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This paper addresses the reconstruction of sparse vectors in the Multiple Measurement Vectors (MMV)
problem in compressive sensing, where the sparse vectors are correlated. This problem has so far been
studied using model based and Bayesian methods. In this paper, we propose a deep learning approach
that relies on a Convolutional Deep Stacking Network (CDSN) to capture the dependency among the
different channels. To reconstruct the sparse vectors, we propose a greedy method that exploits the
information captured by CDSN. The proposed method encodes the sparse vectors using random mea-
surements (as done usually in compressive sensing). Experiments using a real world image dataset show
that the proposed method outperforms the traditional MMV solver, i.e., Simultaneous Orthogonal
Matching Pursuit (SOMP), as well as three of the Bayesian methods proposed for solving the MMV
compressive sensing problem. We also show that the proposed method is almost as fast as greedy
methods. The good performance of the proposed method depends on the availability of training data (as
is the case in all deep learning methods). The training data, e.g., different images of the same class or
signals with similar sparsity patterns are usually available for many applications.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Compressive Sensing (CS) has the advantage of acquiring sig-
nals in a compressed form [6–8]. Unlike classic sensing and com-
pression schemes where part of the transformed coefficients are
thrown away after spending a computational cost to calculate
them, in compressive sensing, only the necessary information is
“measured” at the encoder. The only requirements are the sparsity
of the signal in a certain basis and the incoherency between the
sparsifying basis and the measurement matrix. Since many natural
signals are sparse in time or space or a transform domain, CS has
found many applications in medical imaging, remote sensing,
geophysical data analysis, health telemonitoring, communications
and others.

In CS, instead of acquiring N samples of a signal R∈ ×x N 1, M
random measurements are acquired where <M N . This is ex-
pressed by:
684 - 1 - 127 from the Qatar
tion). The statements made

,
. Deng).
Φ= ( )y x 1

where R∈ ×y M 1 is the known measured vector and RΦ ∈ ×M N is a
random measurement matrix. To uniquely recover x given y and
Φ, x must be sparse in a given basis Ψ. This means that

Ψ= ( )x s 2

where s is −K sparse, i.e., s has at most K non-zero elements. From
(1) and (2):

= ( )y As 3

where ΦΨ=A . Since the above problem has only one measure-
ment vector, it is usually called the Single Measurement Vector
(SMV) problem.

For compressive sensing with Multiple Measurement Vectors
(MMV), also known as distributed compressive sensing, the aim is
to reconstruct a set of L unknown sparse vectors { … }s s s, , , L1 2
from a set of Lmeasurement vectors { … }y y y, , , L1 2 . Assuming that S
is a matrix whose columns are the sparse vectors and Y is a matrix
whose columns are the corresponding measurement vectors, the
MMV problem can be stated as:

= ( )Y AS 4

To reconstruct S using Y and A in (4), one can either re-
construct each of the sparse vectors in S independently or
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reconstruct S jointly. Using an average case analysis, it has been
shown that solving the MMV problem jointly can lead to better
uniqueness guarantees than those obtained by solving the SMV
problem for each sparse vector independently [9]. More formally,
assume that S is jointly sparse, i.e., the non-zero entries of each
sparse vector occur at the same indices as those of other vectors. In
other words, the sparse vectors have the same support. Then, the
necessary and sufficient condition to obtain a unique S given Y is:

( ) < ( ) − + ( )
( )supp

spark rank
S

A S1
2 5

where | ( )|supp S is the number of rows in S with non-zero energy
and spark of a given matrix is the smallest possible number of
linearly dependent columns of that matrix [10]. spark gives a
measure of linear dependency in the system modelled by a given
matrix. In the SMV problem, no rank information exists. In the
MMV problem, the rank information exists and affects the un-
iqueness bounds.

