
Counting-MLNs: Learning Relational Structure for Decision Making

Aniruddh Nath
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.

nath@cs.washington.edu

Matthew Richardson
Microsoft Research

Redmond, WA 98052
mattri@microsoft.com

Abstract

Many first-order probabilistic models can be repre-
sented much more compactly using aggregation oper-
ations such as counting. While traditional statistical
relational representations share factors across sets of
interchangeable random variables, representations that
explicitly model aggregations also exploit interchange-
ability of random variables within factors. This is es-
pecially useful in decision making settings, where an
agent might need to reason about counts of the differ-
ent types of objects it interacts with. Previous work
on counting formulas in statistical relational represen-
tations has mostly focused on the problem of exact in-
ference on an existing model. The problem of learn-
ing such models is largely unexplored. In this pa-
per, we introduce Counting Markov Logic Networks (C-
MLNs), an extension of Markov logic networks that can
compactly represent complex counting formulas. We
present a structure learning algorithm for C-MLNs; we
apply this algorithm to the novel problem of generaliz-
ing natural language instructions, and to relational rein-
forcement learning in the Crossblock domain, in which
standard MLN learning algorithms fail to find any use-
ful structure. The C-MLN policies learned from nat-
ural language instructions are compact and intuitive,
and, despite requiring no instructions on test games, win
20% more Crossblock games than a state-of-the-art al-
gorithm for following natural language instructions.

1 Introduction

Statistical relational representations such as Markov logic
networks (Richardson and Domingos 2006) and Relational
Markov networks (Taskar, Abbeel, and Koller 2002) can
compactly represent large graphical models by storing fac-
tor templates rather than individual factors; to generate the
corresponding ground graphical model, these templates are
instantiated over a large set of interchangeable random vari-
ables, with all instantiations sharing the same structure and
parameters. However, dependencies involving a large num-
ber of variables can cause the factor templates themselves
to become large and difficult to represent. There has re-
cently been interest in exploiting interchangeability within
factors through the use of counting and other aggregations.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For example, consider a model of a social network, with a
factor that depends on whether or not a person has more than
100 friends. Without an explicit representation of counting,
the size of the factor template will depend on the number of
people in the network. However, if the representation can
reason about counts, the complexity of the representation is
independent of the number of objects in the domain.

Milch et al. (2008) incorporated counting formulas into
FOVE (Poole 2003; de Salvo Braz, Amir, and Roth 2005),
an algorithm for exact inference on statistical relational
models. The algorithm was further extended by Kisyński
and Poole (2009), incorporating other kinds of aggrega-
tion. While these algorithms perform inference on counting-
based models, the problem of learning such models has re-
ceived less attention. The most relevant work we are aware
of is that of Natarajan et al. (2011) on imitation learning
in relational domains; their approach learns an ensemble of
relational regression trees, which may include aggregations
such as counting in their inner nodes. Pasula, Zettlemoyer,
and Kaelbling’s (2005) work on learning stochastic action
models also has some similarities to this line of work.

In this work, we introduce counting formulas to Markov
logic networks, a popular statistical relational representa-
tion. We describe an algorithm for learning powerful, in-
tuitive counting formulas in Markov logic. As a motivat-
ing example, we address the problem of generalizing textual
instructions, building on Branavan et al.’s (2009) work on
grounded language acquisition. We show that the knowledge
gained from textual instructions can be generalized through
imitation learning, using the representation and learning al-
gorithm introduced in this work. We also describe a variant
of the algorithm that learns autonomously, without the aid
of textual instructions.

2 Background

Graphical models compactly represent the joint distribution
of a set of variables X = (X1,X2, . . . ,Xn) ∈ X as a prod-
uct of factors (Pearl 1988): P (X=x) = 1

Z

∏
k φk(xk),

where each factor φk is a non-negative function of a sub-
set of the variables xk, and Z is a normalization constant.
Under appropriate restrictions, the model is a Bayesian net-
work and Z = 1. A Markov network or Markov ran-
dom field can have arbitrary factors. Graphical models
can also be represented in log-linear form: P (X=x) =



1

Z
exp (

∑
i wigi(x)), where the features gi(x) are arbitrary

functions of the state.
Markov logic is a probabilistic extension of first-order

logic. Formulas in first-order logic are constructed from log-
ical connectives, predicates, constants, variables and func-
tions. A grounding of a predicate (or ground atom) is a re-
placement of all its arguments by constants (or, more gen-
erally, ground terms). Similarly, a grounding of a formula
is a replacement of all its variables by constants. A pos-
sible world is an assignment of truth values to all possible
groundings of predicates.

