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Figure 1: Top-left: a burst of noisy images (10 frames with image size 3072 x 1728) by a smartphone. Bottom-left: the running time (sec.) of
different denoising methods. Right: comparison of two close-up views. (a) input images (b) spatial-temporal filtering [Bennett and McMillan
2005] (c¢) BM4D [Maggioni et al. 2013] (d) optical flow [Liu 2009] + median (e) lucky imaging [Joshi and Cohen 2010] (f) our method. Our
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method produces a clean, ghost-free image with fine details. More importantly, our method is significantly faster than other methods.

Abstract

This paper presents a fast denoising method that produces a clean
image from a burst of noisy images. We accelerate alignment of the
images by introducing a lightweight camera motion representation
called homography flow. The aligned images are then fused to cre-
ate a denoised output with rapid per-pixel operations in temporal
and spatial domains. To handle scene motion during the capture, a
mechanism of selecting consistent pixels for temporal fusion is pro-
posed to “synthesize” a clean, ghost-free image, which can largely
reduce the computation of tracking motion between frames. Com-
bined with these efficient solutions, our method runs several orders
of magnitude faster than previous work, while the denoising qual-
ity is comparable. A smartphone prototype demonstrates that our
method is practical and works well on a large variety of real exam-
ples.
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1 Introduction

Burst, a shooting mode in most cameras, allows multiple shots to
be captured in a quick succession by either pressing or holding the
shutter button. It is designed to allow selection of the best shot or
record the motion. Recently, burst capturing has become ubiquitous
in many hand-held imaging devices (e.g., smartphone, compact and
DSLR cameras). For example, iPhone 5s supports a burst of up to
10 shots per second.

The burst mode has been successfully exploited in computation
photography for reducing blur [Cai et al. 2009], or improving
shadow/highlight details [Reinhard et al. 2010], or increasing res-
olution [Farsiu et al. 2004], or clarity [Joshi and Cohen 2010], or
depth of the field [Jacobs et al. 2012].

In this paper, we present a practical solution for “burst images de-
noising” - turning a burst of noisy images (typically captured in a
low-light condition) into a single clean image, as shown in Figure 1.
This problem is not new. It has been studied in the context of mul-
tiple images/video denoising [Buades et al. 2010; Liu and Freeman
2010; Zhang et al. 2009]. But we focus on practicality - our goal is
to design a highly efficient method while producing a high-quality
result so that the algorithm can be run on a mobile device with lim-
ited computational resources.

A practical approach needs to tackle two challenges. First is effi-
ciency. The state-of-the-art methods heavily rely on optical flow or
patch matching to establish temporal and spatial correspondence,
which is unacceptably slow. Second is quality. Fast methods like
averaging or filtering [Tomasi and Manduchi 1998] are insufficient
on both noise reduction and avoiding “ghost” artifacts caused by
either camera motion (by hand shake) or scene motion (by dynamic
objects). Moreover, even some complicated methods are also frag-
ile in the presence of strong noise or complex dynamic motion.

We propose a fast noise reduction method that produces a clean
image from a burst of images. The high speed of our method is
enabled by introducing three accelerating steps. In the first step,
we use a lightweight, parametric motion representation - homog-
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raphy flow - to model the motion caused by camera movements.
This representation is inspired by the recent multiple homographies
model [Grundmann et al. 2012; Liu et al. 2013] for video stabiliza-
tion. Since estimating homography flow only requires spare feature
matching, this step is both efficient and robust to noise.

In the second step, we handle the scene motion by identifying con-
sistent pixels (i.e., pixels with similar colors) along the temporal
axis from all aligned images (by the first step) per pixel location.
These selected consistent pixels are used in our temporal pixel fu-
sion (in the third step) by averaging. Thus, we can generate ghost-
free results while avoiding complex motion tracking on dynamic
objects, which is too slow or too difficult. The idea was success-
fully applied in recent HDR deghosting [Granados et al. 2013]. We
extend this idea to find as many consistent pixels as possible at ev-
ery pixel location for the purpose of better denoising.

In the third step, we apply temporal and multiscale pixel fusions
in succession to obtain the denoised result. The temporal fusion is
based on a simple, optimal linear estimator. The multiscale fusion
is complementary to temporal fusion and further enables signifi-
cant denoising. Meanwhile, the whole step is also very efficient by
design because it only involves pixel-wise operations.

We have evaluated our algorithm on a variety of real data. In
the presence of moderate or strong noise, our algorithm performs
on par with state-of-the-art multi-image denoising methods (e.g.,
VBM3D [Dabov et al. 2007a], BM4D [Maggioni et al. 2013]). Fur-
thermore, our algorithm is two or three orders of magnitude faster.
Figure 1 shows a comparison.