In the current literature, S in (4) is reconstructed using one of the
following types of methods: (1) greedy methods [11] like Simulta-
neous Orthogonal Matching Pursuit (SOMP) which performs non-
optimal subset selection, (2) relaxed mixed norm minimization
methods [12] where the ℓ0 norm is relaxed to ℓ1 norm to formulate
a convex optimization problem, or (3) Bayesian methods like [13–
15] where a posterior density function for the values of S is created,
assuming a prior belief, e.g., Y is observed and S should be sparse in
a basis Ψ. As shown in [13–15], in the MMV problem, the model
based methods like the Bayesian methods usually perform better
than the first two groups of methods because they exploit the sta-
tistical dependencies among the different sparse vectors in S.

In many applications, a huge amount of data similar to the data
to be reconstructed, i.e., S, is available. Examples are the case of a
security camera recording the same environment, recordings of the
different channels of electroencephalogram (EEG) of the same pa-
tient over time, different patches of images of the same class, e.g.,
buildings or flowers, etc. In these applications, the sparse vectors in
S usually have some form of correlation (dependency) with each
other. The question is: (i) how can we use the available data to
capture the dependencies among the channels and (ii) how to ex-
ploit the captured information to improve the performance of the
reconstruction algorithm in the MMV problem? To address the first
part of this question, we propose a Convolutional version of Deep
Stacking Networks (DSNs) [16] which we refer to as CDSN. To cap-
ture the dependencies among different channels we propose the
use of a sliding convolution window over the columns of the matrix
S (where each convolution window contains w consecutive columns
of S where w is the size of convolution window). To address the
second part of above question, we propose a two step greedy al-
gorithm to exploit this information at the decoder during the re-
construction. By performing experiments on an image dataset, we
show that the proposed method outperforms the well known MMV
solver SOMP and the model based Bayesian methods proposed in
[17,14,15]. This is shown using the popular Wavelet and DCT
transforms as the sparsifying basis. We emphasize that the pro-
posed method does not add any complexity to the encoder, i.e., the
encoder is a randommatrix. The complexity is added at the decoder.

The contributions of this paper are as follows: a convolutional
version of the Deep Stacking Networks (DSNs), which we refer to
as CDSN, is proposed. We then propose the use of CDSN, which is a
data driven method, to capture the dependencies among different
channels in the MMV problem. We then use a two step greedy
reconstruction algorithm to exploit the information captured by
CDSN at the decoder to reconstruct S.

Note that the great success of deep learning [18–21], motivated
new applications reported in this paper. The rest of the paper is
organized as follows: in the next section, related work is discussed.
In Section 3 the proposed method is presented. Experimental
evaluation and discussion are presented in Section 4. In Section 5,
conclusions and future work are presented.
2. Related work

