negligible difference in one of the first six moments. Hence
statistical distance and moment discrepancy are closely re-
lated.

We very briefly describe the proof of Lemma 8. Denote the
difference in the two probability density functions by f(x);
by assumption,

R
|f(x)|dx is nonnegligible. We first argue

that f(x) has at most six zero-crossings (using a general fact
about the effect of convolution by a Gaussian on the number
of zeros of a function), from which it follows that there is
a degree-six polynomial whose sign always matches that of
f(x). Call this polynomial p. Intuitively, E[p(x)] should be
different under the two distributions; namely

R
R

p(x)f(x)dx
should be bounded from 0 (provided we make sure that the
mass of f(x) is not too concentrated near any zero). Then if
the coefficients of p(x) are bounded, this implies E[xi] differs
under the two distributions, for some i ≤ 6.

1.3.2 Deconvolving Gaussians
The convolution of two Gaussians is a Gaussian, just as

the sum of two normal random variables is normal. Hence,
we can also consider the ”deconvolution” of the mixture by
a Gaussian of variance, say, α – this is a simple operation
which subtracts α from the variance of each Gaussian in
the mixture. In fact, it affects all the moments in a simple,
predictable fashion, and we show that a discrepancy in the
low-order moments of two mixtures is roughly preserved by
convolution. (See Lemma 6).

If we choose α close to the smallest variance of the four
Gaussians that comprise the two mixtures, then after decon-
volving, one of the mixtures has a Gaussian component that
is very skinny – nearly a Dirac Delta function. When one of
the four Gaussians is very skinny, it is intuitively clear that
unless this skinny Gaussian is closely matched by a simi-
lar skinny Gaussian in the other mixture, the two mixtures
will have large statistical distance. And if instead there are
two closely matched Gaussians, these can be removed from
the respective mixtures and we can compare the remaining
Gaussians directly and obtain a large statistical distance di-
rectly (see Lemma 5).

The proof of Theorem 4 then follows: (1) after decon-
volution, at least one of the four Gaussians is very skinny;
(2) combining this with the fact that the parameters of the
two GMMs are slightly different, the deconvolved GMMs
have nonnegligible statistical distance; (Lemma 5) (3) non-
negligible statistical distance implies nonnegligible moment
discrepancy (Lemma 8); and (4) if there is a discrepancy in
one the low-order moments of two GMMs, then after con-
volution by a Gaussian, there will still be a discrepancy in
some low-order moment (Lemma 6).

2. NOTATION AND PRELIMINARIES
LetN (µ, Σ) denote the multinormal distribution with mean

µ ∈ Rn and n× n covariance matrix Σ, with density

N (µ, Σ, x) = (2π)−n/2|Σ|−1/2e−
1
2 (x−µ)T Σ−1(x−µ).

For probability distribution F , define the mean µ(F ) =
Ex∼F [x] and covariance matrix

var(F ) = Ex∼F [xxT ]− µ(F )(µ(F ))T

A distribution is isotropic or in isotropic position if the mean
is zero and the covariance matrix is the identity matrix.

For distributions F and G with densities f and g, define
the `1 distance ‖F − G‖1 =

R
Rn |f(x) − g(x)|dx. Define

the statistical distance or variation distance by D(F, G) =
1
2
‖F −G‖1 = F (S)−G(S), where S = {x|f(x) ≥ g(x)}.
For vector v ∈ Rn, Let Pv be the projection onto v,

i.e., Pv(w) = v · w, for vector w ∈ Rn. For probability
distribution F over Rn, Pv(F ) denotes the marginal prob-
ability distribution over R, i.e., the distribution of x · v,
where x is drawn from F . For Gaussian G, we have that
µ(Pv(G)) = v · µ(G) and var(Pv(G)) = vT var(G)v.

Let Sn−1 = {x ∈ Rn : ‖x‖ = 1}. We write Pru∈Sn−1

over u chosen uniformly at random from the unit sphere.
For probability distribution F , we define an sample oracle
SA(F ) to be an oracle that, each time invoked, returns an
independent sample drawn according to F . Note that given
SA(F ) and a vector v ∈ Rn, we can efficiently simulate
SA(Pv(F )) by invoking SA(F ) to get sample x, and then
returning v · x.

For probability distribution F over R, define Mi(F ) =
Ex∼F [xi] to be the ith (raw) moment.

