Are we there Yet?
Self-Managing Wireless Networks

Victor Bahl
Microsoft Corporation

February 2007
MS IT Wireless Satisfaction Survey

Wireless networks perceived to be “flaky”, less secure

December 2006

<table>
<thead>
<tr>
<th>Region</th>
<th>Somewhat Dissatisfied or Very Dissatisfied</th>
<th>Somewhat Satisfied</th>
<th>Very Satisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worldwide</td>
<td>18.1%</td>
<td>39.7%</td>
<td>42.2%</td>
</tr>
<tr>
<td>Americas w/o PS</td>
<td>20.1%</td>
<td>34.2%</td>
<td>45.8%</td>
</tr>
<tr>
<td>Puget Sound</td>
<td>16.2%</td>
<td>44.2%</td>
<td>39.6%</td>
</tr>
<tr>
<td>EMEA</td>
<td>17.6%</td>
<td>35.3%</td>
<td>47.1%</td>
</tr>
<tr>
<td>APJ</td>
<td>22.9%</td>
<td>39.8%</td>
<td>37.3%</td>
</tr>
</tbody>
</table>

Source: Victoria Poncini, MS IT

~7,000 Access Points
~65,000 XP & Vista Clients
~40,000 connections/day
~35,000 handheld devices
User Complaints & IT Headaches

Microsoft’s IT Dept. logs several hundred complaints / month
- 70% calls are about client connectivity issues (e.g. ping-ponging between APs)
- 30% (and growing) are about performance problems due to interference

End-users complain about
- Lack of RF coverage, performance & reliability
- Connectivity & authentication problems

Network administrators worry about
- Providing adequate coverage, performance
- Security and unauthorized access

Corporations spend lots of $$ on WLAN infrastructure
- WLAN hardware business to reach $2.6 billion in 2007. (Forester 2006)
- Heavy VC funding in this area (e.g. AirTight $36M in the last 16 months)
The Business World
Systems & Management

$140B
Software: Only 6%

Cost of
Hardware & Software

Cost of
Management & Support

$0
$50
$100
$150
$200

$200B

'90 '92 '94 '96 '98 '00 '02 '04 '06 '08
Example: Microsoft IT FY05 $ Expenses

Functional View

<table>
<thead>
<tr>
<th>Category</th>
<th>FY05 Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>60%</td>
</tr>
<tr>
<td>App Development</td>
<td>(29%)</td>
</tr>
<tr>
<td>App Support</td>
<td>(31%)</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>40%</td>
</tr>
<tr>
<td>Network</td>
<td>(14%)</td>
</tr>
<tr>
<td>Data Center</td>
<td>(7%)</td>
</tr>
<tr>
<td>Employee Services</td>
<td>(5%)</td>
</tr>
<tr>
<td>Voice</td>
<td>(5%)</td>
</tr>
<tr>
<td>Helpdesk</td>
<td>(5%)</td>
</tr>
<tr>
<td>Security</td>
<td>(3%)</td>
</tr>
</tbody>
</table>

Cost Element View

<table>
<thead>
<tr>
<th>Cost Element</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>People</td>
<td>72%</td>
</tr>
<tr>
<td>Data & Voice</td>
<td>16%</td>
</tr>
<tr>
<td>Hardware</td>
<td>5%</td>
</tr>
<tr>
<td>Facilities</td>
<td>5%</td>
</tr>
<tr>
<td>Software*</td>
<td>2%</td>
</tr>
</tbody>
</table>

* 5% If MS software were included

New vs. Sustaining & Running

- **30% New Capability**
- **70% Sustaining & Running Existing Capability**

30% New

- Increases value

70% Maintenance

- Decreases maintenance delivery

40% Existing Capability
Our March Towards Self Managing Networks

Timeline

- ACM CCR ’06
- Mesh Management
- HotNets’05, MobiSys’06, NSDI ’07
- Enterprise Wireless LAN Management (DAIR)
- Cooperative WiFi Diagnostics (WiFi Profiler)
- Access Point Replacement (Dense AP)
- Cooperative WLAN Management (Client Conduit)
- MobiCom’04
- MobiSys’06

2002
2003
2004
2005
2006
2007

Wireless Office
Network Management is Hard!

