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Abstract

We introduce an unsupervised ap-
proach to efficiently discover the un-
derlying features in a data set via
crowdsourcing. Our queries ask crowd
members to articulate a feature com-
mon to two out of three displayed
examples. In addition we also ask
the crowd to provide binary labels
to the remaining examples based on
the discovered features. The triples
are chosen adaptively based on the la-
bels of the previously discovered fea-
tures on the data set. In two natu-
ral models of features, hierarchical and
independent, we show that a simple
adaptive algorithm, using “two-out-of-
three” similarity queries, recovers all
features with less labor than any non-
adaptive algorithm. Experimental re-
sults validate the theoretical findings.

1 Introduction

Discovering features is essential to the success of
machine learning and statistics. Crowdsourcing
can be used to discover these underlying fea-
tures, in addition to merely labeling them on
data at hand. This paper addresses the follow-
ing unsupervised learning problem: given a data
set, using as few crowd queries as possible, elicit
a diverse set of salient, feature names along with
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Figure 1: Comparing three examples yields a
useful feature whereas tagging them separately
yields nondiscriminative features.

their labels on that data set. For example, on
a data set of faces, salient features might corre-
spond to gender, the presence of glasses, facial
expression, any numerous others. In this pa-
per we focus on binary features, each of which
can be thought of as a function mapping data
to {0,1}. The term feature name refers to a
string describing the feature (e.g., male or wear-
ing glasses), and the label of a feature on an
example refers the {0,1}-value of that feature
on a that datum, as annotated by crowd work-
ers. Features are useful in exploratory analysis,
for other machine learning tasks, and for brows-
ing data by filtering on various facets. While
the features we use are human-generated and
human-labeled, they could be combined with
features from machine learning, text analysis,
or computer vision algorithms. In some cases,



features provide a significantly more compact
representation than other unsupervised repre-
sentations such as clustering, e.g., one would
need exponentially many clusters (such as smil-
ing white men with grey hair wearing glasses) to
represent a small number of features.

A widely-used crowdsourcing technique for elic-
iting features is to simply ask people to tag data
with multiple words or phrases. However, tag-
ging individual examples fails to capture the dif-
ferences between multiple images in a data set.
To illustrate this problem, we asked 10 crowd
workers to tag 10 random signs from an online
dictionary of American Sign Language [1], all
depicted by the same bearded man in a gray
sweatshirt. As illustrated in Figure 1, the tags
generally refer to his hair, clothes, or the general
fact that he is gesturing with his hands. Each
of the 33 tags could apply equally well to any of
the 10 video snips, so none of the features could
discriminate between the signs.

Inspired by prior work [10, 7, 11] and the famil-
iar kindergarten question, “which one does not
belong?”, we elicit feature names by presenting
a crowd worker with a triple of examples and
asking them to name a feature common to any
two out of the three examples. We refer to this
as a “two-out-of-three” or, more succinctly, 2/3
query. These features are meant to differentiate
yet be common as opposed to overly specific
features that capture peculiarities rather than
meaningful distinctions. As shown in Figure 1,
in contrast to tagging, the learned features par-
tition the data meaningfully.

How should one choose such triples? We find
that, very often, random triples redundantly
elicit the same set of salient features. For exam-
ple, 60% of the responses on random sign triples
distinguish signs that use one vs. two hands. To
see why, suppose that there are two “obvious”
complimentary features, e.g., male and female,
which split the data into two equal-sized parti-
tions and are more salient than any other, i.e.,
people most often notice these features first. If
the data are balanced, then 75% of triples can

be resolved by one of these two features.

To address this inefficiency, once we’ve discov-
ered a feature, e.g., one/two-handedness, we
then ask crowd workers to label the remaining
data according to this feature. This labeling is
necessary eventually, since we require the data
to be annotated according to all discovered fea-
tures. Once we have labels for the data, we
never perform a 2/3 query on resolved triples,
i.e., those for which we have a feature whose
labels are positive on two out of the three ex-
amples. Random 2/3 queries often result in the
one of these salient features. Our adaptive al-
gorithm, on the other hand, after learning the
features of, say, “male” and “female,” always
presents three faces labeled by the same gen-
der (assuming consistent labeling) and thereby
avoids eliciting the same feature again (or func-
tionally equivalent features such as “a man”).

The face data set also illustrates how some
features are hierarchical while others are or-
thogonal. For instance, the feature “bearded”
generally applies only to men, while the fea-
ture “smiling” is common across genders. We
analyze our algorithm and show that it can
yield large savings both in the case of hier-
archical and orthogonal features. Proposition
4.1 states that our algorithm finds all M fea-
tures of a proper binary hierarchical “feature
tree” using M queries, whereas Proposition 4.2
states that any non-adaptive algorithm requires
Q(M?3) queries. The lower bound also suggests
that “generalist” query responses are more chal-
lenging than “specifics,” e.g., in comparing a
goat, a kangaroo, and a car, the generalist may
say that the goat and kangaroo are both ani-
mals rather while the specifist may distinguish
them as both mammals. We then present a
more sophisticated algorithm that recovers D-
ary trees on M features and N examples using
O(N + M D?) queries, with high probability (see
Proposition 4.3).