A Markov logic network (MLN) is a set of weighted first-
order formulas. Together with a set of constants, it defines
a Markov network with one node per ground atom and one
feature per ground formula. The weight of a feature is the
weight of the first-order formula that originated it. The prob-
ability distribution over possible worlds x specified by the
MLN and constants is thus P (x) = 1

Z
exp(

∑
i wini(x)),

where wi is the weight of the ith formula and ni(x) its num-
ber of true groundings in x.

2.1 Learning MLNs

The weights of formulas of an MLN can be learned by max-
imizing the likelihood of a relational database. A natural
method of doing this is by gradient ascent; the gradient of
the log-likelihood with respect to the weights is:

∂

∂wi

log Pw(x) = ni(x) −
∑

x′

Pw(x′)ni(x
′)

= ni(x) − Ew[ni(x)]

Calculating this expectation requires inference, which is #P-
Complete (Roth 1996). Although there are several efficient
approximate inference algorithms for MLNs, they are still
too expensive to run in every iteration of gradient ascent.
Richardson and Domingos (2006) avoided having to per-
form inference by optimizing the pseudo-log-likelihood (Be-
sag 1975) instead of the true likelihood. Unfortunately, this
approximation does not always perform well.

Singla and Domingos (2005) optimized the conditional
log-likelihood, the gradient of which is:

∂

∂wi

log Pw(y|x) = ni(x,y) −
∑

y′

Pw(y′|x)ni(x,y′)

= ni(x,y) − Ew[ni(x,y)]

(where x is an assignment of values to the evidence atoms,
and y is an assignment to the query atoms.)

Since x is fixed, the inference problem is easier. How-
ever, computing the expectations may still be intractable
in large domains. Singla and Domingos (2005) approxi-
mate the expected count with the count in the MAP state,
as in Collins’ (2002) voted perceptron algorithm. Al-
though this is a better approximation than the pseudo-log-
likelihood, it still occasionally fails on complex domains.
Lowd and Domingos (2007) describe several more sophisti-
cated weight learning algorithms.

It is also possible to learn the MLN formulas themselves
directly from a relational database. MLN structure learning

algorithms are similar in spirit to traditional inductive logic
programming algorithms, except that they directly optimize
the likelihood of the data (or related quantities). The first
structure learning algorithm designed specifically for MLNs
was MSL (Kok and Domingos 2005). The most widely used
version of MSL performs a beam search over the space of
first-order clauses (disjunctions). New clauses are gener-
ated from existing candidates by adding a new literal to the
clause (sharing at least one variable with existing literals),
or by flipping the sign of an existing literal. Note that eval-
uating a candidate MLN requires learning the weights of
all its clauses. This is done approximately by optimizing a
variant of pseudo-log-likelihood. To combat overfitting, its
model also imposes an exponential penalty on clause length,
and restricts the maximum number of variables in a single
clause.

3 Generalizing natural language instructions

The field of grounded language acquisition deals with un-
derstanding natural language from its context in the world,
rather than learning language in a supervised setting, from
labeled training data (Roy 2002; Yu and Ballard 2004;
Chen and Mooney 2008). The context often comes in the
form of environmental feedback (utility or cost) from an
agent’s interactions with the world; this setting lends itself to
reinforcement learning approaches (Branavan, Zettlemoyer,
and Barzilay 2010; Vogel and Jurafsky 2010).

Reinforcement learning has been successfully applied to
the problem of mapping natural language instructions to ac-
tions with little or no supervision (Branavan et al. 2009).
However, this mapping cannot be used to solve new prob-
lem instances unless we also receive a set of instructions for
the new instance. We present an algorithm for generalizing
the knowledge gained while learning to map instructions to
actions, allowing us to solve new problem instances with no
additional input.