Model based methods that exploit the information in the
structure of sparse vector(s) have been studied extensively in the
compressive sensing literature [13–15,17,22–27]. In [22], it has
been theoretically shown that using signal models that exploit
these structures results in a decrease in the number of measure-
ments. In [23], a thorough review on CS methods that exploit the
structure present in sparse signal is presented. In [17], a Bayesian
framework for CS is presented. This framework uses a prior in-
formation about the sparsity of the vector s to provide a posterior
density function for the entries of s (assuming y is observed). It
then uses a Relevance Vector Machine (RVM) [28] to estimate the
entries of the sparse vector. This method is called Bayesian Com-
pressive Sensing (BCS). In [14], a Bayesian framework is presented
for the MMV problem. It assumes that the L channels or “tasks” in
the MMV problem (4), are not statistically independent. By im-
posing a shared prior on the L channels, an empirical method that
estimates the hyperparameters is presented and extensions of
RVM used for the inference step. This method is known as Mul-
titask Compressive Sensing (MT-BCS). In [14], it is experimentally
shown that the MT-BCS outperforms three methods, the method
that applies Orthogonal Matching Pursuit (OMP) on each channel,
the Simultaneous Orthogonal Matching Pursuit (SOMP) method
which is a straightforward extension of OMP to the MMV problem,
and the method that applies BCS on each channel independently.
In [13], the Sparse Bayesian Learning (SBL) [28,29] is used to solve
the MMV problem. It is shown that the global minimum of the
proposed method is always the sparsest one. The authors in [15]
address the MMV problem when the entries in each row of S are
correlated. An algorithm based on SBL is proposed and it is shown
that the proposed algorithm outperforms the mixed norm ( ℓ1,2)
optimization as well as the method proposed in [13]. The proposed
method is called T-SBL. In [24], a greedy algorithm aided by a
neural network is proposed to address the SMV problem in (3).
The neural network parameters are calculated by solving a re-
gression problem and are used to select the appropriate column of
A at each iteration of OMP. The main modification to OMP is that of
replacing the correlation step with a neural network. This method
was experimentally shown to outperform OMP and ℓ1 optimiza-
tion. This method is called Neural Network OMP (NNOMP). An
extension of [24] with a hierarchical Deep Stacking Network (DSN)
[16] is proposed in [25] for the MMV problem. DSN architecture
has different applications, for example see [1–5]. The joint sparsity
of S is an important assumption in the proposed method. To train
the DSN model, the Restricted Boltzmann Machine (RBM) [30] is
used to pre-train DSN and then fine tuning is performed. It has
been experimentally shown that this method outperforms SOMP
and ℓ1,2 in the MMV problem. The proposed methods are called
Nonlinear Weighted SOMP (NWSOMP) for the one layer model
and DSN-WSOMP for the multilayer model. In [26], a feedforward
neural network was used to solve the SMV problem as a regression
task. A pre-training phase followed by fine tuning was used. For
pre-training, the Stacked Denoising Auto-encoder (SDA) proposed
in [31] had been used. Note that an RBM with Gaussian visible
units and binary hidden units (i.e., the one used in [25]) has the
same energy function as an auto-encoder with sigmoid hidden
units and real valued observations [32]. Therefore the extension of
[26] to the MMV problem is expected to give similar performance
to that of [25]. In [27], a different MMV problem is solved where
the sparsity patterns of different sparse vectors in S are NOT
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similar. A method based on Long Short Term Memory (LSTM) was
proposed to address this problem. In this paper, we assume that
the sparse vectors in S have similar sparsity patterns. For example,
the sparse vectors are the DCT or Wavelet transforms of images. In
the sparse representation literature, the dictionary learning
method [33] uses the available training data to learn the sparsi-
fying basis (Ψ in (2)) that can represent the signal as compactly as
possible. The main difference between dictionary learning and our
work here is that we assume the sparsifying basis as given and
there is no need to learn it. In other words, the sparse vectors in S
are not necessarily very sparse. Although we expect the perfor-
mance to improve by combining dictionary learning with our
proposed method, in this paper we focus on the performance
improvement obtained by using the proposed approach only.
3. Proposed method

To give a high level picture of how the proposed method re-
constructs the sparse vectors represented as columns of S, given
the measured vectors represented as columns of Y and the mea-
surement matrix A , we can think of it as a greedy method with
two steps. At the first step, the “location” of a non-zero entry in a
sparse vector in S is predicted using CDSN, and at the second step,
the updated estimate of the corresponding sparse vector is
calculated.

The above two steps are performed at each iteration, for a
number of iterations. At each iteration, the location of one of the
non-zero entries in a column in S is predicted using CDSN. The
stopping criteria for iterations depend on whether the residual
between Y and the estimate of it at that iteration is less than a
threshold or the number of iterations equals to the total number of
entries in S.

We continue our explanation of the proposed method using the
block diagrams presented in Fig. 1. In Fig. 1(a), the dashed lines
show that the process of reconstructing the sparse vectors repeats
for a number of iterations. At each iteration, each column of S is
estimated by a separate process. The inputs to this process are the
residuals at each iteration and the outputs are the estimated col-
umns of S.

