
Computation-Efficient Multicast Key Distribution
Lihao Xu, Senior Member, IEEE, and Cheng Huang, Member, IEEE

Abstract—Efficient key distribution is an important problem for secure group communications. The communication and storage

complexity of multicast key distribution problem has been studied extensively. In this paper, we propose a new multicast key

distribution scheme whose computation complexity is significantly reduced. Instead of using conventional encryption algorithms, the

scheme employs MDS codes, a class of error control codes, to distribute multicast key dynamically. This scheme drastically reduces

the computation load of each group member compared to existing schemes employing traditional encryption algorithms. Such a

scheme is desirable for many wireless applications where portable devices or sensors need to reduce their computation as much as

possible due to battery power limitations. Easily combined with any key-tree-based schemes, this scheme provides much lower

computation complexity while maintaining low and balanced communication complexity and storage complexity for secure dynamic

multicast key distribution.

Index Terms—Key distribution, multicast, MDS codes, erasure decoding, computation complexity.

Ç

1 INTRODUCTION

IN many applications, multicast is an efficient means of
distributing data in terms of resources (such as network

bandwidth, server computation, and I/O load) usage. The
privacy of a multicast communication session is usually
ensured using (symmetric) encryption. All the designated
receivers or members in a multicast group share a session
(encryption) key. In many applications, however, the
multicast group membership changes dynamically, i.e.,
some new members are authorized to join a new multicast
session, whereas some old members should be excluded.
Thus, session keys shall change dynamically to ensure both
forward secrecy and backward secrecy of multicast sessions.
The forward secrecy is maintained if an old member who
has been excluded from the current and future sessions
cannot access the communication of the current and future
sessions, and the backward secrecy is guaranteed if a new
member of the current session cannot recover the commu-
nication data of past sessions. Each session thus needs a
new key that is only known to the current session members,
i.e., session keys need to be dynamically distributed to
authorized session members.

In this paper, we study how a multicast group key can

efficiently be distributed in computation. We adopt a

common model where session keys are issued and dis-

tributed by a central group controller (GC), as it has much less

communication complexity, as compared to distributed key

exchange protocols, which is a very desired property in

most wireless applications [35], [36], [37], [22], [38], [39]. The

resources needed for the GC to distribute session keys to

group members include communication, storage, and
computation resources. The communication complexity is
usually measured by the number of data bits that need to
be transmitted from the GC to group members to convey
information of session keys, whereas the storage complexity
is measured by the number of data bits that the GC and
group members need to store to obtain session keys.
Another similarly important but usually undernoticed, if
not ignored, factor is the computation complexity, which can
be measured by the number of computation operations (or
the computation time on a given computing platform) that
the GC and group members need to distribute and extract
session keys. Hereafter, the problem of how resources can
effectively be used to distribute session keys is referred to as
the group key distribution problem.

The group key distribution problem has been studied
extensively in the larger context of key management for
secure group communications [26], [27], mainly on balan-
cing the storage complexity and the communication
complexity. There are two trivial schemes for distributing
a session key to a group of n members. The first one is that
the GC shares an individual key with each group member,
which can be used to encrypt a new group session key. In
this scheme, the communication complexity is OðnÞ,
whereas the GC needs to store OðnÞ key information, each
member stores Oð1Þ key information, and OðnÞ encryption
and decryption operations are needed. In the second
scheme, the GC shares an individual key with each subset
of the group, which can then be used to multicast a session
key to a designated subset of group members. Now, both
the communication complexity and the computation com-
plexity reduce to Oð1Þ, but at the cost of increasing the
storage complexity to Oð2nÞ for both the GC and each group
member. It is easy to see that neither scheme works for
practical applications with a reasonable group size n. Thus,
research efforts have been made to achieve low commu-
nication and storage complexity for group key distribution.

Static secret sharing via broadcast channel was studied in
[32] and [20]. However, this threshold-based scheme can
only distribute a session key to a designated group of

IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008 577

. L. Xu is with the Department of Computer Science, Wayne State
University, 5143 Cass Avenue, 431 State Hall, Detroit, MI 48202.
E-mail: lihao@cs.wayne.edu.

. C. Huang is with Microsoft Research Labs, One Microsoft Way, Redmond,
WA 98052. E-mail: cheng.huang@microsoft.com.

Manuscript received 12 Feb. 2007; revised 15 June 2007; accepted 24 July
2007; published online 16 Aug. 2007.
Recommended for acceptance by P. Mohapatra.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0050-0207.
Digital Object Identifier no. 10.1109/TPDS.2007.70759.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

members for one-time use. Once a session key is distributed
to the group, any member can calculate the secret
information that other members in the same group hold.
Thus, the scheme does not provide forward or backward
secrecy. A secure lock method based on the Chinese
Remainder Theorem was proposed in [11]. However, its
prohibitively high communication complexity and compu-
tation complexity make it only practical for a very small
group with limited number of members. Various theoretical
measures and schemes for group key distribution were
introduced in [14]. Along the same line, many research
efforts have been made on balancing communication
complexity and storage complexity of the group key
distribution problems, for example, [8], [18], [6], [7], [35],
and [36].

For a multicast group with a large number of members,
key-tree-based schemes were introduced to decompose a large
group into multiple layers of subgroups with smaller sizes
[37], [22], [38], [39]. Using these schemes, a group member-
ship change can be effectively handled in the corresponding
subgroups without affecting other ones. Thus, the commu-
nication complexity is reduced, but at the cost of increase in
storage and computation complexity together with extra
communication delays. For a group of n members, key-tree-
based schemes have a communication complexity ofOðlognÞ
and a storage complexity of OðnÞ for the GC and OðlognÞ for
each group member. It has been shown that if a group
member can store at mostOðlognÞ keys, then the lower bound
of the communication complexity is OðlognÞ if a structure-
preserving protocol is used for group key distribution [10].
Thus, the key-tree-based schemes are of practical interest for a
variety applications because of its balance between commu-
nication complexity and storage complexity.

Although most research on group key distribution has
been on balancing communication complexity and storage
complexity, very few efforts have been made to reduce
computation complexity [33]. It has been long assumed that
expensive encryption and decryption operations are neces-
sary to distribute group keys. Although broad-sense multi-
cast is becoming increasingly practical over general Internet
using various technologies such as overlay networks,
multicast certainly gains most on true broadcast commu-
nication media such as wireless networks. In such wireless
systems, multicast receivers (group members) are often of
various lightweight mobile devices or sensors. Although it is
becoming increasingly affordable to embed considerable
computing power (and storage capacity) into these devices,
their battery power will remain to be limited for a long time
ahead. Computation complexity is thus more important
than storage complexity for these devices in many applica-
tions. Hence, it becomes at least equally, if not more
important, to reduce the computation complexity of the
group key distribution problem, which has been under-
studied so far.