2 Related Work

Single image denoising has great progresses in recent decades.
Representative methods include bilateral filtering [Tomasi and
Manduchi 1998], wavelet (GSM) [Portilla et al. 2003], Field-Of-
Expert [Roth and Black 2005], non-local means [Buades et al.
2005], BM3D [Dabov et al. 2007b] and so on. To improve the
efficiency, a few fast variants have been proposed, such as fast bi-
lateral filtering [Paris and Durand 2009], Gaussian kd-trees [Adams
et al. 2009], and geodesic paths [Chen et al. 2013]. Most recently,
Levin et al. [2011] pointed out that single image denoising may be
approaching its performance limit. NoiseBrush [Chen et al. 2009]
provided a interactive way for further quality improvement.

Multiple image denoising is superior to single image denoising
because of its use of more information. Some denoising techniques
have been successfully used on burst images [Tico 2008; Buades
et al. 2009; Joshi and Cohen 2010], videos [Bennett and McMillan
2005; Liu and Freeman 2010; Dabov et al. 2007a; Chen and Tang
2007], multiple-view images [Zhang et al. 2009], and volumetric
MRI data [Maggioni et al. 2013].

Estimating camera motion. Optical flow [Brox et al. 2004] is the
most general representation for establishing correspondences be-
tween frames. Recent work [Liu and Freeman 2010] showed its
importance in video denoising. But optical flow itself has difficul-
ties with occlusion/large displacement, and is fragile to noise. Patch
matching is more robust to noise and has been widely used in mul-
tiple image processing [Tico 2008; Buades et al. 2009; Zhang et al.
2009; Maggioni et al. 2013; Sen et al. 2012; Kalantari et al. 2013].
However, in the presence of strong noise, both nonparametric meth-
ods degrade rapidly. Camera motion in burst mode is similar to the
motion studied in video stabilization. Recent work [Grundmann
et al. 2012; Liu et al. 2013] demonstrated the success of using a
spatially-variant homography for the camera motion. In this work,
we use a similar but more lightweight parametric motion represen-
tation - homography flow.
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Figure 3: (a) Pyramid homography graph. (b) homographies (at
the finest level) are discretized to obtain a per-pixel homography
Sflow field.

Handling scene motion. Since optical flow or patch matching is an
intrinsically hard problem, recent work [Gallo et al. 2009; Granados
et al. 2013] in HDR reconstruction bypasses the motion estimation
by finding a consistent subset of colors for every pixel to recon-
struct a ghost-free image. Granados et al. [2013]’s consistency test
relies on accurate estimation of the noise distribution, which may
require complex calibration and super-pixels computation. We were
inspired by this idea and extend it for image denoising.

Multiscale denoising is an effective way to exploit cross-scale sim-
ilarity for noise reduction. Recently, Zontak et al. [2013] proposed
a directional pyramid technique to find corresponding patches
across scales, which produces state-of-the-art results. Zhang and
Gunturk [2008] extended the bilateral filter in a multiscale frame-
work. We use a pyramid-based pixel fusion method to improve the
result quality.

3 Algorithm

Figure 2 is our algorithm pipeline. We first build Gaussian pyra-
mids! of all noisy images and set the midmost frame as the refer-
ence frame by default. Then, we estimate homography flow (in Sec-
tion 3.1) to represent the motion (by camera) between the reference
frame and any of the other frames. Across the aligned images (by
homography flow), at every pixel location, we select a set of con-
sistent pixels to handle scene motions (in Section 3.2) or possible
small misalignment caused by the homography flow. Finally, we
apply a pixel fusion (in Section 3.3) to aggregate consistent pixels
at all scales for producing the final result.

3.1 Homography Flow (for Camera Motion)

Pyramid homography graph. We represent the motion between
two frames through a pyramid homography graph, as shown in Fig-
ure 3 (a). The coarse level node provides robustness while the
fine level node helps produce details. Note that independently es-
timating the homography at each node is unreliable because some
nodes may have insufficient matched features. Next, we introduce
a coarse-to-fine optimization to robustly obtain accurate results.

IThe long side of image at the coarsest scale is no more than 400 pixels.
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Figure 4: Comparisons of registration errors and time cost for
various motion models. (a) sample images. (b) registration er-
rors measured in PSNR, which is computed on registered clean im-
ages, but the motion is estimated from the noisy images. (c) run-
ning time (sec.) of different methods. We use the randomized patch
match [Barnes et al. 2009] source code for acceleration, but it is
still 1 ~ 2 orders slower than homography flow.