Finally, we show that in the case of M indepen-
dent random features, adaptivity can give an
exponential improvement provided that there is



sufficient data (Lemmas 5.2 and 5.3). For ex-
ample, in the case of M independent uniformly
random features, our algorithm finds all features
using fewer than 3M queries (in expectation)
compared to a (1.6™) for a random triple al-
gorithm. In all analysis, we do not include the
cost of labeling the features on the data since
this cost must be incurred regardless of which
approach is used for feature elicitation. More-
over, the labeling cost is modest as workers took
less than one second, amortized, to label a fea-
ture per image when batched (prior work [10] re-
ported batch labeling for approximately $0.001
per image-feature label).

Interestingly, our theoretical findings imply that
2/3 queries are sufficient to learn in both our
models of hierarchial and independent features,
with sufficient data. We also discuss 2/3 queries
in comparison to other types, e.g., why not ask a
“1/3 query” for a feature that distinguishes one
example from two others? Note that 1/3 and
2/3 queries may seem mathematically equiva-
lent if the negation of a feature is allowed (one
could point out that two are “not wearing green
scarves” ). However, research in psychology does
not find this to be the case for human responses,
where similarity is assumed to be based on the
most common positive features that examples
share (see, e.g., Tversky’s theory of similariteies
[12]). Proposition 6.1 shows that there are data
sets where larger arbitrarily large query sizes are
necessary to elicit certain features.

The paper is organized as follows. After dis-
cussing related work, we define the hierarchical
model in Section 2. In Section 3, we define the
adaptive triple algorithm and the baseline (non-
adaptive) random triple algorithm. In Section
4, we bound the number of queries of these algo-
rithms in the case of hierarchical features. The
performance under independent features are an-
alyzed in Section 5. Section 6 considers alterna-
tive types of queries. Experimental results are
presented in Section 7.

2 Related work

In machine learning and AT applications [9], rel-
evant features are often elicited from domain
experts [6, 14] or from text mining [3]. As men-
tioned, a common approach for crowdsourcing
named features is image tagging, see, e.g., the
ESP game [13]. There is much work on auto-
matic representation learning and feature selec-
tion from the data alone (see, e.g., [2]), but these
literatures are too large to summarize here.

One work that inspired our project was that
of Patterson and Hays [10], who crowdsourced
nameable attributes for the SUN Database of
images using comparative queries. They pre-
sented workers with random quadruples of im-
ages from a data set separated vertically and
elicited features by asking what distinguishes
the left pair from the right. Their images were
chosen randomly and hence without adaptation.
They repeated this task over 6,000 times. We
discuss such left-right queries in Section 6.

For supervised learning, Parikh and Grauman
[9] address multi-class classification by iden-
tifying features that are both nameable and
machine-approximable. They introduce a novel
computer vision algorithm to predict “namabil-
ity” of various directions in high-dimensional
space and present users with images ordered
by that direction. Like ours, their algorithm
adapts over time, though their underlying prob-
lem and approach are quite different. In inde-
pendent work on crowdsourcing binary classifi-
cation, Cheng and Bernstein [4] elicit features
by showing workers a random pair of positive
and negative example. They cluster the features
using statistical text analysis which reduces re-
dundant labeling of similar features (which our
algorithm does through adaptation), but it does
not solve the problem that a large number of
random comparisons are required in order to
elicit fine-grained features. They also introduce
techniques to improve the feature terminology
and clarify feature definitions, which could be
incorporated into our work as well.



Finally, crowdsourced feature discovery is a
human-in-the-loop form of unsupervised dictio-
nary learning (see, e.g., [8]). Analogous to
the various non-featural representations of data,
crowdsourcing other representations has also
been studied. For hierarchical clustering, a
number of algorithms have been proposed (see,
e.g., Chilton et al [5]). Also, Kernel-based sim-
ilarity representations have been crowdsourced
adaptively as well [11].

3 Preliminaries and Definitions

We first assume that there is a given set X =
{z1,29,...,2Nn} of examples (images, pieces of
text or music, etc.) and an unknown set F =
{fi, fo,... fu} of binary features f; : X —
{0,1} to be discovered. We say that feature
fj is present in an example x; € X if f;(z) =1,
absent if f;(x) = 0, and we abuse notation and
write x; 5 = f(x;) and x;; = fj(x;). Hence,
since there are M hidden features and NV exam-
ples, then there is an underlying latent N-by-M
feature allocation matrix A with binary entries.
The ith row of A corresponds to sample z;, and
the jth column of A corresponds to feature f;.