In this paper, we propose a new dynamic group key
distribution scheme that drastically reduces computation
complexity and yet maintains at least the same security
degree of using symmetric encryption algorithms without
increasing communication or storage complexity. In our
scheme, information related to session keys is encoded

using error control codes rather than encryptions. In general,
encoding and decoding of a proper error control code have
much (at least one order, although this is hard to strictly
quantify analytically) lower computation complexity than
existing encryption and decryption algorithms, which has
been verified by our experiments described later in
Section 3.4. Thus, the computation complexity of key
distribution can be significantly reduced. The similar idea
of using error control codes to achieve privacy was
employed in [32], [20], and [4]. The major difference
between these schemes and ours is that our scheme allows
dynamic group membership changes with very low storage
complexity, whereas the other schemes only work for a
predefined static group.

The security strength of this scheme will be evaluated, as
well as its communication, storage, and computation com-
plexity. Aside from its low computation complexity, this
scheme also has low storage complexity, i.e., Oð1Þ for an
individual group member andOðnÞ for the GC, wheren is the
number of group members. Based on the basic scheme using
error control codes, concrete design parameters are derived to
apply this scheme to key trees. Experiments are conducted to
show great reduction of our scheme in computation complex-
ity than using other commonly used traditional encryption
algorithms on 3-ary balanced key trees.

This paper is organized as follows: A basic scheme using
error control codes to distribute multicast keys is described
in Section 2. Section 2 also evaluates the security and
resource consumption of the basic scheme. Section 3 applies
the general scheme to a balanced 3-ary key tree to achieve
low communication, computation, and storage complexity.
Implementation and experimental results are given as well.
Section 4 concludes this paper.

2 THE BASIC SCHEME: DYNAMIC KEY

DISTRIBUTION USING MAXIMUM DISTANCE

SEPARABLE CODES

2.1 Maximum Distance Separable Codes

Maximum Distance Separable (MDS) codes are a class of error
control codes that meet the Singleton bound [19, chapter 11].
LettingGF ðqÞ be a finite field with q elements [19, chapter 4],
an ðn; kÞ (block) error control code is then a mapping from
GF ðqÞk to GF ðqÞn : EðmÞ ¼ c, where m ¼ m1m2 � � �mk is the
original message block, c ¼ c1c2 � � � cn is its code word block,
and Eð�Þ is an encoding function, with k � n. If a decoding
functionDð�Þ exists such thatDðci1ci2 � � � cik ; i1; i2; � � � ; ikÞ ¼ m
for 1 � ij � n and 1 � j � k, then this code is called an ðn; kÞ
MDS code. For an ðn; kÞ MDS code, the k original message
symbols can be recovered from any k symbols of its code word
block. The process of recovering the k message symbols is
called erasure decoding. All the symbols are defined over
GF ðqÞ, and usually, q ¼ 2m. The well-known Reed-Solomon
(RS) codes [28] are a class of widely used MDS codes. Notably,
the RS codes and other MDS codes can be used to construct
secret-sharing and threshold schemes [32], [20].

2.2 Description of the Basic Scheme

For a dynamic multicast group, a session key is issued by a
GC. Using this session key, the GC can establish a secure

578 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

multicast channel with the authorized group members.
Every time group memberships change because of the join
or leave of some group members, the GC reissues a new
session key, which is independent of all the old session
keys. This rekeying procedure ensures the security of the
current session and that of the old sessions, i.e., the newly
joined members cannot recover the communications of the
old sessions, and those old members who left the group
cannot access the current session. Thus, both the backward
secrecy and the forward secrecy of group communication
are maintained.

The complexity of the rekeying operation is asymmetric
between a new member’s join and an old member’s leave.
When a new member joins, the GC can easily multicast the
new session key encrypted by the current session key to all
the current members, followed by a unicast to the new
member to send the new session key encrypted by a
predetermined encryption key shared between the GC and
the new member. Thus, join is easy, with low communica-
tion and computation cost. However, when an old member
leaves, the current session key cannot be used to convey the
new session key information securely, since it is also known
to the old member. Thus, hereafter, we will focus on the
rekeying operation for a single member leave. The same
idea can easily be extended to other rekeying operations
such as batch rekeying [17].

In any key distribution schemes, a basic operation is
needed to distribute a piece of secret data to a small group of
nmembers, where each member shares a different individual
key withthe GC. In all current existing schemes, this operation
is fulfilled by the GC using n encryptions, followed by
n unicasts. Now, we describe a new scheme that realizes this
operation by using one erasure decoding of certain MDS code,
followed by one multicast to all the n members. We call this
scheme the basic scheme of key distribution. We will then
show that this basic scheme can be easily integrated into any
key distribution scheme, especially the schemes based on key
trees, to reduce computation cost.

The basic scheme consists of three phases: 1) the initializa-
tion of the GC, 2) the join of a new member, and 3) the
rekeying procedure whenever a group member leaves. Here
again, a targeted multicast group has n members.

2.2.1 Group Controller Initialization

Initially, the GC constructs a nonsystematic ðL; nÞMDS codeC
over GF ðqÞ and a secure one-way hash function Hð�Þ whose
codomain is GF ðqÞ. (For a nonsystematic code, none of the
original message block symbols directly appears in the
corresponding code word block [19].) The domain of Hð�Þ
can be an arbitrary space F that is large enough so that Hð�Þ
has a secure one-way property: given any arbitrary
y 2 GF ðqÞ, it is impossible or computationally hard to derive
x 2 F such that HðxÞ ¼ y. Since other strong properties such
as second-preimage resistance [21, chapter 9.2] are not
necessary, the hash function H can be implemented more
efficiently. The GC then makes both the MDS code C and the
one-way hash function H public.

2.2.2 Member Initial Join

Whenever a new member i is authorized to join the
multicast group for the first time, the GC sends it (using a

secure unicast) a pair (ji; si), where si is a random element
in Hð�Þ’s domain F , and ji is a positive integer satisfying
ji 6¼ jk for all k’s, where k is a current member of the
multicast group. The pair (ji; si) will be used as member i’s
seed key (denoted as Si) and is kept in the GC’s local
database, as long as member i remains a potential member
of the multicast group.

2.2.3 Rekeying

Whenever some new members join or some old members
leave a multicast group, the GC needs to distribute a new
session key to all the current members. As already
discussed, we will focus on the rekeying operation when
an old member leaves. After an old member leaves, the GC
needs to distribute a new key to n remaining members to
achieve both forward and backward secrecy of the session
key.

The GC executes the rekeying process in the following
steps:

1. The GC randomly chooses a fresh element r in F ,
which has not been used to generate previous keys.

2. In the remaining group of n members, for each
member i of the current group with its seed key
ðji; siÞ, the GC constructs an element cji in
GF ðqÞ : cji ¼ Hðsi þ rÞ, where þ is a simple combin-
ing operation in F , for example, string concatena-
tion.