Heterogeneous world
- Multiple technologies: 802.11/.15/.16/.20/.22, GPRS, 3G, 1xRTT, EvDO, 4G,…
- Multiple layers: Transport, IP, Ethernet…
- Multiple equipment vendors: Cisco, Juniper, Extreme, Symbol, Aruba,…

Problems can occur anywhere
- Applications, services, first/last hop link, AP, proxy, server, application, switch…

No standard monitoring technique
- What to monitor? Flood of low quality information; Scalability? Cryptic Analyses

Users have very limited understanding & control
- Increased support calls are NOT the answer
- Don’t want to have to call anyone, just want the problem fixed and/or told when it will be fixed

Complexity = expense & slow progress
WLAN Management is Harder

Unpredictable RF Propagation

Many tunable Parameters & Parameter Sensitivity is High
- Frequency band, channel-width, power, rate, multiple radios, ….

Cross-Industry Cooperation is Difficult to Achieve
- Some of them (e.g. cordless phones, baby monitors) may not follow channel discipline
- Some devices such as microwave ovens are incapable of following
- No built in incentive

Topology Discovery is Hard
- Who is affecting my transmission - hidden terminals, mobility, interference,…

Self-interference is rampant
- Multiple host interfaces, multi-hop networks

Root Cause Analysis Techniques are in Their Infancy
- Signature-based techniques do not work - what is normal behavior?

No Standard Metrics for Noise, Power Level etc

Victor Bahl
Shortcomings of AP based Solutions

![Graph showing % Received over time (Minutes) with X markers indicating issues.](image)

- Monitors
- AP & Client

Victor Bahl
Giving Users Greater Control

Need Help?
Toner Low? Paper jam? Errors or fault codes?
A technician is sent automatically! No need to call Microsoft IT Helpdesk

Reduce number of support calls
- Help the user/app/network help itself
- Locate the correct party to contact if not

Reduce the time spent on support calls that do occur

Tension between control & automation

Control

Automation

Victor Bahl
NetHealth

NetHealth is an end-node based framework for the management of enterprise networks.

Framework
- Integrate end-node view of the network with network services & applications
- Share network experience across end points
- Draw inferences based on automatic correlation
- Automate what expert users do manually
- Integrate peer cooperation
- Compliment existing technologies

Goals
Proactively and reactively:
- Detect, alert, diagnose & repair problems
- Detect, alert & contain security compromises
- Perform root cause analysis of performance problems
- Allow what-if analysis for better resource management
NetHealth (Wireless) Projects

Tools to Help Users Help Themselves
- Cooperation between end-nodes for Network Diagnosis & Recovery
 - VirtualWiFi, Client Conduit, WiFiProfiler, SoftRepeater Projects

System & Tools for Managing Enterprise Wireless LAN
- Cooperation between end-nodes and infrastructure servers
 - The DAIR WiFi Network Management Project

Systems & Tools for Managing Wireless Meshes
- Cooperation between end-nodes and infrastructure servers
 - Online simulation based root cause fault analysis
 - What-if Analysis (Time permitting)
Software Infrastructure

Instrumentation
- Hooks to look

Naming
- Problem identification

Alerting
- Getting problem instance (message) to capable agent

Dependency
- Learning relationships between distributed application, services & network components

Verifying
- Quantifying the user’s complaint

Learning & Improving
- What is normal/abnormal within a class

Diagnosing & Repairing
- Handling faults until they are fixed

Network Visualization

Important:
Must be Complimentary to Existing Technologies

- Network Diagnostic Infrastructure
- SNMP
- Native WiFi
- MOM
- SMS / Event logger
- Operations Manager
- Systems Center Capacity Planner
- Active Directory & Group Policy
Tools to Help Users Help Themselves

Cooperative Peer–to-Peer Network Diagnosis & Recovery

Automate network fault diagnosis and recovery
Reduce user frustration and admin load

Use peer cooperation to improve network health
VirtualWiFi
A single wireless NIC appears as multiple cards

Virtual cards
- Appear as real network interfaces to upper layers
- Each virtual card can connect to any network
Helping Disconnected Clients

Client Conduit

Possible causes of disconnection:

- Lack of coverage, e.g. In an RF Hole, just outside AP range, …
- Authentication problem, e.g., stale certificates, …
- Protocol problem, e.g., no DHCP address

Disconnected Client

“Not-so-Grumpy”

Connected Client

“Happy”

Disconnected station detected

When “Happy” donates only 20% of time; Bandwidth available for diagnosis > 400 Kbps
Diagnose range of problems across layers

- No association due to MAC filtering or driver incompatibility
- No DHCP address due to bad WEP key or bad server
- Poor WAN Performance due to wireless or wired problems
- No Internet connectivity due to incorrect proxy

3 components:
- Sensing: Collect local “health” info
- Communication: Send info to peers
- Diagnosis: Use info to diagnose faults

Details: MobiSys ’06
SoftRepeater
Solving Performance Problems

802.11 data rate depends on RF distance

802.11 data rate depends on RF distance

Victor Bahl
Using Network Coding to improve capacity

= 3 transmissions in the air

Zero network overhead implementation on Windows XP
• no extra bytes in packet headers

<table>
<thead>
<tr>
<th>Throughput (in Mbps)</th>
<th>w/o Network Coding</th>
<th>Network Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP (AP→C, C→AP)</td>
<td>11.02</td>
<td>18.13 (+64%)</td>
</tr>
<tr>
<td>TCP (AP→C, C→AP)</td>
<td>10.91</td>
<td>13.97 (+28%)</td>
</tr>
<tr>
<td>TCP (C →AP)</td>
<td>10.55</td>
<td>12.11 (+15%)</td>
</tr>
</tbody>
</table>
Summarizing Using Mobile Hosts for Management

The Good

- No infrastructure required
- Exploits host-view of network
- Provides quick and effective diagnosis
- Incurs low overhead for connected (healthy) clients
 - Use existing 802.11 messages: beacons & probes
- Lets users help themselves

The Bad

- Difficult to provide predictable coverage
- Dependent on battery & energy constraints

….what if we have infrastructure support
Tools for Managing Enterprise Wireless Networks

Cooperative Client-Server Network Diagnosis & Recovery

Automate network fault diagnosis and recovery
Reduce user frustration and admin load
Wireless LAN Management System Requirements

- Must manage the effects of RF propagation
 - Provide comprehensive spatial coverage

- Must Integrate location into the management system

- Should determine performance problems & provide meaningful analysis
 - Reduce false positives & prioritize alerts

- Must locate and contain security breaches

- Should resolve problems automatically
Desktop PC’s with good wired connectivity are ubiquitous in enterprises.

Outfitting a desktop PC with 802.11 wireless is inexpensive:
- Wireless USB dongles are cheap
 - As low as $6.99 at online retailers
- PC motherboards are starting to appear with 802.11 radios built-in

Combine to create a dense deployment of wireless sensors

DAIR: Dense Array of Inexpensive Radios
The DAIR Enterprise Wi-Fi Management System

Commands and Database Queries

Inference Engine

Data from database

Commands

Summarized Data

Network

Data to inference engine

Data from database

Summarized data from Monitors

Database

Other data: AP locations, Floor Map, AP BSSIDs

Victor Bahl
Monitor Software Architecture

Command Processor
- Remote Object
- Command Issuer
 - Command (Enable/Disable Filter / Send Packets)
 - Heart Beat

Filter Processor
- WiFi Parser
- DHCP Parser
- Other Parser
- Filter
 - Enable/Disable Promiscuous/Logging
 - Deliver Packets to all the Registered Filters
 - Summarized Packet Information

Driver Interface
- Sender
 - Packet Constructor
 - Packet
 - Send Packet

SQL Client
- Get Packets/Info from the Device
- Dump summarized data into the SQL Tables
- Submit summaries

Custom Wireless Driver
Wired NIC Driver
SQL Server

Load on desktops < 2-3%
Network traffic per AirMonitor < 10Kbps
Algorithmic Innovations:
- Self-configuring location determination system (DAIR)
- Detecting & attacking rogue wireless nets (DAIR)
- Detecting performance anomalies and RF holes (DAIR)
- Detecting & responding to DoS attacks (DAIR)
- Assigning channel & power; managing handoff (DenseAP)