Our goal is to recover this entire matrix A, to-
gether with names for the features, using mini-
mal human effort.

Definition Given a feature f and an example
x;, a labeling query L(z;, f) returns f(x;).

As we will discuss, in practice labeling is per-
formed more efficiently in batches. A consid-
eration for query design is that we want each
contrastive query to be as cognitively simple as
possible for the human worker. Our analysis
suggests that comparisons of size three suffice,
but for completeness we define comparisons on
pairs as well.

Definition A 2/3 query Q(z,y, z) either re-
turns a feature f € F such that f(z) + f(y) +
f(2) =2 or it returns NONE if no such feature
exists.
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Figure 2: A sample proper binary feature tree.
When comparing the pen, flower, and tree, the
distinguishing features are natural and plant. A
generalist would respond with natural.

A 1/2 query on Q(z,y) either returns a feature
f € F such that f(z) + f(y) = 1 or returns
NONE if x and y are identical.

We also refer to 2/3 queries as triple queries
and 1/2 queries as pair queries. Note that we
can simulate a pair query Q(x,y) by two triple
queries Q(z,z,y) and Q(z,y,y). We say that
a feature f distinguishes a set of examples S
if Y cg f(x) =S| =1, ie., it holds for all but

one example in S.

Definition A query is resolved if there is a
known distinguishing feature for the query, or
it is known that NONE is the outcome of the

query.

Algorithm 1, the Adaptive Triple Algorithm, is
the main algorithm we use for experimentation
and analysis (though we also analyze a more
advanced algorithm.



4 Hierarchical Feature Models

We now consider the setting where the features
and examples form a tree, with each internal
node (other than the root) corresponding to a
single feature and each leaf corresponding to a
single example. The features that are 1 for an
example are defined to be those on the path to
the root, and the others are 0. The root is not
considered a feature. Hence, if feature f is an
ancestor of g, then g < f in that whenever g is
1, f must be 1 as well.

Algorithm 1 Adaptive Triple

Input: Examples X = {z;}.

Output: A set of features F' = {f} and their
corresponding labels on all examples x;  for
it <N, fekF.

1: Randomly select a triple {x,y,z} from the
set of all unresolved triple queries. Let f =
Q($, Y, Z) :

2: If f #NONE: (a) add it to F, (b) run the
labeling query L(z;, f) for all z; € X, and
(c) update the set of unresolved queries.

3: If all all triples of examples can be resolved
by one of the discovered features, terminate
and output F' and the labels. Otherwise, go
to 1.

Definition A feature tree T is a rooted tree in
which each internal node (aside from the root)
corresponds to a distinct feature and each leaf
corresponds to a distinct example. The value
of a feature on an example is 1 if the node cor-
responding to that feature is on the the path
to the root from the leaf corresponding to the
example, and 0 otherwise.

Note that our algorithms recover the features
but not the tree explicitly — reconstructing the
corresponding feature tree is straightforward if
the data is consistent with one.

4.1 Binary feature trees

In this section, we consider the standard no-
tion of proper binary trees in which each inter-
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nal node has exactly two children. Figure 2 il-
lustrates a proper binary feature tree.

Proposition 4.1. For a proper binary feature
tree on M features, the Adaptive Triple algo-
rithm finds all features in M queries.

Proof. To prove this proposition, we will show
that: (a) we never receive a NONE response
in the Adaptive Triple Algorithm, and (b) ev-
ery feature has at least one triple for which it
is the unique distinguishing feature. Since a
query in this algorithm cannot return an already
discovered feature, and since there are M fea-
tures, this implies that there must be exactly
M queries.

For (a), let f be the least common ancestor of
an example triple {x,y, z}. Since T is proper, f
must have exactly two children. By the def-
inition of least common ancestor, two out of
{z,y, 2z} must be beneath one child of f (call
this child ¢g) while the other one is beneath the
other child. Then g is a distinguishing feature
for Q(z,y, z). Hence, we should never receive a
NONE response.

For (b), observe that every internal node (other
than the root) has at least one triple for which
it is the unique distinguishing feature. In par-
ticular, given any internal node, f, let [ and r
be its left and right children. Let x and y be
examples under [ and r (with possibly z = or
y = rif [ or r are leaves). Let s be the sibling of
f (the other child of its parent) and let z be any
leaf under of s (again z = s if s is a leaf). Then
it is clear that f is the unique distinguishing
triple for z, y, and z. For example, in Figure 2,
for the feature plant, a triple such as the flower,
tree, and fish, would uniquely be distinguished
by plant. ]

Now consider different ways to answer queries:
define a generalist as an oracle for @ that re-
sponds to any query with the shallowest distin-
guishing feature, i.e., the one closest to the root.
For example, given the pen, flower and tree of
Figure 2, the generalist would point out that the



flower and tree are both natural rather than that
they are both plants. Also, say an algorithm is
non-adaptive if it specifies its queries in advance,
i.e., the triples cannot depend on the answers
to previous queries but could be random. We
also assume that the data is anonymous which
means that we can think of the specific exam-
ples being randomly permuted in secret before
being given to the algorithm.