3. Using all the cji ’s in the above step, the GC
constructs a code word c of the ðL; nÞ MDS code C:
set the ðjiÞth symbol of the code word c to be cji .
Since C is an ðL; nÞ MDS code, the code word c is
uniquely determined by its n symbols. Using an
efficient erasure decoding algorithm for C, the GC
can easily calculate the n corresponding message
symbols m1m2 � � �mn.

4. The GC sets the new session key k to be the first
message symbol m1 : k ¼ m1.

5. The GC multicasts r and m2 � � �mn.

The above rekeying process is illustrated in Fig. 1a.

Note that when n ¼ 1, i.e., there is only one member
remaining, then in step 3 above, the ðL; nÞ MDS code
becomes a trivial repetition code, i.e., all the symbols in a
code word are the same [19]. Hence, the decoding algorithm
in step 3 becomes trivial, i.e., m1 ¼ cji , without the need to
compute any other mi ði � 2Þ. This is also intuitive: the GC
in this case simply sets a session key that is solely derived
from the remaining member’s seed key ðji; siÞ.

Upon receiving r and m2m3 � � �mn from the GC, an
authorized member i of the current group executes the
following steps to obtain the new session key:

1. Calculate cji ¼ Hðsi þ rÞ with its seed key ðji; siÞ.
2. Decode the first message symbol m1 from the
ðn� 1Þ message symbols m2 � � �mn, together with
its code word symbol cji .

3. Recover the new session key k, i.e., k ¼ m1.

This key recovery process, as shown in Fig. 1b, finishes
the whole rekeying procedure. Note that in step 2 of the key
recovery process, virtually, all MDS codes in use, for

XU AND HUANG: COMPUTATION-EFFICIENT MULTICAST KEY DISTRIBUTION 579

example, the RS code, are linear, i.e., any single code word
symbol is a linear combination of all the n original message
symbols. This decoding process is essentially for solving a
single linear equation with only one unknown. Thus, it is
equivalent to an encoding operation with much lower
computation than a general erasure decoding operation for
multiple unknowns.

The MDS property of the code C ensures that each
authorized member, with its cij and m2 � � �mn, can derive
the new session key k ¼ m1 as the GC. It is worth noting
that the new session key k is only the first message symbol
m1, which is independent of all the other message symbols
m2 � � �mn. Thus, any unauthorized receiver cannot deduce
m1 just from m2 � � �mn, since it needs one more symbol of
the code word c. Any stale seed key ðj0i; s0jÞ cannot generate
a valid symbol of the current code word c, since the pair
ðj0i; s0jÞ is not used in the generation of c. Thus, both the
forward and the backward secrecy are achieved.

2.3 Evaluation of the Basic Scheme

As can be seen from the above basic scheme, for all the
authorized group members, the GC generates a new session
key by generating a common new message word, the first
symbol of which is used as the new session key. The new
session keyis decidedbyarandomelementr inF , aswellasall
the seed keys of the current authorized group members. The
random element r and the ðn� 1Þ message symbols are
multicast in plaintext to all the group members, and the
computation cost is thus much lower than using encrypted
point-to-point communications for the rekeying process in all
existing schemes. The computation operations needed for this
new scheme are erasure decoding of a chosen MDS code, a
one-way hash function, and some simple combining func-
tions, all of which can be implemented efficiently and are
computationally much cheaper than traditional encryptions.

As already noted, the purpose of this basic scheme is to
replace separate encryptions, followed by unicasts, and be

used as a building block for any key distribution schemes
whenever applicable. Thus, we examine the communica-
tion, computation, and storage costs of the basic scheme
and compare them with those of conventional rekeying
schemes using point-to-point unicasts secured by separate
encryptions.

For simplicity, hereafter, we assume that q ¼ 2m, and the
size of a new session key is l bits.

2.3.1 Security

Since r and m2 � � �mn are multicast in plaintext and are thus
known to all interested parties, including unauthorized
receivers who attempt to access the current session, the
security of the new session key relies on the secrecy of a
code word symbol cji that authorized member i of the
current multicast group has. The secrecy of cji , in turn,
depends on the secrecy that the seed key member i has.
Thus, an attacker who attempts to deduce the new session
key k has three potential options:

1. brute-force attack, i.e., guessing the session key k
itself,

2. guessing a symbol ck of the code word, or
3. guessing a current member’s seed key.

The effort that an attacker makes to deduce a session key
depends on the parameters of the scheme, namely, the size of
finite field GF ð2mÞ, the size t of member i’s seed key
component si, and the size of a random number r. Intuitively,
when proper hash function Hð�Þ and a random number
generator are chosen, the larger these parameters are, the
more the effort that an attacker needs to make, and thus, the
more secure this scheme is. The following theorem states the
exact sizes of the parameters to ensure the security of this
scheme:

Theorem 1. Over a finite fieldGF ð2mÞ, ifm ¼ t ¼ lr ¼ l, then the
effort that an attacker needs to make to deduce a session key from
the basic scheme is no less than that of a brute-force attack, where
t is the size of member i’s seed key component si, lr is the size of
random number r, and l is the size of session key k.

Proof. The effort that an attacker needs to make can be
measured by the entropy of the information that an
attacker attempts to recover [12]. We give an informa-
tion-theoretical proof to show that the entropy of either a
symbol ck of code word or a current member’s seed key
is no less than the entropy of the session key itself. Hence
an attacker makes no less effort than a brute-force attack
of directly guessing the session key itself.

First, the entropy of a random session key k is
HðkÞ ¼ l, where HðXÞ is the entropy of a random
variable X.

If an attacker chooses to guess a symbol cji in the
code word directly, then the entropy of cji is
HðcjiÞ ¼ log2 q ¼ m ¼ l. Even though the correct loca-
tion of a symbol in the code word is needed to
generate the corresponding session key, an attacker can
exploit the fact that for any location ji, there always
exists a correct symbol cji , which is a symbol of the
code word that generates a new session key. Thus, the
attacker can first pick up an arbitrary location ji,
where n � ji � L, and then guess the code word

580 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 1. Rekeying process of the basic scheme. (a) GC’s operations.

(b) Operations of members.

symbol cji at that location. Thus, the entropy of getting
a correct code word symbol is HðcjiÞ ¼ m ¼ l.

On the other hand, a seed key consists of two
components: an element si in F and an integer ji. It is
easy to see that HðsiÞ ¼ t ¼ l. In addition, notice that the
two components si and ji of a seed key Si are chosen
independently; thus, HðSiÞ ¼ HðsiÞ þ HðjiÞ ¼ lþ log2L
when an ðL; nÞ MDS code is used.