More formally, in the proposed method, before the i-th itera-
tion of reconstructing the j-th column of S, i non-zero entries of
that column are predicted so far. We represent the j-th column of S
by sj. At the i-th iteration, the first step predicts the location of the
( + )i 1 -th non-zero entry of sj, using the residuals of columns
contained in a sliding convolution window. In Fig. 1(a), an example
with convolution window of size 3 is represented. This sliding
convolution window helps in capturing the dependencies among
channels. The predicted location of the ( + )i 1 -th non-zero entry is
then added to the support of sj. This support is represented by Ωj

in Fig. 1(a). The second step finds the updated estimate of sj by
solving a linear least squares problem that finds sj given yj (the j-

th column of Y) and ΩA j:

^ = −
( )

Ωs y A sargmin
6

j j j
s 2

2

j

j

where ΩA j is a matrix that includes only those columns of A that
correspond to the support of sj. The definition of the residual
matrix at the i-th iteration is = −R Y ASi i where Si is the estimate
of the sparse matrix S at the i-th iteration. Columns of R are re-
presented by rj, =j L1, 2 ,..., in Fig. 1(a).

Now the remaining important questions are:

(i) how can we find the parameters of CDSN represented in Fig. 1
(b), i.e., ( ) ( ) ( ) ( ) ( ) ( )W W W W W W, , , , ,1

1
2
1

1
2

2
2

1
3

2
3 ? Note that in Fig. 1(b),
( )W l
1 is the matrix of weights from input layer to hidden layer

for the l-th layer of CDSN and ( )W l
2 is the matrix of weights

from hidden layer to output layer for the l-th layer of CDSN.
Residual vectors of channel one, two and three are represented
by r r,1 2 and r3 respectively in Fig. 1(b).

(ii) how should the training data be represented to find the
parameters of CDSN given that at each iteration of the pro-
posed method the location of one of the non-zero entries is
determined? This means that the CDSN should observe the
non-zero entries in the training data one by one. In the other
words, we cannot simply use the given training data (e.g.,
images), and an appropriate representation of it is necessary.

We first answer question (ii) and then explain the method for
question (i).

To address question (ii), we use the following procedure on the
given training data. Consider a sparse vector of the j-th channel sj

in the training data. Assume that it has k non-zero entries. We first
calculate yj using =y Asj j. Then we find the entry in sj that has the
maximum value. Assume that the index of this entry is k0. Then we
calculate the residual vector from:

= − ( ) ( )
Ω s kr y A 7j j j 0

j

where ΩA j only includes the k0-th column of A and ( )s kj 0 is the k0-
th entry of sj. It is obvious that this residual value results from not
including the remaining −k 1 non-zero entries of sj. Now we set
the k0-th entry of sj to zero. From the remaining −k 1 non-zero
entries, the second largest value of sj offers the main contribution
to rj in (7). Therefore, we use rj to predict the location of the
second largest value of sj. Assume that the index of the second
largest value of sj is k1. We normalize all entries in sj with respect
to the value in the k1-th entry. Therefore the training pair is rj in
(7) as input and the normalized sj with k0-th entry set to zero as
output target. Now we set the k1-th entry of sj to zero. This gives
us a new sparse vector with −k 2 non-zero entries. Then we
calculate the new residual vector from:

= − ( ) ( ) ( )
Ω ⎡⎣ ⎤⎦s k s kr y A , 8j j j j

T
0 1

j

where ΩA j includes the k0-th and k1-th columns of A . We use the
residual in (8) to predict the location of the third largest value in sj.
Assume that the index of the third largest value of sj is k2. We
normalize all entries in sj with respect to the value in the k2-th
entry. Therefore the new training pair is rj in (8) as input and the
normalized sj with k0-th and k1-th entries set to zero as output
target. We continue this procedure up to the point where sj does
not have any non-zero entry. Note that all above procedure is done
for one training sample of the j-th column of S. The result is the
training pair ( )r s,j j where rj is the input and sj is the output target.
Then we continue with the next training sample. We do the same
procedure for each channel.