We now show that any general-purpose non-
adaptive algorithm that does not exploit any
content information on the examples requires
at least Q(M?) examples to find all M features
and at least Q(M?3) if all queries are answered
by generalists.

Proposition 4.2. If the examples correspond
to a random permutation of the leaves of a
proper binary tree T with M features, then any
non-adaptive algorithm requires at least M? /12
queries to recover all M features with probabil-
ity 1/2. Furthermore, if queries are answered
by generalists, then any non-adaptive algorithm
requires at least M?>/24 queries to find all fea-
tures with probability 1/2.

Figure 2 sheds light on this proposition — in or-
der to discover the feature bird, we mush choose
both birds in a triple. If the queries are an-
swered by a generalist, we would have to choose
the birds and fish. The probability of choos-
ing two specific examples is O(1/M?) while the
probability of choosing three specific examples
is O(1/M?3).

Proof. Let f be the deepest feature (or one of
them if there are more than one). Let f have
children x and y which must be leaves since f
is a deepest internal node. Let s be the sibling
of f. By assumption x and y are leaves. Now,
in order to discover f, the triple must consist of
x and y and another node, which happens with
probability (N —2)/(%) = yp=g < 6/M? for
a random triple (since N = M + 2). By the
union bound, if there are only M?/12 triples, it
will fail to discover f with probability at least
1/2.

Now consider a generalist answering queries.
Let S be the set of leaves under s. Since f is the
deepest feature, S must be a set of size 1 or 2
depending on whether or not s is a leaf. It is not
difficult to see that the only triples that return
f (for a generalist) are x,y and an element of S.
Hence there are at most 2 triples that recover f.
Since there are (g) > M3 /6 triples, if there are
fewer than M3 /24 triples, then the probability
that any one of them is equal to one of the two
target triples is at most 1/2. The union bound
completes the proof. O

Note that pairs are insufficient to recover in-
ternal nodes in the case where a specifist an-
swers queries. This motivates the need for
triples; moreover, Proposition 4.1 shows that
triple queries suffice to discover all the features
in a binary feature tree.

4.2 General feature trees

We now present a theoretical algorithm using
triple queries which allows us to efficiently learn
general “D-ary leafy feature trees,” which we
define to be a feature tree in which: (a) every in-
ternal node (i.e., feature) has at most D internal
nodes (but arbitrarily many leaves) as children,
and (b) no internal node has a single child which
is an internal node. Condition (a) is simply a
generalization of the standard branching factor
of a rooted tree, and condition (b) rules out any
“redundant” features, i.e., features which take
the same value for each example.

Proposition 4.3 (Adaptive Hybrid, Upper
Bound). Let T be a D-ary leafy feature tree
with N examples and M features. The Adap-
tive Hybrid algorithm with exploration time 0 =
3D?log % terminates after O(N + M D? log %)
number of triple queries and finds all features
with probability > 1 — 6.

The proof of Proposition 4.3 makes use of the
following Lemma.

Lemma 4.4. Let T be a non-star, D-ary leafy
feature tree. Then the Random Triple algorithm



Algorithm 2 Adaptive Hybrid

Input: Examples X = {z;} and an exploration
parameter 6.

Output: The set of features F' and labels for
all examples z; ;.

1: Query pairs of examples until we have, for
each pair, found a feature that distinguishes
them, or determined that they have identi-
cal features (by direct comparison or tran-
sitivity).

2: Maintain a queue @ of features to explore,
and a queue of already discovered features
F. Initialize Q@ = {r}, where r is a default
root feature defined as: x; = 1,Vi € X.
Initialize F' = {}.

3: while Queue @ is not empty do

4:  Pop a feature f from Q. Set off(f) =

{fj st. Af with f; < f" < f}. Rep-
resent each feature f; in off(f) by a
randomly selected example x; such that

Tj fi = 1.

5: Unijformly randomly select distinct exam-
ples z,y,z € off(f), and query {z,y, z}.
If the query returns a feature f’, push f’
to @, run labeling queries {xz, f'} for all
x € off(f) and update off(f).

6: If Step 5 returns 6 consecutive NONEs,
then add f to F' and go to Step 4 and
pop the next feature from the Q.

7: end while

8: return F' and the labels z; ;.

finds at least one feature with probability > 1—0
using 3D? log% queries.

Due to space limitations, the proofs are deferred
to the appendix.