Since our work builds on the algorithm of Branavan et
al. (2009), we provide a brief description of their system.
Branavan et al.’s algorithm takes as input a set of example
problems in a domain, each problem accompanied by natu-
ral language instructions describing an optimal solution. For
instance, in a game playing domain, the example problems
are game instances, and the instructions are walkthroughs,
explaining how to win each of the example games. The
agent also has access to the domain’s reward function; it can
execute an action and observe the resulting reward.

The policy is represented as a log-linear model, capturing
a joint probability distribution over the actions, world state
and instructions:

p(a|s,w) =
exp(w.g(s, a))∑
a′ exp(w.g(s, a′))

(a is an action; s is the state, including the text of the in-
structions; w is a vector of parameters; g(s, a) is a vector of
features.)

The choice of features is domain-dependent; features are
chosen to capture correlations between words in the text
and actions or environmental properties. The weights of
the model are trained using a policy gradient algorithm; for



(a) A simple Crossblock
puzzle, illustrating two
possible moves. The top
move results in a dead
end.

Clear the column of two, and
then the row of two.

(b) Textual instructions corresponding to
the puzzle on the left.

Square(0,1)

Square(1,0)

Square(1,1)

Square(1,2)

Clear(0,1)

Clear(1,1)

(c) Relational represen-
tation of bottom move.

Figure 1: Example Crossblock puzzle

each of the example problems, the agent repeatedly samples
and executes sequences of actions from the current policy,
and updates the weights of the features based on the reward.
Once the model has been trained, it can solve previously un-
seen game instances, if accompanied by matching instruc-
tional text.

3.1 Example problem: Crossblock

Crossblock1 is a single-player puzzle game played on a grid.
At the start of each level, some of the grid positions are filled
with blocks. The player’s goal is to clear the grid by drawing
horizontal or vertical line segments; a line segment removes
all blocks it crosses. Each line segment must cross out some
fixed number of blocks, depending on the level. Crossblock
was originally released as an online Flash game; the online
gaming community created textual walkthroughs2 to help
new players complete the more difficult levels. Figure 1a
shows an example Crossblock puzzle, with the accompany-
ing walkthrough.

Crossblock was one of the domains on which Branavan
et al. (2009) evaluated their system. The challenging nature
of the game and the availability of natural language instruc-
tions made it an ideal testbed for their algorithm. We use
this domain as a running example for the rest of this paper.
(Note that the algorithms we describe are not restricted to
Crossblock.)

3.2 Generalizing instructions

Branavan et al.’s algorithm learns a mapping from instruc-
tions to actions, allowing it to follow instructions for previ-
ously unseen game levels. However, the model cannot be
applied to new problem instances unless they are accompa-
nied by textual instructions. If the goal is to create an au-
tonomous agent, the learned knowledge is not applicable.

Learning to play a previously unknown game from scratch
is an extremely challenging problem (Genesereth, Love, and
Pell 2005), especially in a reinforcement learning setting
where the game mechanics may not be known in advance. In
domains where textual instructions are available, this infor-
mation can be exploited to make the learning problem easier.

1http://hexaditidom.deviantart.com/art/Crossblock-108669149
2http://jayisgames.com/archives/2009/01/crossblock.php

We now describe an algorithm for generalizing the knowl-
edge gained by learning an instruction-following model, al-
lowing the system to solve new problem instances without
the aid of any textual instructions at test time.

The algorithm is a form of imitation learning. The
instruction-following system acts as the teacher; traces of its
actions on the training games form the training examples for
the autonomous agent. The goal of the autonomous agent is
to imitate the actions of the teacher, without making use of
the textual data.

As a concrete example, consider the Crossblock domain.
Here, Branavan et al.’s system acts as the teacher. The first
step of our algorithm is to run Branavan et al.’s policy gradi-
ent algorithm until convergence (or for some fixed number
of iterations). At the conclusion of learning, their system
follows instructions well enough to successfully complete
most of the training games. For these games, given a game
state and a set of instructions, their model outputs an optimal
action.

The next step of the algorithm is the generalization, which
is done via imitation learning. The training data is generated
from the traces of the games which Branavan et al.’s agent
won. Each training example consists of a game state, along
with the action that Branavan et al.’s agent chose during its
winning trace. The goal of the learning problem is to pre-
dict Branavan et al.’s choice of actions given the game state.
Note that the resulting model does not include the textual in-
structions. This is what allows it to generalize to previously
unseen game instances without walkthroughs.