We address question (i) by describing the CDSN formally and
explaining the training method. The forward pass for l-th layer of
CDSN represented in Fig. 1(b) is:

=
+

= ( )

( )

−

( ) ( ) ( )

( ) ( )

⎡⎣ ⎤⎦
e

h

v W h

1

1

9

l

l l T l

W z

2

l l
1

In (9), ( )v l is the output vector and ( )z l is the input vector of l-th
layer and is defined as follows:

= [ … ] ( )( ) ( ) ( ) ( − )z v v v r, , , , 10l l1 2 1

In (10), r is the vector formed by the concatenation of all



Fig. 1. Proposed method. This diagram shows CDSN for channel 2 in Fig. 1(a), and Rn denotes a random matrix.
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residual vectors in each convolution window. To find the CDSN
unknown parameters ( )W l

1 and ( )W l
2 for each layer, l, a mean

squared error cost function is minimized:

{ } = −
( )

( ) ( )

{ }

( )

( ) ( )
W W V T, argmin

1
2 11

l l l

W W
1 2

,
2

2

l l
1 2

where T is a matrix whose columns are the target vectors in the
training set and ( )V l is a matrix whose columns are the corre-
sponding output vectors from the l-th layer. Each layer of CDSN is a
one layer neural network with a non-linear hidden layer and a
linear output layer. In a CDSN, similar to a DSN [16], the optimi-
zation problem in (11) is solved for each layer separately. The
linearity of the output layer for each layer of CDSN makes it pos-
sible to find a closed form solution for ( )W l

2 given ( )W l
1 and T:

=
( )

( ) ( ) ( )
−

( )⎡
⎣⎢

⎡⎣ ⎤⎦
⎤
⎦⎥W H H H T

12
l l l T l T

2

1

where ( )H l is a matrix whose columns are ( )h l in (9) corresponding
to different training samples in the training set. To prevent over-
fitting and to have a reliable solution for ( )W l

2 when ( )H l is ill
conditioned, usually an ℓ2 regularization term is added to (11). In
other words, to calculate ( )W l

2 the following optimization problem
is solved:
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μ= − +
( )

( ) ( ) ( ) ( )

( )

⎡⎣ ⎤⎦W W H T Wargmin
1
2 13

l l T l l

W
2 2

2

2

2 2

2

l
2

which results in:

μ= + [ ] ( )
( ) ( ) ( ) − ( )⎡⎣ ⎤⎦W I H H H T 14
l l l T l T

2

1

where I is the identity matrix.
To find ( )W l

1 , for each layer of CDSN we use the stochastic gra-
dient descent method. To calculate the gradient of the cost func-
tion with respect to ( )W l

1 given the fact that ( )W l
2 and ( )H l depend on

( )W l
1 , it can be shown [34] that the gradient of the cost function in

(11) with respect to ( )W l
1 is:

( )
∂ −

∂
= ◦ − ◦ [ ] − [ ]

( )

( )
( ) ( ) ( ) ( ) † ( ) ( ) † ( ) †

⎡
⎣
⎢⎢

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡
⎣⎢

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎤
⎦⎥
⎤
⎦
⎥⎥ 15

V T

W
Z H H H H T T H T T H1

l

l
l l T l T l l T l T l2

2

1

where ( )Z l is a matrix whose columns are ( )z l in (10) corresponding
to different training samples in the training set and ○ is the Ha-
damard product operator. Using the gradient information from
past iterations can help to improve the convergence speed in
Fig. 3. High level block diagram
convex optimization problems [35]. Although the problem in (11)
is not necessarily convex because of the stack of non-linear hidden
layers, but we found out experimentally that the gradient in-
formation from the past iterations can be helpful here as well. As
in [34], we use the FISTA algorithm to accelerate the fine tuning.
Therefore, the update equations for ( )W l

1 at the k-th iteration are as
follows:

( )
( )

ρ= ^ −
∂ −

∂ ^

= + +

^ = ^ + −
( )

( )
( ) ( )

( )

+

+

( ) ( )
−

+

( )
−

( )

m m

m
m

W W
V T

W
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epoch number is represented in Fig. 2. After computing ( )W l
1 from

(16), we use the closed form formulation in (14) to find ( )W l
2 .