5 Independent features

In this section we consider examples drawn from
a distribution in which different features are
independent. Consider a statistical model in
which there is a product distribution D over a
large set of examples X. This model is used to
represent features that are independent of one
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other. An example of two independent features
in the Faces data set might be “Smiling” and
“Wearing Glasses.” We assume that D is a
product distribution over M independent fea-
tures. Thus D can be described by a vector
{ps, f € F}, where for any feature f € F,
ps = Pryop|f(z) = 1]. We also abuse notation
and write p; for py,. We assume 0 < p; < 1.

In this model, there is a concern about how
much data is required to recover all the fea-
tures. In fact, for certain features there might
not even be any triples among the data which
elicit them. To see this, consider a homogenous
crowd that all answers queries according to a
fixed order on features. Formally, if more than
one feature distinguishes a triple, suppose the
feature that is given is always the distinguish-
ing feature f; of smallest index i. Intuitively,
this models a situation where features are rep-
resented in decreasing salience, i.e., differences
in the first feature (like gender) are significantly
more salient than any other feature, differences
in the second feature stand out more than any
feature other than the first, and so forth. Now,
also suppose that all features have probability
1/2 of being positive.

Lemma 5.1. If p1 = p2 = -+ = pyy = 1/2,
then with a homogeneous crowd, N > 1.1M
examples are required to find all features with
probability 1/2 even if all triples are queried.

Proof. Since p; = 1/2, the probability of any
feature distinguishing a triple is 3/8. Therefore,
a homogenous crowd will only output the last,
least salient feature if it the only distinguishing
feature, which happens with exponentially small
probability (3/8)(5/8)™~! for a random triple.
Given N < 1.1M examples, there N3 < 1.13M
triples. By the union bound, with probability
less than (3/8)(5/8)M~11.13M < 1/2 will any of
them elicit the last feature. O

On the other hand, we show that all features
will be discovered with a finite number of sam-
ples. In particular, say a feature f is identifiable
on a data set if there exists a triple such that



f is the unique distinguishing feature. If it is
identifiable, then of course the adaptive triple
algorithm will eventually identify it. We now
argue that, given sufficiently many examples,
all features will be identifiable with high prob-
ability.

Lemma 5.2 (Identifiability in the Indepen-
dent Features Model). Suppose N examples are
drawn iid from the Independent Features Model
where feature f has frequency py. For any fea-
ture f, let:

=351 —pp) [] (1= 951 =)
g#f

Moreover, let Tyim = ming7p. If N >
Q(log(1/Tmin)/Tmin), then, with constant prob-
ability, all features are identifiable by triple

queries.

The above exponential upper and lower bounds
are worst case. In fact, it is not difficult to see
that for a totally heterogeneous crowd, which
outputs a random distinguishing feature, if all
p; = 1/2, only N = O(log M) examples would
suffice to discover all features because one could
query multiple different people about each triple
until one discovered all distinguishing features.
Of course, in reality one would not expect a
crowd to be completely homogeneous nor com-
pletely heterogeneous (nor completely general-
ists nor completely specifists), and one would
not expect features to be completely indepen-
dent or completely hierarchical. Instead, we
hope that our analysis of certain natural cases
helps shed light on why and when adaptivity
can significantly help.

As we now turn to the analysis of adaptivity and
the number of queries, we make a “big data”
assumption that we have an unbounded supply
of examples. This makes the analysis simple
in that the distribution over unresolved triples
takes a nice form. We show that the number
of queries required by the adaptive algorithm is
linear in the number of features, while it grows
exponentially with the number of features for
any non-adaptive algorithm.
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We first provide an upper bound on the number
of queries of the Adaptive Triple algorithm in
this model.

Lemma 5.3 (Adaptive Triple). Suppose for
Jj=1,...,k, we have M; independent features
with frequency p; and infinitely many examples.
Then the expected number of queries used by
Adaptive Triple to discover all the features is at
most 25:1 %, where q; = Sp?(l —pj). For the
Adaptive Pair algorithm, set q; = 2p;(1 — p;).

We next provide lower bounds on the number
of queries of any non-adaptive algorithm under
the independent feature model.

Lemma 5.4 (non-adaptive triple). Suppose for
Jj=1,...,k, we have M; independent features
with frequency p; and infinitely many examples.
Let q; = 3p§(1 —pj). The expected number of
queries made by any non-adaptive triple algo-
rithm is at least:

1- Gmax
k )
[Tie (1= qi)M:

where gmax = Max; q;.

)

To interpret these results, consider the simple
setting where all the features have the same
probability: p; = p. Then the random triple al-
gorithm requires at least 1/(1—q)M ! queries on
average to find all the features. This is exponen-
tial in the number of features, M. In contrast,
the adaptive algorithm at most M /q queries on
average to find all the features, which is only
linear in the number of features.

6 Other types of queries

Clearly 2/3 queries are not the only type of
queries. For example, an alternative approach
would use 1/3 queries in which one seeks a fea-
ture that distinguishes one of the examples from
the other two. Such queries could result in fea-
tures that are very specific to one image and fail
to elicit higher-level salient features. Under the
hierarchical feature model, 1/3 queries alone are
not guaranteed to discover all the features.