3. THE UNIVARIATE PROBLEM
In this section, we will show that one can efficiently learn

one-dimensional mixtures of two Gaussians. To be most
useful in the reduction from n to 1 dimensions, Theorem 9
will be stated in terms of achieving estimated parameters
that are off by a small additive error (and will assume the
true mixture is in isotropic position).



The main technical hurdle in this result is showing the
polynomially robust identifiability of these mixtures: that is,
given two such mixtures with parameter sets that differ by ε,
we show that one of the first six raw moments will differ by
at least poly(ε). Given this result, it will be relatively easy
to show that by performing essentially a brute-force search
over a sufficiently fine (but still polynomial-sized) mesh of
the set of possible parameters, one will be able to efficiently
learn the 1-d mixture.

3.1 Polynomially Robust Identifiability
Throughout this section, we will consider two mixtures of

one-dimensional Gaussians:

F (x) =

2X
i=1

wiN (µi, σ
2
i , x), and F ′(x) =

2X
i=1

w′
iN (µ′i, σ

′2
i , x).

Definition 1. We will call the pair F, F ′ ε-standard if
σ2

i , σ′2i ≤ 1 and if ε satisfies:

1. wi, w
′
i ∈ [ε, 1]

2. |µi|, |µ′i| ≤ 1
ε

3. |µ1−µ2|+ |σ2
1 −σ2

2 | ≥ ε and |µ′1−µ′2|+ |σ′21 −σ′22 | ≥ ε

4. ε ≤ minπ

P
i

�
|wi − w′

π(i)|+ |µi − µ′π(i)|+ |σ2
i − σ′2π(i)|

�
,

where the minimization is taken over all permutations
π of {1, 2}.

Theorem 4. There is a constant c > 0 such that, for
any ε < c and any ε-standard F, F ′,

max
i≤6

|Mi(F )−Mi(F
′)| ≥ ε67

In order to prove this theorem, we rely on “deconvolving”
by a Gaussian with an appropriately chosen variance (this
corresponds to running the heat equation in reverse for a
suitable amount of time). We define the operation of de-
convolving by a Gaussian of variance α as Fα; applying this
operator to a mixture of Gaussians has a particularly sim-
ple effect: subtract α from the variance of each Gaussian in
the mixture (assuming that each constituent Gaussian has
variance at least α).

Definition 2. Let F (x) =
Pn

i=1 wiN (µi, σ
2
i , x) be the

probability density function of a mixture of Gaussian distri-
butions, and for any α < mini σ2

i , define

Fα(F )(x) =

nX
i=1

wiN (µi, σ
2
i − α, x).

Consider any two mixtures of Gaussians that are ε-standard.
Ideally, we would like to prove that these two mixtures have
statistical distance at least poly(ε). We settle instead for
proving that there is some α for which the resulting mix-
tures (after applying the operation Fα) have large statistical
distance. Intuitively, this deconvolution operation allows us
to isolate Gaussians in each mixture and then we can rea-
son about the statistical distance between the two mixtures
locally, without worrying about the other Gaussian in the
mixture. We now show that we can always choose an α so
as to yield a large `1 distance between Fα(F ) and Fα(F ′).

Lemma 5. Suppose F, F ′ are ε-standard. There is some
α such that

D(Fα(F ),Fα(F ′)) ≥ Ω(ε4),

and such an α can be chosen so that the smallest variance of
any constituent Gaussian in Fα(F ) and Fα(F ′) is at least
ε12.

The proof of the above lemma is through an analysis of
several cases. Assume without loss of generality that the first
constituent Gaussian of mixture F has the minimal variance
among all Gaussians in F and F ′. Consider the difference
between the two density functions. We lower-bound the `1
norm of this function on R. The first case to consider is
when both Gaussians in F ′ either have variance significantly
larger than σ2

1 , or means far from µ1. In this case, we can
pick α so as to show that there is Ω(ε4) statistical distance
in a small interval around µ1 in Fα(F ) − Fα(F ′). In the
second case, if one Gaussians in F ′ has parameters that very
closely match σ1, µ1, then if the weights do not match very
closely, we can use a similar approach as to the previous
case. If the weights do match, then we choose an α very,
very close to σ2

1 , to essentially make one of the Gaussians
in each mixture nearly vanish, except on some tiny interval.
We conclude that the parameters σ2, µ2 must not be closely
matched by parameters of F ′, and demonstrate an Ω(ε4)
statistical distance coming from the mismatch in the second
Gaussian components in Fα(F ) and Fα(F ′). The details are
laborious, and are deferred to the the full version of our
paper.

