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Beyond Stabilizer Codes II: Clifford Codes

Andreas Klappenecker, Martin Rotteler

Abstract

Knill introduced a generalization of stabilizer codes, in this note called Clifford codes. It remained unclear whether or
not Clifford codes can be superior to stabilizer codes. We show that Clifford codes are stabilizer codes provided that the
abstract error group has an abelian index group. In particular, if the errors are modelled by tensor products of Pauli

matrices, then the associated Clifford codes are necessarily stabilizer codes.
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I. INTRODUCTION

Quantum error control codes allow to protect the computational states of a quantum computer
against decoherence errors. Almost all quantum codes known today have been constructed as stabilizer
codes, cf. [, @], B], [H]. Allowing the protection of quantum systems of arbitrary finite dimension,
we are led to modify the notion of a stabilizer code in the following way:

Let o: E — U(n) be a faithful unitary irreducible ordinary representation of an abstract error group
E [|. A stabilizer code is defined to be the joint eigenspace @) of the representing matrices o(n) for
all n € N, where N is a normal subgroup of E. If () is nontrivial, then N is necessarily an abelian
normal subgroup of F.

We recover the definition of binary stabilizer codes as used in [P], [] by taking £ to be the generalized
extraspecial 2-group which is generated by k-fold tensor products of Pauli matrices. The stabilizer
codes derived within this error model have been studied in great detail, see [P, [B]

The definition of stabilizer codes forces the normal subgroup to be abelian. A more general class
of quantum error correcting codes — in this note called Clifford codes — has been introduced by Knill

in [[d]. Clifford codes are derived with the help of normal subgroups which are not necessarily abelian.
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It remained unclear, whether or not it is possible to construct Clifford codes that are better than
stabilizer codes. We found surprisingly good Clifford codes by computer search. However, we were
never able to beat the stabilizer codes. The main result of this note partly explains this phenomenon:
we find that each Clifford code is actually a stabilizer code given that the error group has an abelian
index group. Therefore, the error models discussed in [l], [B], [B] cannot lead to Clifford codes which

are not stabilizer codes.

II. CLIFFORD CODES

We will construct a quantum code () from a normal subgroup N of an abstract error group E. The
main properties of such a code () are determined by applying results from Clifford theory, hence the
name Clifford code. The relevant results from Clifford theory can be found in Huppert [, Chapter 5]
or any other standard text on representation theory of finite groups.

Let E be an abstract error group. Recall that the group E has a faithful irreducible ordinary

1/2

representation o: F — U(n) of large degree dego = (E: Z(F))"*. The errors are expressed as linear

combinations of the unitary n x n matrices o(g) representing elements g of the abstract error group
E.

The action of the representation ¢ on C™ induces an irreducible C E-module structure on the ambient
space C™. Let N be a normal subgroup of E, denoted by N < E. If we view the ambient space C" as
a CN-module, then we obtain a decomposition into irreducible CN-modules gWW of the form

Cr= @ {@ gW} ,
i=1 (geRr
where R is a transversal of the inertia group T'(W) in E, and m is the multiplicity of the module gV

in this decomposition. Recall that the inertia group is defined by
TW)={g9e ElgW=W}
We define a quantum code () to be a homogeneous component

Q=W - dW
—_————

m-times

of this decomposition. Thus, () is a subspace of C™ which is also endowed with the structure of a
CN-module. We call any quantum code () that can be obtained by such a construction a Clifford

code.
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We need to introduce some more notation before we can discuss the error correcting properties of a

Clifford code Q). We define Z(W) to be the set of elements that act on @) by scalar multiplication
ZW)={geT(W)|INe CVv €Q : gv = v}

The error correcting properties of the code () are summarized by the following theorem. Although this
theorem is essentially contained in [[], we include it here to make this note self-contained:

Theorem 1: We keep the notation introduced above. Let y be the character of N afforded by W.
Then

& = % S xn)eln)

neN
is an orthogonal projector onto (). The code @ is able to correct a set of errors ¥ C E precisely when
the condition ej ey & T(W) — Z(W) holds for all ey, e; € 3. The dimension of Q is mx/(1).

Proof: We divide the proof into several steps.

Step 1. The matrix group o(/N) is isomorphic to the abstract group N, since g is a faithful representa-
tion. Since x is an irreducible character of N, it follows that e, is an idempotent in the group algebra
Clo(N)] = CN, cf. B, p- 209]. The idempotent e, is hermitian, since g is unitary, hence an orthogonal
projection operator. That e, projects onto @ is a well-known fact, cf. Theorem 8 in [f, p. 21]. The
dimension of the module W is x(1), whence dimc(Q) = mx(1).
Step 2. Let g,h € E. The characters of gW and hW are ¢ (z) = x(gzg~') and p(z) = x(hah™?)
respectively, cf. Chap. V, §17, Theorem 17.3 ¢) in [[]]. Suppose that g and h are not in the same coset
of (W) in E. Then ¢ and ¢ are different irreducible characters. Thus the idempotents e, and e,
satisfy eye, = 0 = eye,, hence project on orthogonal subspaces. We have im(ey) = ¢@Q, im(e,) = hQ),
and thus, in particular, g@) L hQ.
Step 3. It remains to show the error correcting properties of (). Recall that an error w can be detected
if and only if e, p(w)e, is a scalar multiple of e,, cf. [{]. The code @ is X-correcting if and only if @ is
able to detect all errors in {e;'ey| 1,60 € X}, cf. [0, [[T]. Hence it remains to show that an error w
can be detected if and only if w & T(W) — Z(W).