A natural generalization of the left-vs-right
queries in previous work [10, 4] are queries with
sets L and R of sizes |L| < ¢,|R| < r, where a
valid answer is a feature common to all exam-
ples in L and is in no examples in R. We refer
to such a query as an £ —r query L — R. In
fact, a 2/3 query on {z,y, z} may be simulated
by running the three L-R queries {z,y} — {z},
{y,z} — {x}, and {z, z} — {y}. (Note that this
may result in a tripling of cost, which is signif-
icant in many applications.) There exist data
sets for which L-R queries can elicit all features
(for various values of £, ) while 2/3 queries may
fail.

Proposition 6.1. For any £,r > 1, there exists
a data set X of size N = |X| ={+r and a fea-
ture set F of size M = |F| = 14+ £+ such that
{ —r queries can completely recover all features
while no £’ —r" query can guarantee the recovery
the first feature if ! < £ or if v’ <.

Proof. Let the examples be X = L U R where
L ={z1,x9,...,2¢} and R = {z,...,2}. Let
F ={f} UG U H where the feature f satisfies
f(z)=1ifzx € L and f(x) =0if x € R. Define
the features g1,92,...,9¢ € G to be g;(x) =1
for all z € L\ {z;} and g;(z;) = 0, otherwise.
Define H = {h1, ..., h,} where h;(z) = 0 for all
z € R\ {z}} and hj(z) = 1, otherwise. It is
clear that the query L — R necessarily recovers
f, the query 0 — {x;} recovers g;, and the query
{2} — 0 recovers hj. Moreover, for any query
L’'—R' with z; € |L'|, it is clear that g; is as good
an answer as f. Conversely, if 2; ¢ R/, then
clearly h; is as good an answer as f. Hence,
if the feature f is “least salient” in that other
features are always returned if possible, no ¢/ —r’
query will recover f. O

7 Experiments

We tested our algorithm on three datasets: 1) a
set of 100 silent video snips of a sign-language
speaker [1]; 2) a set of 100 human face images
used in a previous study [11]; 3) a set of 100
images of ties, tiles and flags from that same

9

study [11]. All the images and videos were ini-
tially unlabeled. The goal was to automatically
elicit features that are relevant for each dataset
and to label all the items with these features.
We implemented our Adaptive Triple algorithm
on the popular crowdsourcing platform, Ama-
zon Mechanical Turk, using two types of crowd-
sourcing tasks. In a feature elicitation task, a
worker is shown three examples and is asked to
specify a feature that is common to two of the
examples but is not present in the third. In a
labeling task, a worker is shown one feature and
all examples and is asked which examples have
the feature. To reduce noise, we assigned each
labeling task to five different workers, assigning
each label by majority.

To compare adaptivity to non-adaptivity, we
implemented a Random Triple algorithm that
picks a set of random triples and then queries
them all. To compare triples to pairs, we also
implemented an Adaptive Pair algorithm, de-
fined in the analogous way to the random triple
algorithm except that it only does pair queries.

The Adaptive Triple algorithm automatically
determines which sets of examples to elicit fea-
tures from and which combination of exam-
ple and feature to label. Figure 3 shows the
first five queries of the Adaptive Triple algo-
rithm from one representative run on the three
datasets. For example, on the face data, af-
ter having learned the broad gender features
male and female early on, the algorithm then
chooses all three female faces or all three male
faces to avoid duplicating the gender features
and to learn additional features.

We compared the Adaptive Triple Algorithm
to several natural baselines: 1) a non-adaptive
triple algorithm that randomly selects sets of
three examples to query; 2) the Adaptive Pairs
algorithm; 3) the standard tagging approach
where the worker is shown one example to tag
at a time and is asked to return a feature that
is relevant for the example. We used two com-
plementary metrics to evaluate the performance
of these four algorithms: the number of inter-
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Figure 3: The first five features obtained from a representative run of the Adaptive Triple algorlthm
on the signs (left), faces (middle) and products (right) datasets. Each triple of images is shown in
a row beside the proposed feature, and the two examples declared to have that feature are shown
on the left, while the remaining example is shown on the right.

signs faces products
adaptive triple 24.5 (3.8) 25.3 (0.3) 19 (1.4)
random triples 12.5 (0.4) 18.7 (2.7) 14 (1.4)
adaptive pairs 11.5 (1.1)  14.5 (1.8)  10.5 (0.4)
tagging 9 (0.4) 13 (0.71) 12 (0.4)
Table 1: Number of interesting and distinct

features discovered. Standard error shown in
parenthesis.

esting and distinct features the algorithm dis-
covers, and how efficiently can the discovered
features partition the dataset.