Another important consideration for training the CDSN is that
the cost function in (11) is not necessarily convex, therefore the
initialization of ( )W l

1 before fine tuning plays an important role. For
initialization of the first layer of CDSN, we train a Restricted
Boltzmann Machine (RBM) [36,30] with Gaussian visible units and
binary hidden units. This results in the following energy function
between visible units, i.e., entries of ( )z 1 , and hidden units, i.e.,
entries of ( )h 1 :

( ) ( ) ( ) ( )= − − − −( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎡⎣ ⎤⎦ 17E z h z b z b b h z W h,
T T T

init
1 1 1

2
1

1
1

1 2
1 1

1,
1 1

where b1 and b2 are vectors of bias values for the visible and
hidden units respectively. The goal is to find ( )W init1,

1 from the

training input data, i.e., the residual vectors, ( )z 1 , in the training
data generated as explained earlier. Then we use ( )W init1,

1 to initialize
( )W1
1 as shown in Fig. 1(b). This approach has been shown to be

also helpful in training neural networks and specifically
of the proposed method.
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autoencoders [37]. The parameters of the RBM can be found by
maximizing the log probability that the RBM assigns to the input
data, which is a function of the energy function in (17), using the
contrastive divergence method [30]. The details on the general
RBM training method used in this work can be found at [38]. As
shown in the block diagram of CDSN in Fig. 1(a), to initialize the
parameters of the upper layers of CDSN, ( + )W l

1
1 , we use the learned

parameters of the lower layer, ( )W l
1 , as initialization. This approach

has been shown to be helpful in training DSNs [16] and it was
helpful in our task as well. This completes the description of the
training method for CDSN and the answer for question (ii).

Given the trained CDSN, a summary of the proposed re-
construction algorithm that finds the sparsest solution S given Y
and A in (4) is presented in Algorithm 1. We refer to this algorithm
as CDSN-CS since we have used a convolutional DSN for dis-
tributed compressive sensing. A more high level architecture of
the proposed method is also presented in Fig. 3.
Algorithm 1. Distributed Compressive Sensing using Convolutional Deep Stacking Network (CDSN-CS).

Inputs: CS measurement matrix R∈ ×A M N; matrix of measurements R∈ ×Y M L; minimum ℓ2 norm of residual matrix “resMin” as
stopping criterion; Trained “cdsn” model; Convolution window size “ w”

Output: Matrix of sparse vectors R
^ ∈ ×S N L

Initialization: ^ =S 0; j¼1; i¼1; Ω = ∅; =R Y .
1: procedure CDSN-CS A , cdsnY,
2: while ≤i N and ∥ ∥ ≤ resMinR 2 do
3: ← +i i 1
4: for = →j L1 do

5: ( ) ← ( )
(| ( ) |)

−
−

jR : , i
j

max j
R

R
:,

:,
i

i

1

1

6: )( ) ( ( ) ( )← − − + … + − +⎜ ⎟⎛
⎝

⎡
⎣⎢ ⎤⎦

⎞
⎠cdsn j j j jv R R R R:, , :, 1 , , :, 1 , :,j

w

i

w

i

w

i

w

i2 2 2 2

7: ← ( ( ))idx Support vmax j

8: Ω Ω← ∪− idxi i 1

9: ^ ( ) ← ( ) ( ) ▹
Ω

Ω †j jS A Y: , : , Least Squares
i

i

10: ^ ( ) ←
Ω

jS : , 0i
C

11: ( ) ← ( ) − ^ ( )Ω
Ω

j j jR Y A S: , : , : ,i
i

i

12: end for
13: end while
14:end procedure
4. Experimental evaluation and discussion

In this section we experimentally demonstrate: (i) How is the per-
formance of the proposed method compared to other reconstruction
algorithms discussed in this paper? (ii) How fast is the proposed
method? (iii) What are the effects of the convolution window size in
CDSN-CS? (iv) What are the effects of the RBM initialization?