Systems Innovations:
- Scaling to the size of an enterprise
- Bootstrapping the location system
- Limiting the impact of sensors on office PCs
- Introducing new techniques while remaining backward compatible

Status
60-node system operational for over 8 months, MS-IT & DELL deployment discussions (on-going)
Self-Configuring Indoor Location System

Here’s how:

- AirMonitors (AM) automatically determine their position

- AMs collectively profile the RF environment by measuring the signal propagation characteristics between one another

- Inference Engine (IE) uses the RF profiles and signal strength observations at multiple AMs to locate Wi-Fi transmitters

The DAIR system can locate any Wi-Fi transmitter (including non-cooperative ones) to office-level accuracy
Monitor machine activity to determine primary user

Look up Directory Services (e.g. Active Directory) to determine office number

Parse office map to determine coordinates of the office
 - Assume AMs to be located at the center of the office

Improve estimates by verifying & adjusting coordinates by observing which AMs are nearby
RF Propagation Modeling

\[
P(d)[dBm] = P(d_0)[dBm] - 10n \log\left(\frac{d}{d_0}\right) - \begin{cases}
 nW \times WAF, & nW < C \\
 C \times WAF, & nW \geq C
\end{cases}
\]

\(P(d_0) = 28 \text{ dBm}, n = 1.53\)
\(WAF = 3.1 \text{ dBM}, C = 4 \text{ Walls}\)

Good News: Don’t need sophisticated RF Propagation Models

Each AM determines it’s own profile
Locating the Wi-Fi Transmitter

Observed RSSI: 50
Distance: 3, Estimated RSSI: 54
Distance: 1.3, Estimated RSSI: 51

Observed RSSI: 52
Distance: 0, Estimated RSSI: 56
Distance: 1.1, Estimated RSSI: 52

Observed RSSI: 45
Distance: 7.2, Estimated RSSI: 35
Distance: 6.0, Expected RSSI: 41

Observed RSSI: 44
Distance: 6.5, Estimated RSSI: 38
Distance: 6.2, Estimated RSSI: 47

\[P(d)[dBm] = Ae^{\lambda d} \]
98 meters x 32 meters
150 offices and conference rooms.
Typical office size: 3 meters x 3 meters
Full-height walls. Solid wood doors
59 AirMonitors.
DAIR Infrastructure Applications

Access Point Replacement
- Self configuring deployment
- Better spatial reuse

Layer 7 Applications & Services
- Indoor GPS
- Seamless Roaming
- Guest Access

Performance Management
- Isolate performance problems
 - Help disconnected clients
 - Detect & fix RF Holes
 - Detect mis-configuration
- Reliability
 - Recover from malfunctioning APs
 - Compensate for poor association policies
- Monitoring
 - Site planning: AP placement, frequency / channel selection
 - Load balancing

Security Management
- Detect rogue wireless nets
 - Infrastructure and ad-hoc
- Detect DoS attacks
 - Spoofing disassociation
 - Large NAV values
 - Jamming
- Contain Attackers
 - Attack the attackers

DenseAP project

Victor Bahl
Managing Meshes

The least well understood area of research

Broadband Connectivity
- Rural & developing areas
- City-wide
- Neighborhoods / Communities
- Wireless Office
Is this Normal Behavior?

<table>
<thead>
<tr>
<th></th>
<th>Flow_1</th>
<th>Flow_2</th>
<th>Flow_3</th>
<th>Flow_4</th>
<th>Flow_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.5 Mbps</td>
<td>0.23 Mbps</td>
<td>2.09 Mbps</td>
<td>0.17 Mbps</td>
<td>2.55 Mbps</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Victor Bahl
Control Flow

Mesh Configuration & Setup (scope out network)

Gather & Distribute Data

Clean & Analyze Data

Determine Physical Topology

Model Network Behavior

“What-if” Analysis

Detect Anomaly

Improve Routing/Capacity

Diagnose Problem

Locate Hot Spots & Inform

Suspect software/hardware

Suspect attack

Poor local connectivity

Congestion

Inform/Fix

Reconfigure Topology

Rate Limit

Perform Security Analysis

Step 1

Step 2

Step 3

Step 4

Step 5

Victor Bahl
Step 1: Gather & Distribute Data

Monitoring: What should we collect?
- **Link Info**: Noise level, signal strength, loss rate to direct neighbor (packet retransmission count)
- **Connectivity Info**: Network topology / connectivity info (Neighbor Table)
- **Traffic Info**: Load to direct neighbor
- ...