(a) An error w € Z(W) can be detected, since, by definition, there exists a scalar A € C such that
eyo(w)ey, = Aey.

(b) An error w € E —T'(W) can be detected, since Step 2 shows that e, o(w)e, = 0 holds.



(¢) Anerror w € T(W)—Z (W) cannot be detected. Indeed, o(w) maps @ into itself, since w € T'(W).
However, e, p(w)e, cannot be a multiple of e,, since this would imply that w is an element of Z(W).
This proves the claim. O
The error correcting properties of a Clifford code @ are fully determined by the inertia group T'(WW)
and the group Z(W). It is often more convenient to use characters rather than modules to compute

these groups. The inertia group T (W) coincides with the inertia group T'(x) of the character y in G:
T(W)=T(x) ={g € G| x(grg™") = x(z) for all z € N}.

The group Z (W) can also be determined by a character. Clifford theory shows that @ is an irreducible
CT-module, where T' = T'(W). Denote by ¢ the irreducible character of T" afforded by Q. Then Z (W)

is determined by the values of the character ¥:
ZW)=Z(W) ={g e T[V(1) = ¥(g)| }.
ITI. CHARACTERS

We have seen that the inertia group of x determines the error correcting properties of the quantum
code (). We show in this section how the inertia groups can be calculated for abstract error groups
with abelian index groups.

Let us first recall a few standard notations from group theory. If E is a finite group, then £’ denotes

the commutator subgroup,

E'={lg,h] =g 'h~'gh|g,h € E).

The center Z(E) of E is given by the group
Z(E)={z€ E|zg=gzforallge E}.

An abstract error group E has an abelian index group G = E/Z(F) if and only if its commutator
subgroup E’ is contained in Z(F). For that reason, it is of interest to study the inertia groups in such
groups E. We will see that the inertia group of a character y of N defining a Clifford code is simply
given by the centralizer of Z(N) in E.

Let G be a finite group. We denote by Irr(G) the set of irreducible characters of G. We say that a
character x € Irr(G) is faithful on H C G if and only if the intersection of H with the kernel of x is
trivial

Hnker(x) =HnN{ge G|x(1)=x(9)}={1}.
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We need to establish a few simple properties of characters. We will see that a character defining a
Clifford code will satisfy the assumption of the following lemma, which gives some information about
character values.

Lemma 2: Let E be a finite group, N < E. Let x be an irreducible character of N that is faithful
onZ=Z(EYNN.Ifz€Z, z# 1,and n € N, then x(zn) = wx(n) for some w # 1.

Proof: Denote by p a representation affording y. Since p is irreducible, g(z) is a scalar multiple

of the identity matrix I for all z € Z by Schur’s lemma. If z # 1, then o(z) = wl with w # 1, since x
is faithful on Z. Hence x(zn) = tr(o(zn)) = tr(we(n)) = wtr o(n) = wy(n) as claimed. O

In the next step we want to show that the character x defining a Clifford code is indeed faithful
on the central elements of E contained in N. We exploit the fact that y is a constituent of a faithful
character ¢ € Trr(E) of the abstract error group satisfying ¢(1)? = (E: Z(E)). Recall that a scalar

product of two characters y, v € Irr(N) is defined by
1 -1
(x, ) = W Z x(n)d(n™").
This allows to define the set of irreducible components of the restriction of ¢ € Irr(E) to N by

rr(¢ | N) = {x € Irr(N) [ {x, ¢ | N) # 0},

where ¢ | N denotes the restriction of ¢ to N. Using this notation, we can now formulate
Lemma 3: Let E be a finite group, N < E, ¢ € Irr(E), and x € Irr(¢ | N). If ¢ is faithful on Z(F),
then y is faithful on Z = Z(E) N N.

Proof: By Clifford’s theorem, the restriction of ¢ to N can be expressed as a sum of characters
x?(z) = x(gzg™') conjugated to :
(¢ L N)(x) =m> x(x),
geER
for some subset R of E. The conjugated characters satisfy x?(z) = x(gzg™!) = x(2) for all central

elements z € Z. Hence
(¢ L N)(2) = |RImx(2)

for all z € Z, which proves the claim. O
Recall that the support supp(x) of a function y: £ — C is given by the set supp(yx) = {g €

E|x(g) # 0}. We use our knowledge of character values to determine the support of the character x:



Lemma 4: Let E be a finite group satisfying £’ C Z(F), and N < E. If y € Irr(NV) is faithful on
Z = NnNZ(E), then supp(x) = Z(N).