Optimization. We perform a level-by-level optimization starting
from a global homography at the coarsest level (I = 0). Let H, ! be
the homography of node ¢ at level [, and { H Jl} be its 4 neighboring
homographies at the same level. We estimate { H!} by minimizing
the following energy function:

)
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where X (by default, A = 0.1) controls the amount of spatial regu-
larization enforced by the second smoothness term.
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In the first data term, R} = best(H =1 F}) is selected from two
candidates: one is its parent homography H Zl ~1 at the level [ — 1,
the other is its own estimated homography F! (using all matched
features within the grid of node ). The basic idea is to use H. -l
as backup when we cannot reliably compute F'. In our implemen-
tation, we pick H f_l if the feature number in the grid of ¢ is insuf-
ficient (< 8) or the rigidness [Hartley and Zisserman 2003] of F!

is too weak?; otherwise, we choose the best model which has lower
matching errors of all features within the grid.

Because the objective function (1) is quadratic, we can obtain the
global optimum by a Jacobi solver [Bronshtein and Semendyayev
1997]. The form of our motion model is similar to a mesh-based
homography [Liu et al. 2013]. But our coarse-to-fine optimization
is more efficient. For 500 features, our method takes 5 ms per frame
while the mesh-based homography requires 50 ms per frame.

Homography flow. Since the pyramid homography graph is a para-
metric representation, we require an image warping or coordinate
transformation in the later denoising step. But such operations for
all pixels (in all frames, at all scales) are very expensive. To address
this critical issue in our application, we discretized the homography

2Shear of homography > 1.25 or modulus of perspective > 0.1. These
parameters are empirically set and fixed in all experiments.

graph (the finest level only) to obtain per-pixel translation vector -
homography flow.

As shown in Figure 3 (b), we compute the translation vector by
mapping each pixel from one frame to another frame according to
the homography graph. Finally, the estimated homography flows
are scaled accordingly and rounded off for use at other scales.

Algorithm validation. We evaluate global homography, optical
flow, patch match, and our homography flow on a set of burst im-
ages. We asked four different subjects to capture 20 sets of clean
burst images (with low ISO, under good lighting conditions). Then
we added Gaussian noise with different standard deviations (from
20 to 60) to synthesize 100 sets of noisy burst images. To reg-
ister these noisy images, we compare six algorithms: global ho-
mography, optical flow [Liu 2009], global homography + optical
flow, patch match (exhaustive search), global homography + patch
match, and our homography flow. We compute the PSNR to mea-
sure the difference between registered clean image pairs. Figure 4
(b) shows the results.

From the results, we can observe that two optical flow based meth-
ods perform well when noise level is small (¢ = 20). But when the
noise level increases, they degrade more quickly than others; global
homography can improve patch match but not optical flow. We be-
lieve the reason is that the coarse-to-fine mechanism in the optical
flow has already handled the global motion. Our homography flow
is consistently the best at all noise levels.

Figure 4 (c) further shows the running time of these methods on
various image sizes. Since global homography and our homogra-
phy flow only rely on sparse feature detection and matching, they
both outperform patch match (exhausive search or even randomized
search [Barnes et al. 2009]) and optical flow [Liu 2009] in speed.
There is only a small margin between the two running time curves
(of global homography and our homography flow), which indicates
that our pyramid optimization is very efficient.

Efficient implementation. The bottleneck in this step is sparse
features extraction and matching. In our implementation, we work
on the coarse scale (s = 1) in the pyramids of luminance channel
for efficiency and robustness (to noise). Compared with original-
scale implementation, the time cost is greatly reduced (by a fac-
tor of 6, on average) and the PSNR (for measuring registration er-
ror) is improved by 0.005dB to 0.045dB for various noise sigma
(from 20 to 60). Specially, we use the Harris corner detection [Har-
ris and Stephens 1988] and 128-bit BRIEF descriptor [Calonder
et al. 2010], which can achieve real-time performance even on a
mobile phone. We reject incorrectly matched features using local
RANSAC [Grundmann et al. 2012].

In addition, we estimate homography flow in each non-overlapped
block (8 x 8 pixels) instead of per pixel. All pixels in each block
share the same translation vector, which is computed by mapping
the block center between two frames. The approximation only
slightly scarifies the quality (by nearly 0.01dB in PSNR), but ac-
celerates pixels mapping by 2.5 times.

3.2 Consistent Pixels Selection (for Scene Motions)

Consistent pixels. To handle scene motion, we borrow a simple
idea from HDR deghosting [Granados et al. 2013] to avoid complex
motion tracking. At every pixel location (on a reference frame), we
identify a set of consistent pixels on a 1D profile (traced by the
estimated homography flow) across all images for temporal pixel
fusion. Different from HDR deghosting, the purpose of selecting
consistent pixels is not only avoiding ghost artifacts (caused by dy-
namic motion and small frame misalignment), but also finding as
many consistent pixels as possible for denoising.
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Figure 5: Consistent pixels selection for rapid motions (e.g., cars,
on top) and small motions (e.g., head and hand, on bottom). (a)
two of the input frames. (b) map recording the selected frame in-
dices (blue cells) for each pixel. (c) temporal fusion result by only
reference-based pixels selection. (d) temporal fusion result by only
median-based pixels selection. (e) temporal + multiscale fusion re-
sult from a combined strategy.