Unfortunately, the transformation Fα does not preserve
the statistical distance between two distributions. However,
we show that it, at least roughly, preserves the disparity
in low-order moments of the distributions. Specifically, we
show that if there is an i ≤ 6 such that the ith raw moment of
Fα(F ) is at least poly(ε) different than the ith raw moment
of Fα(F ′) then there is a j ≤ 6 such that the jth raw moment
of F is at least poly(ε) different than the jth raw moment
of F ′.

Lemma 6. Suppose that each constituent Gaussian in F
or F ′ has variances in the interval [α, 1]. Then

Pk
i=1 |Mi (Fα(F ))−Mi (Fα(F ′)) |Pk

i=1 |Mi(F )−Mi(F ′)|
≤ (k + 1)!

bk/2c! ,

The key observation here is that the moments of F and
Fα(F ) are related by a simple linear transformation; and
this can also be viewed as a recurrence relation for Hermite
polynomials. We defer a proof to the full version of our
paper.

To complete the proof of the theorem, we must show that
the poly(ε) statistical distance between Fα(F ) and Fα(F ′)
gives rise to a poly(ε) disparity in one of the first six raw
moments of the distributions. To accomplish this, we show
that there are at most 6 zero-crossings of the difference in
densities, f = Fα(F )−Fα(F ′), using properties of the evo-
lution of the heat equation, and then we construct a degree
six polynomial p(x) that always has the same sign as f(x),
so that when p(x) is integrated against f(x) the result is
at least poly(ε). We construct this polynomial so that the
coefficients are bounded, and this implies that there is some
raw moment i (at most the degree of the polynomial) for
which the difference between the ith raw moment of Fα(F )
and of Fα(F ′) is large.

Our first step is to show that Fα(D)(x)− Fα(D′)(x) has
a constant number of zeros.



Proposition 1. Given f(x) =
Pk

i=1 aiN (µi, σ
2
i , x), the

linear combination of k one-dimensional Gaussian probabil-
ity density functions, such that σ2

i 6= σ2
j for i 6= j, assuming

that not all the ai’s are zero, the number of solutions to
f(x) = 0 is at most 2(k − 1). Furthermore, this bound is
tight.

Using only the facts that quotients of Gaussians are Gaussian
and that the number of zeros of a differentiable function is
at most one more than the number of zeros of its deriva-
tive, one can prove that linear combinations of k Gaussians
have at most 2k zeros. However, since the number of zeros
dictates the number of moments that we must match in our
univariate estimation problem, we will use more powerful
machinery to prove the tighter bound of 2(k−1) zeros. Our
proof of Proposition 1 will hinge upon the following Theo-
rem, due to Hummel and Gidas [13], and we defer the details
to the full version of our paper.

Theorem 7 (Thm 2.1 in [13]). Given f(x) : R → R,
that is analytic and has n zeros, then for any σ2 > 0, the
function g(x) = f(x) ◦ N (0, σ2, x) has at most n zeros.

Let f(x) = Fα(F )(x)− Fα(F ′)(x), where α is chosen ac-
cording to Lemma 5 so that

R
x
|f(x)|dx = Ω(ε4).

Lemma 8. There is some i ≤ 6 such that���
Z

x

xif(x)dx
��� = |Mi(Fα(F ))−Mi(Fα(F ′))| = Ω(ε66)

A sketch of the proof of the above lemma is as follows:
Let x1, x2, . . . , xk be the zeros of f(x) which have |xi| ≤
2
ε
. Using Proposition 1, the number of such zeros is at

most the total number of zeros of f(x) which is bounded
by 6. (Although Proposition 1 only applies to linear com-
binations of Gaussians in which each Gaussian has a dis-
tinct variance, we can always perturb the Gaussians of f(x)
by negligibly small amounts so as to be able to apply the
proposition.) We prove that there is some i ≤ 6 for which
|Mi(Fα(F )) − Mi(Fα(F ′))| = Ω(poly(ε)) by constructing
a degree 6 polynomial (with bounded coefficients) p(x) for
which |

R
x

f(x)p(x)dx| = Ω(poly(ε)). Then if the coefficients

of p(x) can be bounded by some polynomial in 1
ε

we can con-

clude that there is some i ≤ 6 for which the ith moment of F
is different from the ith moment of F̂ by at least Ω(poly(ε)).