Given this training set, we are left with a traditional in-
ductive learning problem; in principle, any representation
and learning algorithm could be chosen. Crossblock train-
ing examples can be naturally represented in first-order logic
using two predicates (figure 1c):

• Square(x, y): indicates the presence of a square at grid
location (x, y).

• Clear(x, y): indicates that Branavan et al.’s agent chose
to cross out grid location (x, y).

To model the policy learned by Branavan et al.’s agent, we
need to learn the conditional joint probability distribution of
the Clear(x, y) atoms (the actions) given the Square(x, y)
atoms (the state).



4 Counting-MLNs
Markov logic networks are a popular representation for
probabilistic models of relational domains. Implementations
of several MLN learning and inference algorithms are pub-
licly available. The oldest and most widely used MLN soft-
ware package is ALCHEMY (Kok et al. 2008); it includes
an implementation of Kok and Domingos’ (2005) original
structure learning algorithm for MLNs. Kok and Domin-
gos’ (2010) state-of-the-art MLN structure learning algo-
rithm is also available as an open-source package.

We applied both these algorithms to the imitation learning
problem described in section 3.2. Neither algorithm suc-
ceeded in learning any useful structure in the Crossblock
domain. In our preliminary experiments, they either re-
turned blank MLNs, or learned worse-than-random policies
by overfitting the training data. Considering the low-level
feature representation made available to the learning algo-
rithm, this is not surprising. Successfully applying statistical
relational learning algorithms to decision making problems
usually requires the design of high-level predicates that al-
low useful formulas to be compactly represented; this is one
of the mechanisms by which background knowledge can be
inserted into the learner.

While the ability to incorporate background knowledge in
this manner is a useful feature of statistical relational lan-
guages, the design of useful features is a labor-intensive
process. Ideally, a structure learning algorithm would au-
tomatically discover these high-level features with mini-
mal human input. The high-level features for many stan-
dard benchmark decision making problems tend to involve
counts or other aggregations. For example, Džeroski, De
Raedt, and Driessens (2001) introduced high-level pred-
icate NumberOfBlocksOn(a, n) into their formulation of
the blocks world problem, allowing them to learn a good
policy using relational reinforcement learning. Similarly,
Driessens and Džeroski’s (2004) formulation of Tetris in-
corporates high-level predicates such as BlockWidth(a, n),
BlockHeight(a, n), HoleDepth(c, n), etc.

Standard Markov logic networks have no way to represent
these high-level concepts in terms of the primitive low-level
predicates. Unless the high-level predicates are provided by
an expert, there is no way for them to be incorporated into
the structure learning process. In this section, we describe
Counting Markov Logic Networks (C-MLNS), an extension
of Markov logic designed to capture precisely this kind of
regularity.

A counting expression is an expression of the form #x[α]
(similar to the notion of a counting formula in Milch et al.
2008). α is a first-order logic formula, and x is a variable.
The value of a counting expression is the number of values
of x for which α is satisfied. For example, #x[Smokes(x)]
is the number of smokers in the world. A counting ex-
pression can also contain unbound variables; for example,
#y[Friends(x, y) ∧ Smokes(y)] is the number of smok-
ers that x is friends with. An expression can also count
over multiple variables; for example, #x,y[Friends(x, y)]
counts the total number of friendship relations in the world.

A Counting Markov Logic Network is an MLN whose for-
mulas include comparison terms: equalities or inequalities

that include counting expressions (and optionally, numerical
constants). For example, the following comparison term as-
serts that Anna has at least ten more friends than Bob and
Charles put together:

#x[Friends(Anna, x)] ≥ #x[Friends(Bob, x)]

+ #x[Friends(Charles, x)] + 10

The expressions on either side of counting terms can involve
arbitrary mathematical operations, such as addition, subtrac-
tion, multiplication, etc.

The following C-MLN formula states that people with
more smoker than non-smoker friends are more likely to
smoke:

(#y[Friends(x, y) ∧ Smokes(y)]

> #y[Friends(x, y) ∧ ¬Smokes(y)])

=> Smokes(x)

As in a traditional MLN, this formula need not be determin-
istically true; it is associated with a weight w that may be
learned from data.