Finally, the inputs to the one-way hash function Hð�Þ
are si and r, each of which has size l, and the output is cji ,
a symbol of a code word, whose size is l, as shown in
Fig. 1a. Considering the fact that r is also known to the
attacker, the effort that an attacker needs to deduce si
from r and cji is the conditional entropy [12] Hðsijr; cjiÞ ¼
HðsiÞ ¼ l if Hð�Þ is a properly chosen secure hash
function. This corresponds to the scenario where the
attacker is a current member but wants to deduce
another member’s seed key for future use. This is a
more serious attack, since it compromises the security of
multiple future sessions. In this case, the attacker is able
to compute any code word symbol cji , and it can simply
try deducing si’s for all possible cji ’s for future use.

Combining all the above possible attacks, the amount
of information that an attacker needs to guess to obtain
an l-bit session key k is at least l bits, i.e., the attacker
needs to make as much effort as a brute-force attack to
deduce a session key from the basic scheme. tu

Now, we examine the security strength of this scheme
against a conspiracy attack, where some old members
cooperate to deduce the current session key. Since its
freshness is determined by a fresh random number r, a new
session key is totally independent of all the old session keys.
This guarantees the forward secrecy and the backward secrecy,
i.e., old members cannot access the new session, and new
members cannot recover communications of all the pre-
vious sessions. One possible way for an old member to get a
new session key is to calculate the seed key of a current
member from old keys. It is easy to compute a symbol ck of
a code word c from a message word m once k is known.
However, because of the secure one-way property of the
hash function Hð�Þ used to the generate c, it is impossible (or
at least computationally hard) to compute a seed key ðsi; jiÞ
from cji , even if cji is known. Cooperation among d old
members helps reduce neither the number of possible
locations for ji of a current member nor the computational
hardness of getting si from cji , since ji can be recycled from
old ones, as long as the current member i has unique ji,
which is different from that of all other current members.
Thus, this scheme is resilient to any conspiracy attack.

Finally, it is conjectured that for all ðL; nÞ MDS codes
over GF ðqÞ, where q ¼ 2m, the largest possible L is q þ 1 ¼
2m þ 1 [19]. Thus, for a session key of l bits, this scheme can
support up to 2l members for one group.

2.3.2 Complexity

When a new member i is authorized to join a multicast
group, the GC assigns a seed key pair ðji; siÞ to it. This seed
key pair remains valid until member i leaves the multicast
group permanently. Thus, the seed key pair is unicast only
once to an authorized member. Compared to the rekeying

procedure that is needed whenever there is a membership
change for the multicast group, this communication cost (in
terms of the number of the bits transmitted) is negligibly
small.

In the rekeying procedure, the GC needs to multicast a
fresh random number r and ðn� 1Þ symbols of the new code
wordm2 � � �mn.Each of the codewordsymbolshasmbits.The
random number r is used to guarantee that the new session
key is different from all the old keys used. The length of r
determines the total number of sessions that the scheme
supports.Lettingrbe lr bits long, thenthis schemecansupport
up to 2lr sessions. Thus, the number of bits that the GC needs to
multicast for a rekeying procedure is lr þ ðn� 1Þm. As
already discussed in the previous section, it is secure enough
to set lr ¼ m ¼ l; thus, the communication complexity of this
basic scheme is nl, which is the same as that of separate
encryptions followed by unicasts. Hence, the basic scheme
does not incur additional communication complexity to the
conventional schemes that it replaces.

With regard to storage complexity, a current member i

only needs to store its own seed key pair ðji; siÞ. Since ji � L
and si is t bits long, member i needs to store dlog2Le þ t bits
locally. On the other hand, the GC needs to store the seed
keys of all the current members of the multicast group, i.e.,
the GC needs to store nðdlog2Le þ tÞ bits. Since it is secure to
set m ¼ t ¼ l and L ¼ 2m þ 1 for session keys of size l, an
individual member’s storage complexity is ð2lþ 1Þ, and the
GC’s is nð2lþ 1Þ, both approximately about twice those for
conventional schemes.

Finally we examine the computation cost of this
scheme. Just as all other key distribution schemes, a seed
key pair of a current member is distributed only once by
using a secure unicast when the member joins the
multicast group for the first time. In this join procedure,
the GC needs only one encryption operation, and the
newly joined member needs only one decryption opera-
tion. Most computations are thus carried in the rekeying
procedure. During the rekeying procedure, the GC needs
n hashing operations with n current members in the
multicast group and one erasure decoding operation for
n symbols. Symmetrically, a current member needs one
hashing operation and one erasure decoding operation for
only one symbol, i.e., the session key. The erasure
decoding operations for an ðL; nÞ MDS code only need
Oðn2Þ arithmetic operations if standard erasure decoding
algorithms are used. Fast decoding algorithms only need
OðnlognÞ operations [19]. Particularly, when a proper
MDS code is chosen, both encoding and decoding only
need Oðmn2Þ binary exclusive OR operations [3], [5], [40].

3 PRACTICAL KEY DISTRIBUTION: APPLYING THE

BASIC SCHEME TO KEY TREES

The basic key distribution scheme reduces computation
complexity by replacing computationally expensive encryp-
tion and decryption operations with more efficient erasure
decoding operations of MDS codes. This basic scheme has
the same communication complexity as conventional key
distribution schemes using secure unicasts. Thus, the basic
scheme can be readily used as a building block to replace

XU AND HUANG: COMPUTATION-EFFICIENT MULTICAST KEY DISTRIBUTION 581

encrypted unicasts in any key distribution schemes,
particularly schemes with low communication complexity.

To reduce the communication complexity of rekeying
operations, a key-tree-based scheme and many of its
variations have been proposed [37], [22], [38], [39], [34].
This scheme reduces the communication complexity of
rekeying operations to OðlognÞ, whereas each member
needs to store OðlognÞ keys, and the GC needs to store
OðnlognÞ keys, where n is the multicast group size. This is
the most practical key distribution scheme, which balances
the communication and storage complexity for dynamic
multicast key distribution.

Here, we briefly describe a basic key-tree-based scheme
for the rekeying operation.

3.1 Key-Tree-Based Rekeying Scheme

The main idea of reducing the rekeying communication
complexity of this scheme is to have the GC distribute
subgroup keys in addition to individual member keys and
the group session key. These keys are arranged in a logical
tree hierarchy, where the group session key serves as the
root, the individual member keys are the leaves, and the
subgroup keys correspond to intermediate nodes. Each
member stores all the keys along the path from the
corresponding leaf to the root in the tree. Then, each
subgroup key can be used to securely multicast to the
members that are leaves of the corresponding subtree.
During the rekeying process, the GC can thus securely
multicast to a subgroup of members using their shared
subgroup key instead of individual member keys.

Fig. 2 shows a key tree for a nine-member group.
Ki ð1 � i � 9Þ is the individual key of member i. K1 9 is
the group session key that is shared by all the members.
Finally, K1 3, K4 6, and K7 9 are three subgroup keys for
the three corresponding subgroups respectively. For
example, K1 3 is shared by members 1 through 3, who
form the first subgroup.