Proof: Let n € supp(x). Seeking a contradiction, we assume that n ¢ Z(N). Since E' C Z(FE),

this means that there exists an element g € N such that gng=' = zn for some 2z € Z(E), z # 1. Note

that zn, hence z, is an element of N since N is a normal subgroup of E. Thus,

x(n) = x(gng™") = x(zn) = wx(n)

with w # 1, by Lemma B This contradicts the fact that x(n) # 0, hence supp(x) = Z(N) as
claimed. 0O

Recall that the centralizer Cg(H) of a subgroup H in F is given by the group
Ceg(H)={g€ E|ghg ' =hforallhec H}.

Using this notation, we are able to explicitly determine the inertia subgroup 7'(x):

Lemma 5 (“Tacheles” Lemma) Let E be a finite group satisfying £’ C Z(E), and N < E. Let
¢ € Irr(F) be faithful on Z(E), and x € Irr(¢ | N). Then the inertia group of x in F is given by
T(x) = Cp(Z(N)).

Proof: The character x is faithful on Z(£)NN by Lemma B Thus supp(x) = Z(V) by Lemma fi.
It follows that Cg(Z(N)) < T(x). Conversely, suppose that ¢ € Cg(Z(N)). We want to show that
g cannot be an element of the inertia group. Since £’ C Z(F), the condition g & Cg(Z(N)) implies
that there exists an element n € Z(N) such that gng™ = zn for some 2z € Z(F), z # 1. Since N is
a normal subgroup of E, we also obtain that zn € N. Together with n € N this shows that z € N.
By Lemma B, x?(n) = x(gng™') = x(2n) = wx(n) with w # 1. Since n € Z(N) C supp(x), x(n) # 0,
whence g € T'(x). O

IV. ABELIAN INDEX GROUPS

Suppose that we fix a normal subgroup /N of an abstract error group E and define a Clifford code
@ using a character y € Irr(¢| N). If the index group of E is abelian, then the next theorem shows
that @) could have been derived from an abelian group, namely from the center Z(N) of N.

Theorem 6: Let E be an abstract error group with abelian index group. Let N be a normal subgroup
of E. Suppose that @ is a Clifford code with respect to NV, then @) is also a Clifford code with respect
to Z(N).



Proof: We divide the proof into several steps.

Step 1. The Clifford code @ is defined by the following data. There exists a faithful irreducible char-
acter ¢ of E that corresponds to a unitary representation o of degree (E:Z(E))/? and x € Irr(¢ | N)
such that

=7 X0l
is an orthogonal projector onto ().
Step 2. Recall that E satisfies E' C Z(F), since the index group E/Z(E) is abelian. We want to show
that N < F implies that Z(N) < E. Indeed, take n € Z(N) and g € E. We have gng~! = zn for
some z € Z(FE), since E' C Z(FE). Now zn € N, since N < E| and thus z € N. On the other hand, an
element z € Z(E) N N is an element of Z(N). This shows that all conjugates of an element n € Z(N)
are again elements of Z(N), whence Z(N) < E.
Step 3. The restriction of x to the center Z = Z(N) is given by (x | Z)(z) = x(1) ¢(x) for some
irreducible character ¢ of Z, cf. Prop. 6.3.5 in [[J]. We claim that

e, — |17| S e(=olz)

z€Z

is also an orthogonal projector onto Q). It is clear that dim¢ im(e,) = dim¢ im(e,,), since the “Tacheles”
Lemma shows that the inertia groups of x and ¢ are given by T'(x) = Cg(Z) = T'(¢). Thus, it suffices
to show that the dimension of im(eg,e, ) is not smaller than the dimension of im(e,).

Step 4. Recall that ¢(g) = tr o(g) is zero for all g € E not in the center Z(E). Moreover, (¢ | Z)(z) =
#(1)p(z) holds for all z € Y = Z(E) N N, cf. Lemma B. Keeping this in mind, it is easy to calculate

the dimension of im(e, ) by

_ Yle(xy

dimcim(e,) =tre, = N
On the other hand, we find that

dimeim(ezey) = tr(esey)

M S el o).

neEN,z€Z
nz€Y

Since x(z) = x(1)p(2) holds for z € Z, and the conditions z € Z and nz € Y imply that n € Z, we



can further simplify this expression to

tr(egey) = % Z oz 'n N tr o(nz)

n,z€Z
nzeyY

Y1 Zl¢(1)x(1)”
[N Z]

This shows that dimcim(e,) = dim¢ im(ege, ), whence e, and e, project both onto . O

V. CONCLUSIONS

We have shown some basic properties of Clifford codes, which are a natural generalization of stabilizer
codes. The main result of this note shows that there is no loss in assuming that the normal subgroup
defining a Clifford code is abelian provided that the abstract error group is a nilpotent group of class
at most 2. An analogue of Theorem [ does not hold for general index groups. In fact, we have
recently shown that there exist Clifford codes which are not stabilizer codes [[J]. This result indicates
that abstract error groups with nonabelian index groups might provide a new angle to the theory of
quantum error correcting codes. Moreover, this shows that the theory of Clifford codes — after all —

extends the concept of stabilizer codes.
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