In principle, inference can be carried out by grounding the
C-MLN into a propositional Markov network, and running
standard exact or approximate inference algorithms. How-
ever, factors involving counting expressions are connected
to all the atoms involved in the counts. The resulting dense
structure is unfavorable to many commonly used algorithms,
such as loopy belief propagation (Yedidia, Freeman, and
Weiss 2001).

The alternative to propositional inference is lifted infer-
ence, which avoids grounding out the model when possible,
by grouping together sets of objects that are indistinguish-
able given the available evidence. Milch et al. (2008) in-
troduced an exact lifted inference algorithm incorporating
counting formulas. However, since inference in Markov net-
works is a #P-Complete problem (Roth 1996), exact infer-
ence algorithms do not always scale up to realistic problems.
Developing scalable approximate algorithms for C-MLNs
and related representations is an area for future work.

In this work, we use C-MLNs to represent a policy in a de-
cision making problem. For problems that are fully observ-
able, with a relatively small number of legal actions, exact
inference is tractable. The most probable state of the world
can be found simply by enumerating over all legal actions,
selecting the one with the highest posterior. To calculate the
partition function, simply add the potentials resulting from
each possible action. The marginal probability of an atom
is the sum of the potentials of the worlds where the atom is
true, divided by the partition function.

4.1 Learning C-MLNs

Given a tractable inference algorithm (either exact or ap-
proximate), C-MLN weights and structure can be learned
using variants of the standard MLN learning algorithms de-
scribed in section 2.1. For weight learning, we adapted
Singla and Domingos’ (2005) discriminative learning al-
gorithm to C-MLNs. We perform gradient ascent, opti-
mizing the conditional log-likelihood of the training data.



Singla and Domingos approximated the expected number
of true groundings of formulas by the counts in the MAP
state; instead, we calculate the true counts, since inference
is tractable in our setting due to the fully observable state
and the small number of legal actions at each step.

For structure learning, we perform a beam search, based
on MSL (Kok and Domingos 2005). The introduction of
counting expressions expands the already vast search space
of MLNs; to make structure learning feasible, we impose
some restrictions on the search space:

• Each formula is a disjunction of comparison terms, using
the ‘greater than or equal to’ (≥) operator.

• The quantity on each side of the comparison is the sum of
one or more counting expressions.

• The formula in each counting expression is a unit clause.

Although these restrictions lose some of the generality of C-
MLNs, the language remains rich enough to capture many
interesting patterns. This is analogous to the restriction of
most MLN structure learners to only learn disjunctive for-
mulas. Depending on the domain, it may be worthwhile
to allow mathematical operations other than addition, to al-
low numerical constants in the comparison terms, or to al-
low non-unit clauses in the counting expressions; however,
any of these generalizations would make the search problem
more challenging.

The beam search itself is identical to MSL. Instead of ini-
tializing the search with unit clauses, we initialize with all
atomic comparisons (i.e. comparisons with a single count-
ing expression on each side of the comparison operator). We
exclude comparisons with the same predicate on both sides.
We also require that all counting expressions in a formula
count over the same variable.

To generate new candidates from existing clauses, we ap-
ply two clause construction operators:

• Add a new atomic comparison to the clause.

• Add a new counting expression to one of the comparisons
in the clause.

In each iteration of the beam search, we generate all legal
candidates from the formulas in the current beam, subject
to the restrictions above. Like MSL, we impose a limit on
the total number of distinct variables in a clause, and place a
penalty on clause length. We also limit the number of count-
ing expressions in a single term.

We implemented the above C-MLN weight and structure
learning algorithms in a system called CHAMELEON, avail-
able online3.

4.2 C-MLNs for Crossblock

Like blocks world and Tetris, Crossblock is a domain where
counting-based features make it much more practical to rep-
resent a useful policy. For example, a good tactic for Cross-
block is to prefer moves that clear an entire row or col-
umn. These moves are less likely to leave behind unclear-
able blocks (figure 1a). Standard MLNs cannot capture this

3http://cs.washington.edu/homes/nath/chameleon

rule in terms of the Square(x, y) and Clear(x, y) predi-
cates, but C-MLNs can capture it quite concisely:

#y[Square(x, y)] = #y[Clear(x, y)]

The rule does not always hold; in some situations, the
optimal move may not clear any row or column. This is why
it is beneficial to learn weights for rules in the policy, rather
than enforcing them deterministically.