Distribution: Minimize (overhead) bandwidth consumption
- **Dynamic scoping**
 - Each node takes a local view of the network
 - The coverage of the local view adapts to traffic patterns
- **Adaptive monitoring**
 - Minimize measurement overhead in normal case
 - Change update period
 - Push and pull
- **Delta compression**
- **Multicast**
Data may not be pristine. Why?
- Liars, malicious users
- Missing data
- Measurement errors

Clean the Data
- Detect Liars
 - Assumption: most nodes are honest
 - Approach:
 - Neighborhood Watch
 - Find the smallest number of lying nodes to explain inconsistency in traffic reports
- Smoothing & Interpolation
Resiliency against Liars & Lossy Links

Problem
- Identify nodes that report incorrect information (liars)
- Detect lossy links

Assume
- Nodes monitor neighboring traffic, build traffic reports and periodically share info.
- Most nodes provide reliable information

Challenge
- Wireless links are error prone and unstable

Approach
- Find the smallest number of lying nodes to explain inconsistency in traffic reports
- Use the consistent information to estimate link loss rates

Results

![Detect liars graph]

Fraction of lying nodes identified

- NL=1
- NL=2
- NL=5
- NL=8
- NL=10
- NL=15
- NL=20

Coverage
False positive

![Detect lossy links graph]

Fraction of lossy links identified

- NL=1
- NL=2
- NL=5
- NL=8
- NL=10
- NL=15
- NL=20

Coverage
False positive

Details: CCR ‘06
Step 3 & 4: Model Network & Perform Root Cause Analysis

Collect Data

Agent Module
- SNMP MIBs
- Performance Counters
- Routing Table
- Native WiFi

Clean Data

Simulate Network Perf.

Faults Directory

Inject Candidate Faults

Root Cause

Topologies Link Loads
Signal Strength

Delay

Link Layer Performance Estimate

Measured Link Layer Performance

Diagnosis Module
Sample Performance

25 node random topology

<table>
<thead>
<tr>
<th>Number of faults</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>1</td>
<td>1</td>
<td>0.75</td>
<td>0.7</td>
<td>0.92</td>
<td>0.86</td>
</tr>
<tr>
<td>False Positive</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Faults detected:
- Random packet dropping
- MAC misbehavior
- External noise
Challenges [in Online Simulation based Diagnostics]:
- Accurately reproduce the behavior of the network inside a simulator
- Build a fault diagnosis technique using the simulator as a diagnosis tool

Advantages
- Flexible & customizable for a large class of networks
- Captures complicated interactions within the network
- between the network & environment, and among multiple faults
- Extensible in its ability to detect new faults
- Allows what-if analysis
Step 5: Mitigation

Responding to troubled spots

- Re-route traffic
- Rate-limit
- Change topology via power control & directional antenna control
- Flag
 - environmental changes & problems
 - Malfunctioning hardware
- Launch DoS attacks against the possible attacker
- etc.
So where does all this leave us......
Think about what’s coming?

- Micro-cellular architectures
- Multi-standard, multi-radio devices
- New technologies: WiMax, UWB, .11n, 4G, 60 GHz,…
- Cognitive networking
 - Reconfigurable adaptive stacks, SDRs, Agile radios
- Data networking in the TV Bands
- Time-sensitive applications
- Sensor Networking

Billions of Devices will have to be Managed
Management & Performance is Key!

Wireless networks are complex & difficult to diagnose but diagnostics are critical to wireless deployments

Opportunity to conduct seminal research
- Make networks more deployable in IT-poor markets
- Reduce IT costs in the enterprise
 - Take advantage: infrastructure & end systems owned by same organization

Host-centric approaches show great promise

Tradeoff between gains from management and loss because of overhead
Are we there yet?

Not yet.....

.....but surely getting there
Self-aware, self-healing, easy-to-manage networks
Q/A

http://research.microsoft.com/netres/nethealth/