Now, suppose that member 9 leaves the group. Then, a
rekeying operation is needed to change the current group
session key K1 9 and the corresponding subgroup key K7 9.
This can be achieved by the GC multicasting five messages
(of equal size) to the remaining eight members: EK7

ðK7 8Þ,
EK8
ðK7 8Þ, EK7 8

ðK1 8Þ, EK1 3
ðK1 8Þ, and EK4 6

ðK1 8Þ. Here,
K1 8 is the new group session key, K7 8 is the new subgroup
key for the new subgroup formed by members 7 and 8, and
EkðmÞ is the encrypted version of message m using key k.

Although the key tree can be arbitrary, it has been shown
that a balanced tree is required to achieve low communica-
tion complexity of the rekeying operation. In general, it is

easy to show that the communication complexity of a
rekeying operation on a balanced d-ary key tree is
OðdlogdnÞ, and each member needs to store OðlogdnÞ keys.
It is not hard to show that dlogdn is minimized when d is 3
[34]. The only cost of this key-tree-based scheme is the
storage increase in the GC: the GC now needs to store all the
additional subgroup keys as well. The total number of the
keys stored on the GC increases to dn�1

d�1 from nþ 1 for a
d-ary balanced key tree.

3.2 MDS Code-Based Rekeying on a Key Tree

The GC initialization and each member’s initial join can be
performed exactly the same on a key tree as in the basic
scheme described in Section 2.2. Thus, we focus on the
adaption of the basic scheme for rekeying on a key tree.

As in other key-tree-based rekeying schemes, MDS codes
are used to rekey from bottom (leaves) up. In Fig. 2, when
member 9 leaves, the new subgroup key K7 8 is rekeyed
before the server changes the new group session key to
K1 8. When MDS codes are used for the rekeying process,
each node (leaf or intermediate) key becomes a pair of
ðji; siÞ, as discussed in the previous section. The GC stores
all the key pairs on the key tree. Whenever encryptions are
needed for rekeying a subgroup key, a new MDS code word
is constructed from all the key pairs (ðji; siÞ’s) of the
corresponding immediate child nodes and then multicast
by the GC. Note that in the rekeying process, each level of
the key tree may use the same or different MDS codes.
However, for the simplicity of implementation, the same
MDS code can be used for all levels, since the security of the
basic scheme does not depend on the MDS code.

In Fig. 2, when member 9 leaves the group, the GC first
uses the key pairs K7 ¼ ðj7; s7Þ and K8 ¼ ðj8; s8Þ, together
with a fresh random r, to construct a code word of an ðL; 2Þ
MDS code and then follows the rekeying procedure of the
basic scheme, as described in the previous section. After
proper decoding, members 7 and 8 share a new subgroup
key K7 8 or, more accurately, its component s7 8, which is
only known to them, aside from the GC. Note here that
K7 8 ¼ ðj7 8; s7 8Þ, but j7 8 can be predetermined publicly
once the key tree structure is decided. This finishes the
rekeying of K7 8. Next, the GC constructs another code
word of an ðL; 3Þ MDS code from the subgroup keys K1 3,
K4 6, and K7 8, and the decoding output from this code
word produces a new group session key K1 8, which is
shared by all the remaining group members.

Note that when the key tree is a d-ary balanced tree, only
an ðL; d� 1Þ MDS code is needed to rekey the immediate
subgroup key shared by the leaf node corresponding to the
just-left old member. Then, another ðL; dÞ MDS code is
needed for rekeying all the other subgroup keys and the
new group session key. Since the rekeying scheme based on
MDS codes does not change the communication and storage
complexity of the underlining key-tree-based rekeying
scheme, the communication complexity still remains to be
OðdlogdnÞ.

3.3 MDS Code Implementation for the Rekeying
Operation

As pointed out previously, d needs to be 3 to minimize the
communication complexity during rekeying. Hence, only

582 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 2. A key tree for a nine-member group.

two types of MDS codes are needed, which are ðL; 2Þ and

ðL; 3Þ codes. In fact, the rekeying scheme only needs two

specific MDS codes, i.e., an ðL; 2Þ code and an ðL; 3Þ code.

Although any general ðn; kÞ MDS code can be used for the

rekeying purpose by setting k ¼ 2 or k ¼ 3, there are a

number of optimization techniques that can be applied for

special implementations of the ðL; 2Þ and ðL; 3Þ codes. As

we shall see in the following, these techniques turn out to

make the codes used for rekeying extremely fast, even

though they do not readily extend to the implementations of

general MDS codes.

3.3.1 Reed-Solomon (RS) Implementation:

Vandermonde Representation versus Cauchy

Representation

We choose the RS codes [28] as the MDS codes, since it is
the most widely used MDS code. Among numerous ways of
constructing an RS code, the two popular ones are
Vandermonde and Cauchy representations. In the Vander-
monde representation, a Vandermonde Matrix is used as a
generator matrix for the chosen RS code [19], which is a
traditional description of the RS code. Recently, a Cauchy
representation for the RS code has been proposed to make
general encoding and decoding of an RS code faster by
using mostly XOR operations instead of more expensive
finite-field operations [5]. In this representation, a Cauchy
Matrix is used as a generator matrix.

For our rekeying purpose, an RS decoding operation is

equivalent to solving a group of linear equations. It thus

mainly involves two steps: 1) inverting a coefficient matrix

and 2) multiplying the inverse matrix to get the values of

the unknowns. In general, the second step has quite similar

complexity among different representations for the same

code. Thus, if one code representation has lower complexity

in the first step (inverting the coefficient matrix), its overall

decoding operation will be more efficient. It is well

understood that the inversion of the Cauchy matrix requires

less complexity than that of the Vandermonde matrix.

Therefore, in general, Cauchy-matrix-based RS codes are

considered as more efficient than Vandermonde-matrix-

based RS codes [5], [25].
Quite contrary, we observe that Vandermonde represen-

tations are, in fact, more efficient for ðL; 2Þ and ðL; 3Þ RS

codes in terms of decoding operations for the rekeying

process. The main reason is that the inverse Vandermonde

matrix is much simpler than the inverse Cauchy matrix for

k ¼ 2 and k ¼ 3. Taking k ¼ 3 as an example, a more

computation-efficient variant of a Vandermonde-matrix-

based RS code can be represented as follows [23], [24]:

1 i i2

1 j j2

1 k k2

2
4

3
5

m1

m2

m3

2
4

3
5 ¼

ci
cj
ck

2
4

3
5; ð1Þ

where i, j, and k are the positions of members assigned by

the GC when they join the multicast group. They are also

considered to be elements in the corresponding finite field

GFð2mÞ, which is used to construct the RS codes. Then, the

inverse matrix can be represented as

m1

m2

m3

2
4

3
5 ¼

jk
ði�jÞði�kÞ

ki
ðj�iÞðj�kÞ

ij
ðk�iÞðk�jÞ

j�k
ði�jÞði�kÞ

k�i
ðj�iÞðj�kÞ

i�j
ðk�iÞðk�jÞ

1
ði�jÞði�kÞ

1
ðj�iÞðj�kÞ

1
ðk�iÞðk�jÞ

2
64

3
75

ci
cj
ck

2
4

3
5: ð2Þ

Note that m1 is just the multicast session key here.
Similarly, the RS codes constructed from the Cauchy

matrix can be represented as

1
xi�y1

1
xi�y2

1
xi�y3

1
xj�y1

1
xj�y2

1
xj�y3

1
xk�y1

1
xk�y2

1
xk�y3

2
64

3
75

m1

m2

m3

2
4

3
5 ¼

ci
cj
ck

2
4

3
5; ð3Þ

where xi, xj, and xk change values based on the positions of
the members, whereas y1, y2, and y3 are constants. The
inverse matrix turns out to be much more complicated than
that of the Vandermonde matrix, so we simply present one
single entry to further elaborate. Letting d1;1 be the entry of
the inverse matrix at row 1 and column 1, then

d1;1 ¼
ðxi � y2Þðxi � y3Þðxj � y1Þðxk � y1Þ
ðxi � xjÞðxi � xkÞðy1 � y2Þðy2 � y3Þ

ðxi � y1Þ: ð4Þ

It is true that the common terms (for example, y1 � y2,
y2 � y3, and y1 � y3) can be precomputed for each given
code construction, but still, every entry requires more
operations than the inverse of the Vandermonde matrix.

Based on the above observation, we choose to use the
Vandermonde matrix to construct the ðL; 2Þ and ðL; 3Þ RS
codes, instead of using the Cauchy matrix, as conventional
wisdom suggests.

3.3.2 Optimized Lookup Table for Multiplication and

Division

Finite-field multiplication and division are usually imple-
mented via lookup tables. Each element (except 0) in a finite
field can be represented as a power to a primitive element
(say, �). Hence, the multiplication of two elements a and b

can be done by first adding the power values together and
then calculating the exponential value as

a� b ¼ �log�aþlog�b: ð5Þ

It is straightforward to precompute a logarithmic table and an
exponential table for a given finite field. With that, the
multiplication cansimplybe implemented bylookup tablesas

a� b ¼ exp½log½a� þ log½b��: ð6Þ

Similarly, the division can be implemented as

a	 b ¼ exp½log½a� � log½b��: ð7Þ

Careful readers might immediately spot the potential
problems of the exponential table, as 1) element a or b might
be 0, which will not yield correct results from the lookup
table, 2) the index to the table might exceed the table
boundary in the multiplication case, and 3) the index to the
table might become negative in the division case. These
issues can essentially be addressed by augmenting the
exponential table in the following ways: 1) augmenting the
table such that the sum of two power values is always
covered, 2) further augmenting the table such that 0 maps to
a remote entry in the table such that a further operation

XU AND HUANG: COMPUTATION-EFFICIENT MULTICAST KEY DISTRIBUTION 583

(plus/minus) results in a region nearby, where all corre-
sponding values are 0, and 3) shifting the pointer to the
table such that negative indices are allowed. Of course, the
last one is programming language specific. However, even
without programming language support, the same goal can
still be achieved simply by adding a constant offset to a
computed (negative) index. These techniques are also
applicable to general implementations of the RS codes.

Considering our special needs of implementing the ðL; 2Þ
and ðL; 3Þ codes, we discover that the lookup table idea can

be extended to further simplify operations. The most

complicated calculation in (2) requires three multiplications

and two divisions (for example, cijk
ði�jÞði�kÞ). Hence, instead of

performing this calculation as a series of binary operations,

where each operation is similar to (6) or (7), we can build a

special augmented exponential table to accommodate the

entire 5-ary calculation as

ða� b� cÞ 	 ðd� eÞ
¼ exp½log½a� þ log½b� þ log½c� � log½d� � log½e��:

ð8Þ

In addition, notice that only element a could take value 0
(b, c, d, and e cannot be 0 due to the construction of the
RS codes), which means that the table needs just slightly
further augmentation to accommodate this special case.
Indeed, when a finite-field GF(256) is used, an exponen-
tial table of size 2,304 is sufficient. Assuming that
negative index is supported, then the table spans from
½�1; 535; 768�. exp½�1; 535;�512� always maps to 0 to
handle the special case when a ¼ 0 (the logarithmic table
maps 0 to �1; 024 here, i.e., log½0� ¼ �1; 024), and
exp½�511; 768� handles normal 5-ary operations (multi-
plications together with divisions). It is conceivable that
such exponential table can easily fit into the fast cache of
modern computing devices.

3.3.3 Size of the Finite Field

In most current applications, a session key needs to be at
least 128 bits to be considered reasonably secure. According
to the basic scheme, m ¼ lr ¼ t ¼ 128 bits, so the RS codes
should be constructed in a finite field of GFð2128Þ. In such a
field, each element is represented by 128 bits, and the total
number of elements is 2128. Apparently, this field is too
large to have an efficient and meaningful implementation,
as it is impossible to have a logarithmic table or an
exponential table of this size. Instead, we choose to
construct the RS codes in a much smaller field of GFð28Þ,
where each element is represented by 8 bits, and there are
total 256 elements in the field. This way, a 128-bit key is
composed of 16 elements in the finite field.

Before moving forward, we first address some potential
concerns of very careful readers. We argue that reducing the
size of the finite field does not compromise the security
strength of the proposed scheme by any means. Let us revisit
the basic scheme. When a member i joins the multicast group,
the GC sends it a secret pair ðji; siÞ, where si is a random
element, and ji is essentially a position. If a GFð2128Þ finite
field is used, then the entire 128-bit si is one single element,
and the entire 128-bit ji represents one single position. Now,
supposing a finite field of GF(256) is used, then si corresponds
to 16 random elements in the field, and ji corresponds to
16 random positions. Note that these 16 elements/positions

are completely independent. Later on, when a member
departs and the rekeying process is triggered, a random r is
generated by the GC. This 128-bit r is again one single element
in GFð2128Þ while corresponding to 16 random elements in
GF(256). Hence, although the 128-bit key is generated as one
single element in GFð2128Þ, it is generated as the composition
of 16 elements when a finite field of GF(256) is used. Note that
the key is generated by 16 independent procedures from
completely independent values. Since guessing 16 indepen-
dent 8-bit values is no easier at all than guessing one 128-bit
value, reducing the field size does not affect the security
strength of our scheme.

3.4 Comparison with Traditional Cryptographic
Schemes

To evaluate the proposed scheme, a multicast key distribu-
tion scheme is implemented to disseminate 128-bit session
keys among a 3-ary balanced key tree. The proposed scheme
is compared with traditional cryptographic schemes. As the
communication and storage complexity are the same among
all the schemes, it suffices to simply compare the computation
complexity.