So we choose p(x) = ±
Qk

i=1(x−xi) and we choose the sign
of p(x) so that p(x) has the same sign as f(x) on the inter-
val I = [−2

ε
, 2

ε
]. Lemma 5 together with tail bounds imply

that
R

I
|f(x)|dx ≥ Ω(ε4). To finish the proof, we show thatR

I
p(x)f(x)dx is large, and that

R
R\I

p(x)f(x)dx is negligibly

small. We defer a full proof to the full version of our paper.
These tools are enough to yield a proof of Theorem 4.

3.2 The Univariate Algorithm
We now leverage the robust identifiability shown in Theo-

rem 4 to prove that we can efficiently learn the parameters of
1-d GMM via a brute-force search over a set of candidate pa-
rameter sets. Roughly, the algorithm will take a polynomial
number of samples, compute the first 6 sample moments,
and compare those with the first 6 (analytic) moments of
each of the candidate parameter sets. The algorithm then re-
turns the parameter set whose moments most closely match
the sample moments. Theorem 4 guarantees that if the first

6 sample moments closely match those of the chosen para-
meter set, then the parameter set must be nearly accurate.
To conclude the proof, we argue that a polynomial-sized set
of candidate parameters suffices to guarantee that at least
one set of parameters will yield moments sufficiently close to
the sample moments. We state the theorem below, and defer
the details of the algorithm, and the proof of its correctness
to the full version of our paper.

Theorem 9. Suppose we are given access to independent
samples from any isotropic mixture F = w1F1 + w2F2,
where w1 + w2 = 1, wi ≥ ε, and each Fi is a univariate
Gaussian with mean µi and variance σ2

i , satisfying |µ1 −
µ2| + |σ2

1 − σ2
2 | ≥ ε,. Then Algorithm 1 will use poly( 1

ε
, 1

δ
)

samples and with probability at least 1−δ will output mixture
parameters ŵ1, ŵ2, µ̂1, µ̂2, σ̂1

2, σ̂2
2, so that there is a permu-

tation π : {1, 2} → {1, 2} so that for each i = 1, 2

|wi − ŵπ(i)| ≤ ε, |µi − µ̂π(i)| ≤ ε, |σ2
i − σ̂2

π(i)| ≤ ε

The brute-force search in the univariate algorithm is rather
inefficient – we presented it for clarity of intuition, and ease
of description and proof. Alternatively, we could have pro-
ceeded along the lines of Pearson’s work [23]: using the first
five sample moments, one generates a ninth degree polyno-
mial whose solutions yield a small set of candidate parame-
ter sets (which, one can argue, includes one set whose sixth
moment closely matches the sixth sample moment). After
picking the parameters whose sixth moment most closely
matches the sample moment, we can use Theorem 4 to prove
that the parameters have the desired accuracy.

4. THE N-DIMENSIONAL ALGORITHM
In this section, via a series of projections and applica-

tions of the univariate parameter learning algorithm of the
previous section, we show how to efficiently learn the mix-
ture parameters of an n-dimensional GMM. Let ε > 0 be
our target error accuracy. Let δ > 0 be our target failure
probability. For this section, we will suppose further that
w1, w2 ≥ ε and D(F1, F2) ≥ ε.

We first analyze our algorithm in the case where the GMM
F is in isotropic position. This means that Ex∼F [x] = 0 and,
Ex∼F [xxT ] = In. The above condition on the co-variance
matrix is equivalent to ∀u ∈ Sn−1 Ex∼F [(u · x)2] = 1. In
the full version of our paper we explain the general case
which involves first using a number of samples to put the
distribution in (approximately) isotropic position, and then
running the isotropic algorithm.

Given a mixture in isotropic position, we first argue that
we can get ε-close additive approximations to the weights,
means and variances of the Gaussians. This does not suffice
to upper-bound D(Fi, F̂i) in the case where Fi has small
variance along one dimension. For example, consider a uni-
variate GMM F = 1

2
N (0, 2− ε′)+ 1

2
N (0, ε′), where ε′ � ε is

arbitrarily small (even possibly 0 – the Gaussian is a point
mass). Note that an additive error of ε, say σ̂2 = ε′ + ε
leads to a variation distance near 1

2
. In this case, however,

D(F̂1, F̂2) must be very close to 1, i.e., the Gaussians nearly
do not overlap.2 The solution is to use the additive approx-
imation to the Gaussians to then cluster the data. From
2We are indebted to Santosh Vempala for suggesting this
idea, namely, that if one of the Gaussians is very thin, then
they must be almost non-overlapping and therefore cluster-
ing may be applied.



