

PLAYING GAMES WITHOUT OBSERVING PAYOFFS

Michal Feldman

Hebrew University &
Microsoft Israel R&D Center

Joint work with **Adam Kalai** and **Moshe Tennenholtz**

FLA-TAK-BONG-DING

FLA

TAK

BONG

DING

鲍步

FLA

10 Y

爱丽丝

TAK

TAK

10 Y

FLA

TAK

5 Y

BONG

DING

0 Y

DING

爱丽丝

FLA-TAK-BONG-DING

FLA

TAK

BONG

DING

鲍步

FLA

TAK

BONG

DING

0	10	-1	-10
-10	0	5	-1
1	-5	0	1
10	1	-1	0

PROPERTIES OF FLA-TAK-BONG-DING

- **Zero-sum**

- The benefit of one player is the loss of the other

- **Symmetric**

- The two players have the same set of strategies
- Their payoffs remain the same if their roles are reversed

- **Symmetric zero-sum games**

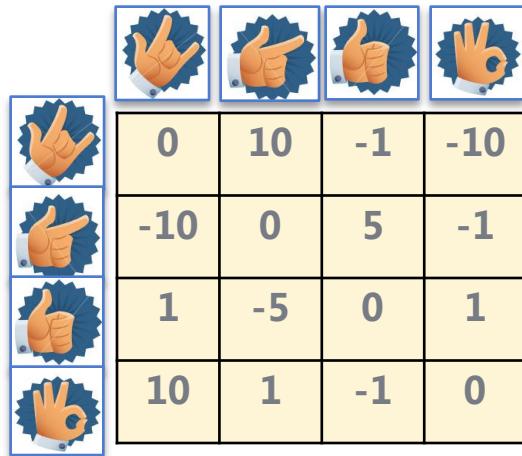
- $A(i,j) = -A(j,i)$

- Each player can guarantee to herself the *value* of the game (zero) by playing the *minimax strategy*

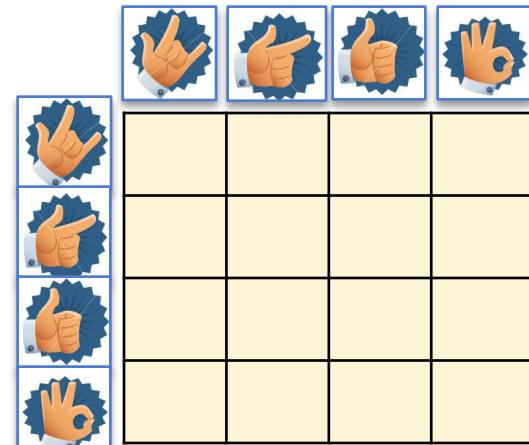
A

0	10	-1	-10
-10	0	5	-1
1	-5	0	1
10	1	-1	0

A VISIT TO BEIJING, 2010



0	10	-1	-10
-10	0	5	-1
1	-5	0	1
10	1	-1	0



Welcome to Beijing.
Want to play
Fla-Tak-Bong-Ding ?

mmm...
sure...

FLA

TAK

?

TAK

FLA

?

TAK

BONG

?

•

•

•

•

•

•

Can one perform well in a repeated symmetric game without observing a single payoff?

INTUITION: **MIMIC** OBSERVED ACTIONS

This is easy in a non-competitive environment

But is it possible to mimic an adversary, who knows he is being mimicked, and reacts to that?

文津国际酒店
WENJIN HOTEL
海淀区 中关村东路1号
(海淀区 清华科技园)

MOTIVATION: LIMITED FEEDBACK

- Limited feedback from business choices
 - Example: companies make daily decisions about online advertising (e.g., choose ad location)
 - Companies often mimic the advertising campaign of a more experienced rival
 - Measuring the effect of a campaign is difficult (net profit is influenced by many factors, and it's difficult to assess how much is due to product design vs. marketing)
 - Newcomer cannot afford to invest in research or wait until they learn consumer behavior
 - Newcomer needs function effectively when competing with an existing well-informed company

MOTIVATION: LIMITED FEEDBACK (CONT)

- Limited feedback from social behavior
 - Example: choose how to dress
- Sometimes feedback comes too late
 - Example: a politician gives a sequence of speeches

THE MODEL

- Two-player, symmetric, zero-sum game, given by an $n \times n$ payoff matrix $A = \{a_{ij}\}$
 - Legal actions are $\{1, 2, \dots, n\}$
 - Payoffs of (i, j) are $(a_{ij}, a_{ji}) \in \mathbb{R}^2$, such that $a_{ij} + a_{ji} = 0$
- The game A is finitely or infinitely repeated
- One player is **informed**, other is **uninformed**
 - Informed player knows A
 - Uninformed player does not know A and never observes a single payoff
- History on period t: sequence of actions played on periods $1, \dots, t-1$
 - Observed by both informed and uninformed players
- Strategy: mapping from finite history to a probability distribution over $[n]$

RELATED MODELS: IMPERFECT MONITORING

- It is known that (almost) the value of the game can be achieved in the following settings of imperfect monitoring:
 - Adversarial multi-armed bandit problem [Auer,Cesa-Bianchi,Freund,Schapire, 2000]
 - You observe your realized payoff every period, but not the opponent' s action
 - Similar results by [Megiddo, 1979] and [Banos, 1968]
 - Bayesian non-symmetric settings [Aumann&Maschler, 1968]
 - You observe the opponent' s action, but not your realized payoff
- Our work complements the above literature
 - non-Bayesian settings, where uninformed player observes opponent' s actions but not realized payoffs

PROPOSED STRATEGIES

- **Copycat #1: tit-for-tat** (i.e., copy opponent' s play on previous round)

- may fail in every round
e.g., Rock-Paper-Scissors

R P S R P S R
? R P S R P S

- **Copycat #2: copy the opponent' s empirical frequency of play (fictitious play)**

- may fail badly too

R R R R R R R R R R P P P P P P P P P P P P

Message: one needs to be careful about how one mimics an opponent who known he is being mimicked.