The comparison considers the following scenario, where
each three-member group has one member that departs.
These departures are not constrained to happen at the same
time, but in practice, they might tend to be close, for
example, at the end of one movie broadcast, etc. This makes
a batch process possible, which means that all remaining
members could be rekeyed at once.

Before reporting the experimental results, it is worth
pointing out that any one-way hash function used in the
proposed scheme can be simplified from general-sense hash
function implementations. For instance, we use the MD5
algorithm [31, chapter18] as an exemplary hash function in
our evaluation, which produces a 128-bit hash output from
any arbitrary length input. A general MD5 input consists of
three components: 1) input data, 2) padding bits, and 3) a
final 64-bit field for length. In our case, as the input is
always 128 bits, we can preset the final length field to
represent 128. Moreover, all the rest bits can be set to 0 and
removed from the MD5 logic. This tends to make the MD5
algorithm more efficient. Obviously, the same method can
be readily applied to other hash algorithms, for example,
SHA-1 and SHA-256 [31, chapter 18], should the MD5
algorithm be considered insufficient or using longer session
keys becomes necessary.

Experiments are conducted to compare the computation
complexity of the proposed scheme with the conventional
cryptographic schemes. The particular cryptographic algo-
rithms compared in the experiments are CAST-128 [29],
IDEA [16], AES/Rijindael [1], and RC4 [31, chapter 17]. All
keys are set to be 128 bits. To make the comparison as fair as
possible, we use the widely adopted and highly optimized
software-based cryptography implementation, i.e., the
Crypto++ [13] package. We use the same optimization flags
to compile both the cryptography package and our own
optimized RS code implementation. We disable the hard-
ware acceleration (SSE/SSE2) and tend not to compare
under that scenario, simply because it is not ubiquitous over
all platforms yet (for example, not available on mobile
devices).

584 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 3 shows the computation time of the key dissemina-
tion and recovery using different schemes under various
multicast group sizes. The experiments are carried out on a
Pentium 4 2.53-GHz machine with a 512-Mbyte memory
running Linux Redhat 9.0. It is clear that using one-way hash
functions adds none-trivial computation complexity. Never-
theless, the proposed scheme still outperforms the conven-
tional cryptographic schemes by a significant margin.

The computation time of the key distribution is also
compared to conventional stream ciphers, as shown in
Table 1, for a selected multicast group size. Notice that the
computation times of both the GC and the member using
the RC4 cipher are significantly larger than using other
schemes. Even though RC4 itself is a fast stream cipher, its
key scheduling process has dominant effect in this
particular scenario, where only 128-bit data is encrypted/
decrypted using any given key. Results under other
multicast group sizes are similar, which are thus not
duplicated here.

Finally, it is worth noting that our basic scheme simply
reduces computation complexity by replacing crypto-
graphic encryption and decryption operations with more
efficient encoding and decoding operations. It is orthogonal
to any other schemes that use different rekeying protocols
and procedures. This basic scheme can always be combined
with any rekeying schemes that use cryptographic encryp-
tion and decryption operations. For example, this basic

scheme can be readily adapted to incorporate the so-called
one-way function tree scheme [33], where a different rekeying
protocol on a key tree is used other than the traditional
scheme, as described in Section 3.1, to further reduce the
computation complexity. We leave this simple exercise to
interested readers.

4 CONCLUSION

We have presented a dynamic multicast key distribution
scheme using MDS codes. The computation complexity of
key distribution is greatly reduced by employing only
erasure decoding of MDS codes instead of more expensive
encryption and decryption computations. Easily combined
with key trees or other rekeying protocols that need
encryption and decryption operations, this scheme provides
much lower computation complexity while maintaining
low and balanced communication complexity and storage
complexity for dynamic group key distribution. This
scheme is thus practical for many applications in various
broadcast capable networks such as Internet and wireless
networks.

ACKNOWLEDGMENTS

Some preliminary results of this work were presented at the
2003 IEEE International Symposium on Information Theory,
Yokohama, Japan, 29 June-4 July, 2003. This work was in
part supported by US National Science Foundation (NSF)
Grants ANI-0322615 and IIS-0541527.

REFERENCES

[1] AES Algorithm (Rijndael) Information, http://csrc.nist.gov/Crypto
Toolkit/aes/rijndael/, 2007.

[2] M. Abdalla, Y. Shavitt, and A. Wool, “Towards Making Broadcast
Encryption Practical,” IEEE/ACM Trans. Networking, vol. 8, no. 4,
pp. 443-454, Aug. 2000.

[3] M. Blaum, J. Bruck, and A. Vardy, “MDS Array Codes with
Independent Parity Symbols,” IEEE Trans. Information Theory,
vol. 42, no. 2, pp. 529-542, Mar. 1996.

[4] R. Blom, “An Optimal Class of Symmetric Key Generation
Systems,” Advances in Cryptology—Proc. Workshop Theory and
Application of Cryptographic Techniques (EUROCRYPT ’84),
pp. 335-338, 1984.

[5] J. Bloemer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D.
Zuckerman, “An XOR-Based Erasure-Resilient Coding Scheme,”
Technical Report TR-95-048, Int’l Computer Science Inst., Aug.
1995.

[6] C. Blundo and A. Cresti, “Space Requirement for Broadcast
Encryption,” Advances in Cryptology—Proc. Workshop Theory and
Application of Cryptographic Techniques (EUROCRYPT ’95), pp. 287-
298, 1995.

[7] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and
M. Yung, “Perfectly Secure Key Distribution in Dynamic
Conferences,” Advances in Cryptology—Proc. Workshop Theory and
Application of Cryptographic Techniques (EUROCRYPT ’93), pp. 471-
486, 1993.

XU AND HUANG: COMPUTATION-EFFICIENT MULTICAST KEY DISTRIBUTION 585

Fig. 3. Computation time for key distribution (the RS(MD5) shows the

proposed scheme, whereas the RS curve excludes the hash function).

(a) GC’s computation time for key dissemination. (b) A member’s

computation time for key recovery.

TABLE 1
Computation Time Comparing to the RC4 Approach

(Multicast Group Size of 59,049)

[8] C. Blundo, L.A. Frota Mattos, and D.R. Stinson, “Trade-Offs
between Communication and Storage in Unconditionally Secure
Schemes for Broadcast Encryption and Interactive Key Distribu-
tion,” Advances in Cryptology—Proc. 16th Ann. Int’l Cryptology Conf.
(CRYPTO ’96), pp. 387-400, 1996.

[9] R.E. Bryant and D.R. O’Hallaron, Computer Systems: A Program-
mer’s Perspective. Prentice Hall, 2002.

[10] R. Canetti, T. Malkin, and K. Nissim, “Efficient Communication-
Storage Tradeoffs for Multicast Encryption,” Advances in Crypto-
logy—Proc. Int’l Conf. Theory and Application of Cryptographic
Techniques (EUROCRYPT ’99), May 1999.