Algorithm 1. Univariate estimation
Input: ε > 0, δ > 0, sample oracle SA(F ).
Output: For i = 1, 2, (ŵi, µ̂i, σ̂i) ∈ R3.
(* Note: this algorithm assumes that the mixture is isotropic position, i.e.,

E[x] = 0, E[x2] = 1. *)

1. Let M̂1 = 0, M̂2 = 1.

2. Let α = ε150, and choose m, N ∈ N such that m ≥ 5002

α2δ
, and N ≥ 1

αε3
.

3. For i = 3, 4, 5, 6:

• Let M̂i = 1
m

Pm
j=1 xj

i, where x1, x2, . . . , xm are m samples drawn from SA(F ).

(* Brute-force search: *)

4. Let A =
�

1
N

, 2
N

, . . . , N−1
N

	
, B =

�
−N,−N + 1

N
,−N + 2

N
, . . . , N

	
.

5. For each (ŵ1, µ̂1, σ̂1, µ̂2, σ̂2) ∈ A× B4, let:

ŵ2 = 1− ŵ1 (1)

for i = 1, 2, . . . , 6 : M̃i = Mi

�
ŵ1N (µ̂1, σ̂

2
1) + ŵ2N (µ̂2, σ̂

2
2)
�

(2)

discŵ1,µ̂1,σ̂2
1 ,ŵ2,µ̂2,σ̂2

2
= max

i∈{1,2,...,6}

���M̂i − M̃i

��� (3)

6. Output (ŵ1, µ̂1, σ̂
2
1 , ŵ2, µ̂2, σ̂

2
2) of minimal discŵ1,µ̂1,σ̂2

1 ,ŵ2,µ̂2,σ̂2
2
that satisfies

|µ̂1 − µ̂2|+ |σ̂2
1 − σ̂2

2 | > ε.

Figure 3: The one-dimensional estimation algorithm. For (2), evaluation of the moments of the distributions may be

done exactly using explicit formulas for the first six moments of a Gaussian, given in Appendix ??.

clustered data, the problem is simply one of estimating a
single Gaussian from random samples, which is easy to do
in polynomial time.

4.1 Additive approximation
The algorithm for this case is given in Figures 4 and 5.

Lemma 10. For any n ≥ 1, ε, δ > 0, for any any isotropic
GMM mixture F = w1F1+w2F2, where w1+w2 = 1, wi ≥ ε,
and each Fi is a Gaussian in Rn with D(F1, F2) ≥ ε, with
probability ≥ 1− δ, (over the samples and randomization of

the algorithm), Algorithm 2 will output GMM F̂ = ŵ1F̂1 +

ŵ2F̂2 such that there exists a permutation π : [2] → [2] so
that for each i = 1, 2

‖µ̂i − µπ(i)‖ ≤ ε, ‖Σ̂i − Σπ(i)‖F ≤ ε, and |ŵi − wπ(i)| ≤ ε

And the runtime and number of samples drawn by Algorithm
2 is at most poly(n, 1

ε
, 1

δ
).

The rest of this section gives an outline of the proof of
this lemma. We first state two geometric lemmas (Lemmas
11 and 12) that are independent of the algorithm.

Lemma 11. For any µ1, µ2 ∈ Rn, δ > 0, over uniformly
random unit vectors u,

Pru∈Sn−1

�
|u · µ1 − u · µ2| ≤ δ‖µ1 − µ2‖/

√
n
�
≤ δ.

Proof. If µ1 = µ2, the lemma is trivial. Otherwise, let
v = (µ1−µ2)/‖µ1−µ2‖. The lemma is equivalent to claiming
that

Pr
u∈Sn−1

[|u · v ≤ t] ≤ t
√

n.

This is a standard fact about random unit vectors (see, e.g.,
Lemma 1 of [6]).