In many settings, we would like to generate as
many distinct, relevant features as possible. On
a given data set, we measure the distance be-
tween two features by the fraction of examples
that they disagree on (i.e. the Hamming dis-
tance divided by the number of examples). We
say that a feature is interesting if it differs from
the all 0 feature (a feature that is not present in
any image) and from the all 1 feature (a features
that is ubiquitous in all images) in at least 10%
of the examples. A feature is distinct if it differs
in at least 10% of the examples from any other
feature. If multiple features are redundant, we
represent them by the feature that was discov-
ered first.

Table 1 shows the number of interesting and dis-

tinct features discovered by the four algorithms.
On each dataset, we terminate the algorithm af-
ter 35 feature elicitation queries. Each experi-
ment was done in two independent replicates—
different random seeds and Mechanical Turk
sessions. The Adaptive Triple algorithm discov-
ered substantially more features than all other
approaches in all three datasets. The non-
adaptive approaches (random triples and tag-
ging) were hampered by repeated discoveries
of a few obvious features—one/two-handed mo-
tions in signs, male/female in faces and prod-
uct categories in products. Once Adaptive
Triples learned these obvious features, it pur-
posely chose sets of examples that cannot be
distinguished by the obvious features in order
to learn additional features. Adaptive compar-
ison of pairs of example performed poorly not
because of redundant features but because after
it learned a few good features, all pairs of ex-
amples can be distinguished and the algorithm
ran out of useful queries to make. This is in
agreement with our analysis of hierarchical fea-
tures. Pairwise comparisons are only guaran-
teed to find the base-level features of the hi-
erarchy while triples can provably find all the
features.

To evaluate how efficiently the discovered fea-
tures can partition the dataset, we compute the
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Figure 4: Comparisons of the adaptive triple
algorithm with benchmarks.

average size of the partitions induced by the
first k& discovered features. More precisely, let
ft be the tth discovered feature. Then fea-
tures fi,..., fr induces a partition on the ex-
amples, Py, ..., Pr, such that examples x;,z;
belong to the same partition if they agree on
all the features fi, ..., fr. The average fraction
of indistinguishable images is g({f1, ..., fx}) =
> |P.|?/N?. Before any feature were discov-
ered, g = 1. If features perfectly distinguish
every image, then g = 1/N.

In Figure 4, we plot the value of g for the adap-
tive triple algorithm and the benchmarks as a
function of number of queries. The adaptive
algorithms requires significantly fewer queries
to scatter the images compared to the non-
adaptive algorithms. On the sign data set, for
example, the adaptive triple required 13 queries
to achieve g = 0.05 (i.e. a typical example is in-
distinguishable from 5% of examples), while the
random triples required 31 queries to achieve
the same g = 0.05. Adaptive Triples and
Adaptive Pairs both achieved rapid decrease in
g, indicating that both were discovering good
discriminatory features. However, as we saw
above, Adaptive Pairs terminated early because
it no longer had any unresolved pairs of exam-
ples to query, while Adaptive Triples continued
to discover new features.

8 Discussion

We have introduced a formal framework for
modeling feature discovery via comparison

queries. Consistent with previous work [10],
we demonstrated that tagging can be inefficient
for generating features that are diverse and dis-
criminatory. Our theoretical analysis suggested
that the Adaptive Triple algorithm can effi-
ciently discover features, and our experiments
on three data sets provided validation for the
theoretical predictions. Moreover, unlike previ-
ous non-adaptive feature elicitation algorithms
which had to detect redundant features (either
using humans or natural language processing),
our algorithm is designed to avoid generating
these redundant features in the first place.

A key reason that our algorithm outperformed
the non-adaptive baseline is that in all three
of our data sets there were some features that
were especially salient, namely gender for faces,
one or two hands for sign language, and prod-
uct type for products. A interesting direction
of future work would be to investigate the per-
formance of adaptive algorithms in other types
of data.

Our analysis suggests that homogeneous crowds
and crowds of generalists should be most chal-
lenging for eliciting features. Modeling the
salience of features and the diversity of the
crowd are also interesting directions of future
work. In particular, our algorithm made no ex-
plicit attempt to find the most salient features,
e.g., one could imagine aggregating multiple 2/3
responses to find the most commonly mentioned
features. In addition, one could leverage the
fact that different users find different features to
be salient and model the diversity of the crowd
to extract even more features.
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A Analysis of the hierarchical feature model

Proof. (Proof of Lemma 4.4) Let (z;,x;,z)) be any triplet of examples. Let fi., be the lowest
common ancestor of z;, x; and xy in T'; that is, fj, is the lowest feature f in T such that z; =
xjf =g = 1. If fi, is also the lowest common ancestor of any two out of (x;,x;,x)), then the
query {zg,xj,x;} will return NONE; otherwise it returns a node feature.