To summarize, our algorithm for generalizing Crossblock
instructions consists of two steps:

1. Train Branavan et al.’s (2009) model using their policy
gradient algorithm.

2. Treating their winning game traces as training data, use
CHAMELEON to learn the probability distribution over
actions given the world state.

5 Relational reinforcement learning

Our algorithm for generalizing natural language instructions
uses Branavan et al.’s model to provide training data for an
imitation learning system that outputs an autonomous agent
capable of solving new instances of the problem. Note that
the generalization ability of the instruction-following system
does not affect the performance of the autonomous agent;
the learned agent may generalize well even if the instruction-
following system heavily overfits the training data.

The idea of learning a policy through imitation is not lim-
ited to generalizing textual instructions. Any system that
can provide examples of successful behavior can be used as
a teacher for an imitation learning algorithm, whether or not
the original system can generalize to new problem instances.
By varying the source of the example behavior, imitation
learning can be used to solve a variety of decision making
problems. For example, if the training data is provided di-
rectly by an expert, the algorithm becomes an instance of
programming by demonstration (Cypher 1993).

Imitation learning can also be used for traditional rein-
forcement learning, without the aid of expert guidance in
either natural language form or through demonstration. The
simplest way to generate training data is to generate a large
number of random action sequences for each of the training
games, and use the ones that achieve high rewards as ex-
amples for the imitation learning system. Such an approach
is appropriate for domains with a clearly defined goal state,
and where random action sequences have a non-negligible
probability of reaching this goal state, on at least some of
the training games. Since Crossblock meets these criteria,
we implemented a version of our algorithm that uses this ap-
proach to learn a Crossblock policy without the aid of textual
instructions.

For domains that do not meet the above criteria, a more
complex approach is needed for generating training data.
One approach would be to generate action sequences from
some initial policy which may be suboptimal, though bet-
ter than random. If a starting policy cannot be provided by
an expert, it could be learned by policy gradient on a model
with a large number of randomly generated features that de-
pend on the state. Such a model would almost certainly fail
to generalize to new problem instances, but may be adequate



Table 1: Crossblock results

Algorithm Score Setting

BR-I 52% Instructions at training and test

C-MLN-I 72% Instructions at training

C-MLN-NI 62% No instructions

BR-NI 34% No instructions

RAND 13% Random moves

to capture a good policy on the training data; this would al-
low it to function as a teacher for the imitation learner, de-
spite being useless as an autonomous agent in its own right.
Investigating the practicality of this approach is a direction
for future work.

6 Experiments

We implemented two versions of our imitation learning al-
gorithm, with different sources of training data.

• C-MLN-I learns from the model output by Branavan et
al.’s algorithm, which uses policy gradient to map instruc-
tions to actions on the training games. C-MLN-I’s train-
ing data consists of the winning action sequences taken
by Branavan et al.’s model on the training games.

• C-MLN-NI creates training data by generating random
action sequences for each of the training games, as de-
scribed in section 5. We repeatedly generated sequences
for each game until we found one winning sequence, or
gave up after 200 failed attempts. The winning action se-
quences form the training set.

For both algorithms, the autonomous agent is learned from
the training data using CHAMELEON. Each clause was re-
stricted to a single free variable (i.e. each formula described
a single row or column). Each term was restricted to at most
three counting expressions on each side of the comparison.
We used a clause length penalty of 0.01. Weight learning
was run for 40 iterations during structure learning, and for
100 iterations once structure learning terminated.

We compared both algorithms to Branavan et al.’s (2009)
instruction-following system, BR-I. Note that BR-I has ac-
cess to textual instructions at both training and test time,
while C-MLN-I only uses them in training, and C-MLN-NI
does not use them at any time. Branavan et al. also de-
veloped a version of their algorithm without any text-based
features; we refer to their system as BR-NI and report their
results for comparison. Finally, we also report results for a
baseline system that selected a random legal action in each
step (RAND).