We next prove that, given a random unit vector r, with
high probability either the projected means onto r or the
projected variances onto r of F1, F2 must be different by
at least poly(ε, 1

n
). A qualitative argument as to why this

lemma is true is roughly: suppose that for most directions r,
the projected means rT µ1 and rT µ2 are close, and the pro-
jected variances rT Σ1r and rT Σ2r are close, then the statis-
tical distance D(F1, F2) must be small too. So conversely,
given D(F1, F2) ≥ ε and w1, w2 ≥ ε (and the distribution is
in isotropic position), for most directions r either the pro-
jected means or the projected variances must be different.

Lemma 12. Let ε, δ > 0, t ∈ (0, ε2). Suppose that ‖µ1 −
µ2‖ ≤ t. Then, for uniformly random r,

Prr∈Sn−1

�
min{rT Σ1r, r

T Σ2r} > 1− εδ2(ε3 − t2)

12n2

�
≤ δ.

This lemma holds under the assumptions that we have al-
ready made about the mixture in this section (namely isotropy
and lower bounds on the weights and statistical distance).
While the above lemma is quite intuitive, the proof involves
a probabilistic analysis based on the eigenvalues of the two
covariance matrices, and is deferred to the full version.

Next, suppose that rT µ1 − rT µ2 ≥ poly(ε, 1
n
). Continuity

arguments imply that if we choose a direction ri,j sufficiently
close to r, then (ri,j)T µ1 − (ri,j)T µ2 will not change much
from rT µ1 − rT µ2. So given a univariate algorithm that
computes estimates for the mixture parameters in direction



Algorithm 2. High-dimensional isotropic additive approximation
Input: Integers n ≥ 1, reals ε, δ > 0, sample oracle SA(F ).

Output: For i = 1, 2, (ŵi, µ̂i, Σ̂i) ∈ R×Rn ×Rn×n.

1. Let ε4 = εδ
100n

, and εi = ε10i+1, for i = 3, 2, 1.

2. Choose uniformly random orthonormal basis B = (b1, . . . , bn) ∈ Rn×n.

Let r =
Pn

i=1 bi/
√

n. Let rij = r + ε2bi + ε2bj for each i, j ∈ [n].

3. Run Univariate
�
ε1,

δ
3n2 , SA(Pr(F ))

�
to get a univariate mixture of Gaussians

ŵ1G
0
1 + ŵ2G

0
2.

4. If min{ŵ1, ŵ2} < ε3 or max
�
|µ(G0

1) − µ(G0
2)|, |var(G0

1) − var(G0
2)|
	

< ε3, then halt and
output FAIL ELSE:

5. If |µ(G0
1)− µ(G0

2)| > ε3, then:

• Permute G0
1, G

0
2 (and ŵ1, ŵ2) as necessary so that µ(G0

1) < µ(G0
2).

ELSE

• Permute G0
1, G

0
2 (and ŵ1, ŵ2) as necessary so var(G0

1) < var(G0
2).

6. For each i, j ∈ [n]:

• Run Univariate
�
ε1,

δ
3n2 , SA(Prij (F ))

�
to get estimates of a univariate mix-

ture of two Gaussians, Gij
1 , Gij

2 . (* We ignore the weights returned by the
algorithm. *)

• If µ(G0
2)− µ(G0

1) > ε3, then:

– Permute Gij
1 , Gij

2 as necessary so that µ(Gij
1 ) < µ(Gij

2 ).
ELSE

– Permute Gij
1 , Gij

2 as necessary so that var(Gij
1 ) < var(Gij

2 ).

7. Output ŵ1, ŵ2, and for ` ∈ {1, 2}, and output

(µ̂`, Σ̂`) = Solve

�
n, ε2, B, µ(G0

`), var(G0
`),
D
µ(Gij

` ), var(Gij
` )
E

i,j∈[n]

�

Figure 4: A dimension reduction algorithm. Although ε4 is not used by the algorithm, it is helpful to define it for

the analysis. We choose such ridiculously small parameters to make it clear that our efforts are placed on simplicity

of presentation rather than tightness of parameters.

Algorithm 3. Solve
Input: n ≥ 1, ε2 > 0, basis B = (b1, . . . , bn) ∈ Rn×n, means and variances m0, v0, and

mij , vij ∈ R for each i, j ∈ [n].

Output: µ̂ ∈ Rn, Σ̂ ∈ Rn×n.

1. Let vi = 1
n

Pn
j=1 vij and v = 1

n2

Pn
i=1 vij.