A poor copycat may perform worse than making random decisions.

HOW TO BE A STRATEGIC COPYCAT?

- The idea: for each pair of actions $i, j \leq n$, ensure entry (i, j) is played (almost) as often as (j, i) is played
- $c_t(i, j)$ = number of periods entry (i, j) has been played in rounds $1, \dots, t-1$
- $\Delta_t(i, j) = c_t(j, i) - c_t(i, j)$

Copycat strategy:

- On period $t=1$: play arbitrarily
- On period $t=2, 3, \dots$
 - **Imagine** you are playing the symmetric zero-sum “pretend” game depicted by Δ_t
 - Play the mini-max strategy of Δ_t

COPYCAT STRATEGY

FLA

TAK

TAK

●
●
●

TAK

FLA

BONG

Δ_0

0	0	0	0
0	0	0	0
0	0	0	-1
0	0	1	0

MAIN RESULT

- **Theorem:** for any symmetric $n \times n$ zero-sum game A , and any number of periods $T \geq 1$, the copycat strategy ensures:

$$E\left[\left|\frac{1}{T} \sum_{t=1}^T A(i_t, j_t)\right|\right] \leq \frac{n}{\sqrt{2T}} \max_{i,j} |a_{i,j}|$$

The expected average payment of a copycat player

The expected average payment of a copycat player

Copycat guarantees to the uninformed player (almost) the value of the game

EXTENSIONS

- General symmetric game
 - Copycat guarantees to the uninformed player (almost) the same expected payoff as that of the informed player
 - Consider the game A' $(i,j) = A(i,j) - A(j,i)$
- What if even the set of actions is unknown?
 - Copycat is a strategy that uses only actions observed so far
 - Copycat delivers the same guarantees even if only a single “starting” strategy is known

	0	10	-1	-10
-10		0	5	-1
1		-5	0	1
10		1	-1	0

FLA

ACHIEVING OPTIMAL SOCIAL WELFARE

Theorem : In any two-player infinitely repeated symmetric game with one informed player and one uninformed player, it is possible to achieve the optimal social welfare in an (epsilon) learning equilibrium*

- * Learning equilibrium: a pair of algorithms such that the algorithms themselves are in equilibrium. This is a non-Bayesian eq. notion
[Brafman&Tennenholtz' 04]

ACHIEVING OPTIMAL SOCIAL WELFARE

- (i,j) = entry maximizing sum of payoffsⁱ
- Players maximize social welfare by alternating between playing (i,j) and (j,i)
- Learning equilibrium:
 - Informed player:
 - Play i,j,i,j,\dots as long as protocol is followed
 - If protocol not followed: punish with safety level
 - Uninformed player:
 - Play ? in first iteration
 - Copy the last play of the informed player as long as protocol is followed
 - If protocol not followed: play **copycat**

		j	
		0,0	2,9
		9,2	1,1
		4,3	2,1
		2,2	8,0
		3,4	2,4
		2,2	5,5

CONCLUSION

- It is possible to strategically copy an adversary in symmetric games, even without observing a single payoff
- It is possible to achieve optimal welfare in epsilon- learning equilibrium in infinitely repeated symmetric games when one of the players is uninformed
- These results further our understanding of the landscape of optimization under uncertainty

Thank you.

PROOF

- $c_t(i,j)$: number of plays of (i,j) on periods $1, 2, \dots, t-1$

- $\Delta_t(i,j) = c_t(i,j) - \frac{1}{2} \sum_{i,j} (c_t(j,i) - \Delta_t(i,j))^2$

$$\leq \Phi_{t-1} + 2 \cdot \Delta_t(i_t, j_t) + 1$$

$$E[\Phi_t] \leq E[\Phi_{t-1}] + 1 \leq t$$

(the difference between Δ_t and Δ_{t-1} is only for one (i,j) pair)
 $(E[\Delta_t] = 0)$

$$|\text{copycat payoff}| \leq \frac{1}{2} \sum_{i,j} |\Delta_T(i, j)| \quad (\text{assuming } \max_{i,j} |a_{i,j}| \leq 1)$$

$$|\text{copycat payoff}|^2 \leq \frac{n^2}{4} \sum_{i,j} (\Delta_T(i, j))^2 = \frac{n^2}{2} \Phi_T \text{ (Cauchy - Schwartz)}$$

$$E[|\text{copycat payoff}|^2] \leq E[|\text{copycat payoff}|^2] \leq (n^2 T) / 2$$

The expected average payoff of copycat (over T periods) $\frac{n}{\sqrt{2T}}$