We evaluated these systems on the 50 Crossblock levels in
the online implementation of the game, using the same tex-
tual instructions as Branavan et al. (2009). Grids ranged in
size from 3x2 to 15x15, with the number of blocks removed
per turn ranging from 2 to 7. Table 1 reports the number of
games won, averaged over five random folds (each trained
on 40 and tested on 10).

Interestingly, C-MLN-I wins 20% more games than BR-I,
despite not having access to textual instructions at test time,

and using BR-I as its teacher in its imitation learning phase.
(The difference is statistically significant, as measured by
the sign test with p = 0.05.) This is likely due to BR-I
overfitting on the training set, because of the complexity of
its model, which includes several features for each word in
the instruction vocabulary. C-MLN-I’s model only depends
on the state and the action, and can therefore be represented
compactly. On average, the learned C-MLNs had fewer than
10 formulas (and therefore 10 weights), while BR-I had over
9000. The following is an example of a formula learned by
CHAMELEON:

(#y[Square(x, y)] ≥ #y[Clear(x, y)]+#y[Clear(x, y)])

∨ (#y[Clear(x, y)] ≥ #y[Square(x, y)])

Intuitively, this formula states that each horizontal line seg-
ment that the player draws clears either an entire row or less
than half the row. A move that violates this rule leaves be-
hind too few blocks in that row to be cleared by another
horizontal line segment; each remaining block will need to
be cleared by a separate vertical line segment. This is more
likely to lead to a dead end, making the game unwinnable.
This rule is understandable and empirically useful, but not
obvious to a human player.

C-MLN-NI also wins more games than BR-I, despite not
using the instructions in any way (though in this case the
difference is not statistically significant). C-MLN-NI and
BR-NI are directly comparable, since both systems use fea-
tures that only depend on the game state and not the text.
While BR-NI’s features were designed by hand, C-MLN-
NI’s features were learned by CHAMELEON. C-MLN-NI
wins 28% more games than BR-NI. (The difference is sig-
nificant, measured by a Fisher exact test with p = 0.05.
We did not use a sign test since individual game results for
BR-NI were not available.) It should be noted that build-
ing an autonomous Crossblock player was not the focus of
Branavan et al.’s (2009) work, and BR-NI’s features were
not described in detail in their paper. However, this result is
a promising proof of concept for using C-MLN-based imi-
tation learning as part of a reinforcement learning system.

7 Future work

Aside from the decision-making problems dealt with in this
paper, counting-based features can useful in many other do-
mains, such as the following:

• Social networks: to describe ‘hub’ nodes with a large
number of relationships; useful for viral marketing and
epidemiological models.

• Anomaly detection: to reason about the counts or frequen-
cies of different types of events.

• Resource allocation problems: to specify quantities of
available resources.

Efficient inference algorithms would greatly increase the ap-
plicability of C-MLNs to these and other problems.

Much progress has been made recently in improving
MLN structure and weight learning algorithms. Some of
these new algorithms can be extended to learn C-MLNs. For
example, Khot et al. (2011) use functional gradient boosting



to learn MLNs, learning a relational regression tree at each
step. Relational regression trees have been extended to in-
corporate counting (Van Assche et al. 2006); however, since
Khot et al. need to convert the learned trees into standard
MLN clauses, they cannot make use of these extensions.
Learning C-MLNs instead of traditional MLNs would re-
move this restriction.

8 Conclusions
• Counting-MLNs can compactly express formulas that

pose problems for traditional statistical relational repre-
sentations. Standard MLN weight and structure learning
algorithms can be adapted to C-MLNs; however, more
work is needed on efficient inference.

• CHAMELEON successfully generalizes the instruction-
following model learned by Branavan et al.’s (2009) al-
gorithm. Due to the simplicity of the learned C-MLN, it
solves new problem instances more successfully than the
original model, despite having access to less information
at testing time.

• CHAMELEON can also learn to play Crossblock au-
tonomously, without the use of textual instructions. Fu-
ture work in this direction includes partially observable
domains, more complex utility functions, etc.

Acknowledgments
This research was conducted while the first author was at
Microsoft Research.