2. For each i ≤ j ∈ [n], let

Vij =

√
n(v − vi − vj)

(2ε2 +
√

n)2ε22
− vii + vjj

(2ε2 +
√

n)4ε2
− v0

2ε2
√

n
+

vij

2ε22
.

3. For each i > j ∈ [n], let Vij = Vji. (* So V ∈ Rn×n *)

4. Output

µ̂ =

nX
i=1

mii −m0

2ε2
bi, Σ̂ = B

�
arg min

M�0
‖M − V ‖F

�
BT .

Figure 5: Solving the equations. In the last step, we project onto the set of positive semidefinite matrices, which can

be done in polynomial time using semidefinite programming.



r and in direction ri,j , we can determine a pairing of these
parameters so that we now have estimates for the mean of F1

projected on r and estimates for the mean of F1 projected
on ri,j , and similarly we have estimates for the projected
variances (on r and ri,j) of F1. From sufficiently many of
these estimates in different directions ri,j , we can hope to
recover the mean and covariance matrix of F1, and similarly
for F2. An analogous statement will also hold in the case
that for direction r, the projected variances are different in
which case choosing a direction ri,j sufficiently close to r
will result in not much change in the projected variances,
and we can similarly use these continuity arguments (and
a univariate algorithm) to again recover many estimates in
different directions.

Lemma 13. For r, rij of Algorithm 2, (a) With probabil-
ity ≥ 1−δ over the random unit vector r, |r ·(µ1−µ2)| > 2ε3
or |rT (Σ1 − Σ2)r| > 2ε3, (b) |(rij − r) · (µ1 − µ2)| ≤ ε3/3,
and (c) |(rij)T (Σ1 − Σ2)r

ij − rT (Σ1 − Σ2)r| ≤ ε3/3.

The proof, based on Lemma 12, is given in the full version.
We then argue that Solve outputs the desired parameters.
Given estimates of the projected mean and projected vari-
ance of F1 in n2 directions ri,j , each such estimate yields a
linear constraint on the mean and covariance matrix. Pro-
vided that each estimate is close to the correct projected
mean and projected variance, we can recover an accurate es-
timate of the parameters of F1, and similarly for F2. Thus,
using the algorithm for estimating mixture parameters for
univariate GMMs F = w1F1 + w2F2, we can get a polyno-
mial time algorithm for estimating mixture parameters in
n-dimensions for isotropic Gaussian mixtures. Further de-
tails are deferred to the full version.

Lemma 14. Let ε2, ε1 > 0. Suppose |m0 −µ · r|,|mij −µ ·
rij |, |v0 − rT Σr|,|vij − (rij)T Σrij | are all at most ε1. Then

Solve outputs µ̂ ∈ Rn and Σ̂ ∈ Rn×n such that ‖µ̂−µ‖ < ε,

and ‖Σ̂−Σ‖F ≤ ε. Furthermore, Σ̂ � 0 and Σ̂ is symmetric.

4.2 Statistical approximation
It remains to achieve, with high probability, approxima-

tions to the Gaussians that are close in terms of variation dis-
tance. An additive bound on error yields bounded variation
distance, only for Gaussians that are relatively “round,” in
the sense that their covariance matrix has a smallest eigen-
value that is bounded away from 0. However, if, for isotropic
F , one of the Gaussians has a very small eigenvalue, then
this means that they are practically nonoverlapping, i.e.,
D(F1, F2) is close to 1. In this case, our estimates from Al-
gorithm 2 are good enough, with high probability, to clus-
ter a polynomial amount of data into two clusters based on
whether it came from Gaussian F1 or F2. After that, we can
easily estimate the parameters of the two Gaussians.

Lemma 15. There exists a polynomial p such that, for
any n ≥ 1, ε, δ > 0, for any any isotropic GMM mixture
F = w1F1 + w2F2, where w1 + w2 = 1, wi ≥ ε, and each Fi

is a Gaussian in Rn with D(F1, F2) ≥ ε, with probability ≥
1−δ, (over its own randomness and the samples), Algorithm

4 will output GMM F̂ = ŵ1F̂1 + ŵ2F̂2 such that there exists
a permutation π : [2] → [2] with,

D(F̂i, Fπ(i)) ≤ ε, and |ŵi − wπ(i)| ≤ ε, for each i = 1, 2.

The runtime and number of samples drawn by Algorithm 4
is at most poly(n, 1

ε
, 1

δ
).