[11] G.H. Chou and W.T. Chen, “Secure Broadcasting Using the Secure
Lock,” IEEE Trans. Software Eng., vol. 15, no. 8, pp. 929-934, Aug.
1989.

[12] T.M. Cover and J.A. Thomas, Elements of Information Theory. John
Wiley & Sons, 1991.

[13] W. Dai, Crypto++ Library, http://www.eskimo.com/~weidai/
cryptlib.html, 2007.

[14] A. Fiat and M. Naor, “Broadcast Encryption,” Advances in
Cryptology—Proc. 13th Ann. Int’l Cryptology Conf. (CRYPTO ’94),
pp. 480-491, 1994.

[15] H. Harney and E. Harder, Logical Key Hierarchy Protocol, IETF
Internet draft, work in progress, Mar. 1999.

[16] X. Lai, J. Massey, and S. Murphy, “Markov Ciphers and
Differential Cryptanalysis,” Advances in Cryptology—Proc. Work-
shop Theory and Application of Cryptographic Techniques (EURO-
CRYPT ’92), pp. 17-38, 1992.

[17] X.S. Li, Y.R. Yang, M.G. Gouda, and S.S. Lam, “Batch Rekeying for
Secure Group Communications,” Proc. 10th Int’l World Wide Web
Conf. (WWW ’01), May 2001.

[18] M. Luby and J. Staddon, “Combinatorial Bounds for Broadcast
Encryption,” Advances in Cryptology—Proc. Int’l Conf. Theory and
Application of Cryptographic Techniques (EUROCRYPT ’98), pp. 512-
526, 1998.

[19] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error Correcting
Codes. North-Holland Math. Library, 1977.

[20] R.J. McEliece and D.V. Sarwate, “On Sharing Secrets and Reed-
Solomon Codes,” Comm. ACM, vol. 26, no. 9, pp. 583-584, Sept.
1981.

[21] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of
Applied Cryptography, fourth ed. CRC Press, 1999.

[22] S. Mittra, “Iolus: A Framework for Scalable Secure Multicasting,”
Proc. ACM SIGCOMM ’97, pp. 277-288, Sept. 1997.

[23] J.S. Plank, “A Tutorial on Reed-Solomon Coding for Fault-
Tolerance in RAID-Like Systems,” Software: Practice and Experience,
vol. 27, no. 9, pp. 995-1012, Jan. 1999.

[24] J.S. Plank and Y. Ding, “Correction to the 1997 Tutorial on Reed-
Solomon Coding,” Software: Practice and Experience, vol. 35, no. 2,
pp. 189-194, Feb. 2005.

[25] J.S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon Codes
for Fault-Tolerant Network Storage Applications,” Proc. Fifth IEEE
Int’l Symp. Network Computing and Applications (NCA ’06), July
2006.

[26] S. Rafaeli and D. Hutchison, “A Survey of Key Management for
Secure Group Communication,” ACM Computing Surveys, vol. 35,
no. 3, pp. 309-329, 2003.

[27] O. Rodeh, K. Birman, and D. Dolev, “The Architecture and
Performance of Security Protocols in the Ensemble Group
Communication System,” ACM Trans. Information and System
Security, vol. 4, no. 3, pp. 289-319, Aug. 2001.

[28] I.S. Reed and G. Solomon, “Polynomial Codes over Certain Finite
Fields,” J. SIAM, vol. 8, no. 10, pp. 300-304, 1960.

[29] C. Adams, The CAST-128 Encryption Algorithm, IETF RFC 2144,
http://www.faqs.org/rfcs/rfc2144.html, May 1997.

[30] V. Rijmen, A. Bosselaers, and P. Barreto, Optimised C Code V3.0 (of
AES/Rijndael), http://www.esat.kuleuven.ac.be/ rijmen/rijndael-
fst-3.0.zip, 2007.

[31] B. Schneier, Applied Cryptography, second ed. John Wiley & Sons,
1996.

[32] A. Shamir, “How to Share a Secret,” Comm. ACM, vol. 24, no. 11,
pp. 612-613, Nov. 1979.

[33] A.T. Sherman and D.A. McGrew, “Key Establishment in Large
Dynamic Groups Using One-Way Function Trees,” IEEE Trans.
Software Eng., vol. 29, no. 5, pp. 444-458, May 2003.

[34] J. Snoeyink, S. Suri, and G. Varghese, “A Lower Bound for
Multicast Key Distribution,” Proc. IEEE INFOCOM ’01, Apr. 2001.

[35] D.R. Stinson, “On Some Methods for Unconditionally Secure Key
Distribution and Broadcast Encryption,” Designs, Codes and
Cryptography, vol. 12, pp. 215-243, 1997.

[36] D.R. Stinson and T. van Trung, “Some New Results on Key
Distribution Patterns and Broadcast Encryption,” Designs, Codes
and Cryptography, vol. 14, pp. 261-279, 1998.

[37] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner,
“The VersaKey Framework: Versatile Group Key Management,”
IEEE J. Selected Areas in Comm., vol. 7, no. 8, pp. 1614-1631, Aug.
1999.

[38] D.M. Wallner, E.J. Harder, and R.C. Agee, “Key Management for
Multicast: Issues and Architectures,” IETF Internet draft, Sept.
1998.

[39] C.K. Wong, M. Gouda, and S.S. Lam, “Secure Group Commu-
nications Using Key Graphs,” Proc. ACM SIGCOMM ’98, Sept.
1998.

[40] L. Xu and J. Bruck, “X-Code: MDS Array Codes with Optimal
Encoding,” IEEE Trans. Information Theory, vol. 45, no. 1, pp. 272-
276, Jan. 1999.

Lihao Xu received the BSc and MSc degrees in electrical engineering
from the Shanghai Jiao Tong University in 1988 and 1991, respectively,
and the PhD degree in electrical engineering from the California Institute
of Technology in 1999. He was with the Department of Computer
Science, Washington University, St. Louis, as an associate professor in
July 2005 and as an assistant professor from September 1999 to June
2005. From 1991 to 1994, he was a lecturer in the Department of
Electrical Engineering, Shanghai Jiao Tong University. Since August
2005, he has been an associate professor of computer science at the
Wayne State University. His research interests include distributed
computing and storage systems, error-correcting codes, information
theory, and data security. He is a senior member of the IEEE.

Cheng Huang received the BS and MS degrees
in electrical engineering from Shanghai Jiao
Tong University in 1997 and 2000, respectively,
and the PhD degree in computer science from
Washington University, St. Louis, in 2005. He is
currently a member of the Communication and
Collaboration Systems Group, Microsoft Re-
search, Redmond, Washington. His research
interests include peer-to-peer applications, dis-
tributed storage systems, erasure correction

codes, multimedia communications, networking, and data security. He
is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

586 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