To address the above issues, we performed experiments on
three different classes of images belonging to the natural image
dataset of Microsoft Research in Cambridge [39]. Ten randomly
selected test images from each class of this dataset were used for
experiments. The images are shown in Fig. 4. The size of each of
the used images was 64�64. Each image was divided into 8�8
non-overlapping blocks. After reconstructing all the blocks of an
image, the reconstruction error for the reconstructed image was
calculated. The reconstruction error is defined as:
= ∥ ^ − ∥
∥ ∥ ( )

MSE
S S

S 18

where S is the actual sparse matrix and Ŝ is the sparse matrix
recovered by the reconstruction algorithm. We encoded 8 blocks
(L¼8) of each image simultaneously using a random measurement
matrix and reconstructed them at the decoder. Therefore, S in (4)
had 8 columns and each column had N¼64 entries. We used 40%
measurements, i.e., Y in (4) had 8 columns and each column had
M¼25 entries. The encoder was a typical compressive sensing
encoder, i.e., A was a randomly generated matrix. Each column of
A was normalized to have unity norm. To simulate the measure-
ment noise, Gaussian noise with standard deviation 0.005 was
added to the measurement matrix Y in (4). We used two popular
transforms, DCT and Wavelet, as the sparsifying basis Ψ in (2). For
the wavelet transform we used the Haar wavelet transform with
3 levels of decomposition. We used 55 images for the training set,
5 images for the validation set and 10 images for the test set. The
PC used to perform the experiments had an Intel(R) Core(TM) i7
CPU with clock 2.93 GHz and with 16 GB RAM.

The performance of the proposed reconstruction algorithm
(CDSN-CS) was compared with 5 reconstruction methods for the
MMV problem. These methods are: (1) Simultaneous Orthogonal
Matching Pursuit (SOMP) which is a well known baseline for the
MMV problem, (2) Bayesian Compressive Sensing (BCS) [17] ap-
plied independently on each channel, (3) Multitask Compressive
Sensing (MT-BCS) [14] which takes into account the statistical
dependency among the different channels, (4) Sparse Bayesian
Learning for Temporally correlated sources (T-SBL) [15] which
exploits the correlation among different sources in the MMV
problem and (5) Nonlinear Weighted SOMP (NWSOMP) [25]. For
the BCS method we set the initial noise variance of i-th channel to
the value suggested by the authors, i.e., ( )std y /100i

2 where
∈ { }i 1, 2, 3, 4, 5, 6, 7, 8 and (·)std calculates the standard



Fig. 5. Comparison of different MMV reconstruction algorithms performance for
the natural image dataset using DCT transform. Image classes from top to bottom
are buildings, cows and flowers respectively.

Fig. 6. Comparison of different MMV reconstruction algorithms performance for
the natural image dataset using Wavelet transform. Image classes from top to
bottom are buildings, cows and flowers respectively.

Fig. 4. Natural images randomly selected from three different classes used for test. The first row is “buildings”, the second row is “cows” and the third row is “flowers”.
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deviation. The threshold for stopping the algorithm was set to
10�8. For MT-BCS we set the parameters of the Gamma prior on
noise variance to =a 100/0.1 and b¼1 which are the values sug-
gested by the authors. We set the stopping threshold to 10�8 as
well. For T-SBL, we used the default values recommended by the
authors. For NWSOMP, during training, we used three layers, each
layer having 512 neurons and 25 epochs of parameters update. For
CDSN-CS, during training, we used three layers, 64 neurons per
layer with different window sizes and 25 epochs of parameter
updates. For RBM initialization, we ran 200 epochs of RBM para-
meter update with step size 0.01. To monitor overfitting of the
RBM, we used free energy as explained in [38]. For fine tuning
CDSN-CS after RBM initialization we used step size 0.002. The
regularization parameter μ in (14) was set to 0.01. To monitor and
prevent overfitting, we used 5 images per channel as the valida-
tion set and we used early stopping if necessary. Note that the
images used for validation were different from those used in the
training set or in the test set.