The statistical approximation algorithm is given in Algo-
rithm 4, and proof of the above lemma is deferred to the full
version.

5. DENSITY ESTIMATION
The problem of PAC learning a distribution (or density es-

timation) was introduced in [16]: Given parameters ε, δ > 0,
and given oracle access to a distribution F (in n dimensions),

the goal is to learn a distribution F̂ so that with probabil-
ity at least 1 − δ, D(F, F̂ ) ≤ ε in time polynomial in 1

ε
, n,

and 1
δ
. Here we apply our algorithm for learning mixtures

of two arbitrary Gaussians to the problem of polynomial-
time density estimation (aka PAC learning distributions) for
arbitrary mixtures of two Gaussians without any assump-
tions. We show that given oracle access to a distribution
F = w1F1 + w2F2 for Fi = N (µi, Σi), we can efficiently

construct a mixture of two Gaussians F̂ = ŵ1F̂1 + ŵ2F̂2

for which D(F, F̂ ) ≤ ε. Previous work on this problem [10]
required that the Gaussians be axis aligned.

The algorithm for density estimation and a proof of cor-
rectness is deferred to the full version.

6. CLUSTERING
It makes sense that knowing the mixture parameters should

imply that one can perform optimal clustering, and approxi-
mating the parameters should imply approximately optimal
clustering. In this section, we formalize this intuition. For
GMM F , it will be convenient to consider the labeled dis-
tribution `(F ) over (x, y) ∈ Rn × {1, 2} in which a label
y ∈ {1, 2} is drawn with probability wi of i, and then a
sample x is chosen from Fi.

A clustering algorithm takes as input m examples

x1, x2, . . . , xm ∈ Rn

and outputs a classifier C : Rn → {1, 2} for future data (a
similar analysis could be done in terms of partitioning data
x1, . . . , xm). The error of a classifier C is defined to be,

err(C) = min
π

Pr
(x,y)∼`(F )

[C(x) 6= y],

where the minimum is over permutations π : {1, 2} → {1, 2}.
In other words, it is the fraction of points that must be
relabeled so that they are partitioned correctly (actual label
is irrelevant).

For any GMM F , define CF to be the classifier that out-
puts whichever Gaussian has a greater posterior: CF (x) = 1
if w1F1(x) ≥ w2F2(x), and C(x) = 2 otherwise. It is not
difficult to see that this classifier has minimum error.

Corollary 3 implies that given a polynomial number of
points, one can cluster future samples with near-optimal ex-
pected error. But using standard reductions, this also im-
plies that we can learn and accurately cluster our training
set as well. Namely, one could run the clustering algorithm
on, say,

√
m of the samples, and then use it to partition the

data. The algorithm for near-optimal clustering is given in
the full version, along with a proof for correctness.

Acknowledgments. We are grateful to Santosh Vempala,
Charlie Brubaker, Yuval Peres, Daniel Stefankovic, and Paul
Valiant for helpful discussions.



Algorithm 4. High-dimensional isotropic variation-distance approximation
Input: Integers n ≥ 1, reals ε, δ > 0, sample oracle SA(F ).
Output: n-dimensional GMM

1. Let ε1, ε2, ε3 =

2. Run Algorithm 2(n, ε1, δ/3, SA(F )) to get F̂ = ŵ1F̂1 + ŵ2F̂2.

3. Permute ŵi, F̂i so that the smallest eigenvalue of var(F̂ )1 is no larger than the

smallest eigenvalue of var(F̂ )2.

4. If the smallest eigenvalue of var(F̂1) is greater than ε2, then halt and output

the mixture F̂. ELSE: (* Clustering step *)

(a) Let λ, v be a smallest eigenvalue and corresponding unit eigenvector of F̂1.

(b) Draw m = ε−1
4 samples x1, . . . , xm from SA(F ).

(c) Partition the data into two sets, D1 ∪D2 = {x1, . . . , xm}, where,

D1 =

�
xi :

���Pv(xi)− Pv(µ(F̂1))
��� ≤

√
ε2

ε3

�
.

(d) Output GMM Ĝ = ŵ1Ĝ1 + ŵ2Ĝ2, where Ĝi is the Gaussian with mean and covari-
ance matrix that matches the empirical mean and covariance on set Di, and
ŵi are those from Step 2.

Figure 6: The algorithm that guarantees low variation distance.
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