References
Besag, J. 1975. Statistical analysis of non-lattice data. The
Statistician 24.

Branavan, S. R. K.; Chen, H.; Zettlemoyer, L.; and Barzilay,
R. 2009. Reinforcement learning for mapping instructions
to actions. In Proc. of ACL-09.

Branavan, S. R. K.; Zettlemoyer, L.; and Barzilay, R. 2010.
Reading between the lines: Learning to map high-level in-
structions to commands. In Proc. of ACL-10.

Chen, D. L., and Mooney, R. J. 2008. Learning to sportscast:
A test of grounded language acquisition. In Proc. of ICML-
08.

Collins, M. 2002. Discriminative training methods for hid-
den Markov models: Theory and experiments with percep-
tron algorithms. In Proc. of EMNLP-02.

Cypher, A. 1993. Watch What I Do: Programming by
Demonstration. MIT Press.

de Salvo Braz, R.; Amir, E.; and Roth, D. 2005. Lifted
first-order probabilistic inference. In Proc. of IJCAI-05.

Driessens, K., and Džeroski, S. 2004. Integrating guidance
into relational reinforcement learning. Machine Learning
57.

Džeroski, S.; De Raedt, L.; and Driessens, K. 2001. Rela-
tional reinforcement learning. Machine Learning 43.

Genesereth, M.; Love, N.; and Pell, B. 2005. General game
playing: Overview of the AAAI competition. AAAI Maga-
zine 26(2).

Khot, T.; Natarajan, S.; Kersting, K.; and Shavlik, J. 2011.
Learning markov logic networks via functional gradient
boosting. In Proc. of ICDM-11.

Kisyński, J., and Poole, D. 2009. Lifted aggregation in
directed first-order probabilistic models. In Proc. of IJCAI-
09.

Kok, S., and Domingos, P. 2005. Learning the structure of
Markov logic networks. In Proc. of ICML-05.

Kok, S., and Domingos, P. 2010. Learning markov logic
networks using structural motifs. In Proc. of ICML-10.

Kok, S.; Sumner, M.; Richardson, M.; Singla, P.; Poon, H.;
Lowd, D.; Wang, J.; and Domingos, P. 2008. The Alchemy
system for statistical relational AI. Technical report, Univer-
sity of Washington. http://alchemy.cs.washington.edu.

Lowd, D., and Domingos, P. 2007. Efficient weight learning
for Markov Logic Networks. In Proc. of PKDD-07.

Milch, B.; Zettlemoyer, L. S.; Kersting, K.; Haimes, M.; and
Kaebling, L. P. 2008. Lifted probabilistic inference with
counting formulas. In Proc. of AAAI-08.

Natarajan, S.; Joshi, S.; ; Tadepalli, P.; Kersting, K.; and
Shavlik, J. 2011. Imitation learning in relational domains:
A functional-gradient boosting approach. In Proc. of IJCAI-
11.

Pasula, H.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2005.
Learning symbolic models of stochastic domains. J. Artif.
Intel. Res. 1.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.

Poole, D. 2003. First-order probabilistic inference. In Proc.
of IJCAI-03.

Richardson, M., and Domingos, P. 2006. Markov logic
networks. Machine Learning 62.

Roth, D. 1996. On the hardness of approximate reasoning.
Artificial Intelligence 82.

Roy, D. 2002. Learning visually grounded words and syn-
tax for a scene description task. Computer Speech and Lan-
guage 16.

Singla, P., and Domingos, P. 2005. Discriminative Training
of Markov Logic Networks. In Proc. of AAAI-05.

Taskar, B.; Abbeel, P.; and Koller, D. 2002. Discriminative
probabilistic models for relational data. In Proc. of UAI-02.

Van Assche, A.; Vens, C.; Blockeel, H.; and Džeroski, S.
2006. First order random forests: Learning relational classi-
fiers with complex aggregates. Machine Learning 64.

Vogel, A., and Jurafsky, D. 2010. Learning to follow navi-
gational directions. In Proc. of ACL-10.

Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2001. Under-
standing belief propagation and its generalizations. In Proc.
of IJCAI-01.

Yu, C., and Ballard, D. H. 2004. On the integration of
grounding language and learning objects. In Proc. of AAAI-
04.