The results for the different classes of images are presented in
Fig. 5 for the DCT transform and in Fig. 6 for the Wavelet transform.
In these figures, the vertical axis is the MSE defined in (18) and the
horizontal axis is the number of non-zero entries in each sparse
vector. The number of measurements, M, is fixed to 25. Each point



Fig. 8. The performance of CDSN-CS with and without RBM initialization. This
experiment was conducted for image class of cows with Wavelet transform as
sparsifying basis.

Fig. 9. CPU time of different MMV reconstruction algorithms discussed in this
paper. Up: all methods. Bottom: removing T-SBL and BCS to make the difference
among remaining methods more visible.

Fig. 7. The performance of CDSN-CS with different window sizes. This experiment
was conducted for image class of cows with DCT transform as sparsifying basis.
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on the curves is the average of the MSEs over 10 reconstructed test
images at the decoder. For all results, we used a convolution win-
dow of size 5 because it gave the best performance compared to
other window sizes. For image class of flowers (the bottom part of
Figs. 5 and 6), a convolution window of size 7 gave better perfor-
mance. As observed in these figures, CDSN-CS outperforms the five
reconstruction methods SOMP, BCS applied to each channel in-
dependently, MT-BCS, T-SBL and NWSOMP. We believe that this
improvement in the performance is due to exploiting the de-
pendencies among the different channels by CDSN network.

To study the effect of the convolution window size, a compar-
ison among the different convolution window sizes in CDSN-CS for
the image class “cows” with the DCT transform is presented in
Fig. 7. As observed from this figure, increasing the window size
improves the results up to a point after which the results do not
improve any more. Since we use distinct patches from each image,
we might assign this behavior to the fact that the residuals of
image patches that are far from each other might be less corre-
lated than the residuals of image patches that are close to each
other.

To show that RBM initialization is helpful for our task, we
conducted two experiments. In the first experiment the CDSN is
trained using random initialization. In the second experiment it is
trained using RBM initialization. The results are presented in Fig. 8.
As observed in this figure, RBM initialization improves the re-
construction performance.

To conclude this section we present the CPU time for the dif-
ferent reconstruction algorithms discussed in this section in Fig. 9.
Since all methods are run in MATLAB and on the same machine,
Fig. 9 gives a rough idea about how fast the different methods
discussed in this paper are. As observed in this figure, the pro-
posed method is faster than the Bayesian methods discussed and
is almost as fast as the greedy methods.
5. Conclusions and future work

This work proposes a method based on Convolutional Deep
Stacking Networks (CDSN) to reconstruct sparse vectors in the
MMV problem (from random measurements). The proposed
method improves the performance of sparse reconstruction
methods by exploiting the dependency among different channels.
We showed that the performance of the proposed method was
better than SOMP and a number of model based Bayesian meth-
ods. The proposed method is a data driven method that learns the
inter-channel information among the sparse vectors in the MMV
problem (during training) and uses this information during re-
construction. We have experimentally shown that the proposed
method is almost as fast as greedy methods. Note that we did not
use a huge training set, or advanced deep learning methods like
drop out or many layers of representation all of which are ex-
pected to improve upon our results presented here. This paper
constitutes a proof of concept that convolutional neural networks,
and specifically CDSN, can improve the performance of distributed
compressive sensing reconstruction algorithms by capturing the
dependency information among the sparse vectors. In our future
work we plan to apply the proposed method to applications where
a significant amount of dependency among the sparse vectors
exists. Examples are video compressive sensing and health tele-
monitoring that use compressive sensing of different electro-
encephalogram (EEG) channel signals.
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