Recall that in the Adaptive Hybrid algorithm, after the double queries in step 1, we associate each
feature f; with a single example. Thus, for the rest of the proof we assume that there exists a
one-to-one mapping between an example and a feature at the leaf node of T

Let f be any feature in T, and let L; be the subset of triples (x,y,2) such that f is the lowest
common ancestor to z, y and z. For any triple (z,y, z), let I(z,y,z) = 1 if one of the triple queries
{z,y, z} returns a feature; otherwise let I(z,y,z) = 0. The total number of triple queries which
will return a feature can be written as: 3 rep D, JeL; I(z,y,2).

Suppose that f has k children in T'. Let n; > ns... > ni be the number of examples associated
with these children. We have two cases.

In the first case, n; > 2. Let us call such a feature heavy. In this case, querying any triple (z,y, 2)
where z and y are from the first child will result in a feature. The fraction of such triples in Ly is

-1 L
at least % > 512 Thus, for a heavy f, Z(a;,y,z)eLf I(z,y,2) > %.
In the second case, n; = 1. Call such an f a light feature. As T is not a star, there exists at least
one leaf [ € T which does not have f as an ancestor. Consider triples of the form (z,y,!) where x
and y are descendants of f such that f is their lowest common ancestor, and let Sy; be the set of
all such triples.

It turns out that Sy; has some nice properties. First, |Sy;| > |L¢|/D; this is because if f has k < D
children, then, |S¢,| = ( ) while [Ly| = (g) Second, if (z,y,1) is a triple in Sy, then the queries
(x,y,1) will return a new feature. Finally, suppose we map each light feature f to the set Sy;; then,
the sets S¢; and Sy are disjoint when f # f'.

Therefore,

light f light f f (xy,2)€Ly
Combining the two cases, we get:

DoILgl+ > Ll < (D+2D%)) I(z,y,2) < (3D%) ) I(2,y,2)
f f

light f heavy f (x,y,2)€Ly (x,y,2)€Ly

Therefore, if we draw a random triple of examples from the subtree below f, and make the cor-
responding three triple queries, the probability that we get a new feature is > 3#. The lemma
follows. O

Proof. (Proof of Proposition 4.3 ) We begin by observing that any time the queries in Step 5 of the
algorithm return a feature, it must be a new feafgre that we haven’t seen before.



Each leaf feature f is the unique solution to the double query {z,y}, where z is under f and y is
under a sibling leaf feature. Thus, all the leaf features are identified by double queries. Moreover,
the double queries return at most N NONE answers.

Let f be the feature that we have currently popped from the queue @), i.e. the feature that we are
currently exploring. Let T be the induced subtree of T' with root at f and leaves the set off(f).
Note that T is the true underlying subtree (that is, not the subtree that we have found), and it is
also D-ary. The Adaptive Hybrid algorithm now randomly samples triples of examples from off( f)
to query. If T} is a star, then there are no new features to be found and this subroutine stops

after 6 queries. Otherwise, when § = O(D? log %), from Lemma 4.4, with probability > 1 — =, it
returns a new feature with high probability. Therefore the probability of finding all M features is
> 1 — 6. The algorithm terminates after O(N + M D? log %) total queries. O

B Analysis of the independent feature model

Proof. (Proof of Lemma 5.2) Let f be any feature, and let z; and x; be a randomly drawn pair
of examples from D. The probability that f satisfies the double query (x;,x;) is 2pf(1 — py);
moreover, the probabilty that f is the only feature that satisfies this query is Ay = 2pg(1 —

py) Hg;éf (1 = 2pg(1 — py)).

Now consider the process of drawing N/2 pairs of random examples from D. The probability that
the i-th pair (z,y) is such that the double query (x,y) is uniquely satisfied by feature f is A;. The
first part of the lemma follows from a coupon collector’s argument. The proof of the second part
is very similar. O

Proof. (Proof of Lemma 5.3) Let f; be a feature with frequency p;, and let (x1, z2, x3) be a randomly
drawn triple of examples. The probability that f; satisfies the triple query (x1, z2,23) is ¢j = 3p]2~(1—
pj). Let F be the full set of features. Suppose we have already seen the set of features S. Then
the probability that the next query will discover an unseen feature is at least: 1 —[] jer\ s(1—gqj),
and therefore the expected time to discover the next unseen feature is at most:

1
1= ITjers(1 = 4))

This quantity is an decreasing function of g;. Thus, the worst case order of discovering features
that maximizes the expected discovery time is from high to low values of g;.

WLOG we will assume that g1 > g2 > ... > qas. The total expected discovery time is at most:

M M
jz;l Hz>]( ;1 1_qJ

O]

Proof. (Proof of Lemma 5.4) Suppose that the fﬁ’ttures are discovered according to some order .



Then, the probability a random triple elicits the last feature i is:

H (1 = () r()

<N

Of course this is minimized when ¢r(y) is minimized. Although a general adaptive algorithm
can have a structure to the triples it chooses, we can use the union bound to argue to bound the
probability that any triple elicits the last feature. In this case, each triple is essentially random. [
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