There are two methods which separately satisfy one of two goals.
One is reference-based: we bi-directionally trace the profile from
the pixel at the reference frame and collect consistent pixels until
the accumulated pixel difference exceeds a threshold 7. The other
is median-based: we collect pixels consistent to the median (below
the same threshold 7) of all pixels on the profile. The reference
method can guarantee a ghost-free result. But for a pixel on a dy-
namic object, we may get insufficient samples for denoising (shown
on Figure 5 (¢)). The median method collects more consistent pix-
els but might lead to ghosting because the median may happen to
be a color on the moving object (shown on Figure 5 (d)).

Combined strategy. We propose a simple combination strategy
of both methods: for each pixel (on the reference frame), we com-
pute two sets of consistent pixels { M, R} separately by the median
and the reference methods. M (or R) records the frame indices of
consistent pixels for every pixel. If the reference frame belongs to
M, we take the union of M and R as the final result because both
methods agree. Otherwise, we choose the median result if it is re-
liable (i.e., the size of M is more than half of the frame number),
and choose the reference result if it is unreliable. To further reduce
the chance of ghosting (by enforcing spatial coherence), we do not
measure reliability pixel by pixel. Instead, we find all connected-
components of undecided pixels (where the reference frame does
not belong to M), and then determine the reliability of each con-
nected component as a whole, by majority voting.

After the combination, we obtain the sets of consistent pixels for
all pixels. To further make the combination seamless, we run a
3 x 3 morphological (majority) filter [Gonzalez and Woods 2007]
on the stack of the indices of consistent pixels, frame-by-frame.
Figure 5 (a-b) shows two real examples and the maps which record
the number of consistent pixels at every pixel location.

Efficient implementation. The consistent pixels are also selected
at the coarse scale (i.e., s = 1) in the pyramids for the purpose of
enabling fast computation and detecting motion at a relatively clean
scale. The approximation could achieve 98.7% outlier detection
rate as operating at the original scale at the expense of half the time.

Other scales just reuse the indices of computed consistent pixels
by upsampling or downsampling. In both median and reference
based methods, we use patch (5 x 5) difference instead of single
pixel difference and use the threshold * 7 = 10. We use integral
image [Viola and Jones 2001] to compute patch differences more
efficiently.

3.3 Pixels Fusion

Given consistent pixels for each pixel at all scales, we fuse all of
them in a temporal and multi-scale fusion. We keep our fusion as
simple as possible, while being able to significantly denoise.

Temporal fusion. Suppose {x:} are consistent pixels at a pixel
location (at a certain scale), where x; is pixel color from the ¢-
th frame. We compute the fusion result £ by a linear minimum
mean squared error (LMMSE) estimator, which is widely used in
previous work (e.g., [Zhang and Wu 2005]) for optimal unbiased
denoising:
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where w is the mean of all consistent pixels {x; }. The variance o>
of true pixels is approximated by max(0, o7 — 02). o; and o are
the standard deviation of {x:} and noise.

The LMMSE estimator can help us adaptively handle outliers.
Some severely misaligned pixels occurring at discontinuities of
depths (our homography flow is more suitable for spatially smooth
depth variations) or subtle residual moving pixels at a fine scale (our
scene motion detection is performed at a coarse scale) wold make
the variance of {z;} much larger than the noise variance. Thus,
our fusion result would be £ — x; (no denoising). Otherwise, the
result Z has a value close to the mean u of {z}.

The temporal fusion runs independently at every scale. Next, we
describe how to aggregate results in all scales.

Multi-scale fusion. We aggregate the results from top to bottom,
in a point-wise manner. Let z* and 2°~* be temporal fusion results
at two adjacent scales s and s — 1. We update the result z° by:

F=wxz +(1-w) x (@), 3)

where 7 is a bilinear upscale operator. w =
fusion weight.

m/N is an adaptive

N is the total frame number and m is the number of inliers (x; is
an inlier when |z; — | < 3o, where o is the standard devia-
tion of {z:}) identified by the temporal fusion. A larger w means
we have more consistent pixels at the current scale and we should
trust current estimation more; otherwise, we should borrow more
from the parent scale. Furthermore, the multi-scale processing is
effective for handling non-gaussian types of noise (e.g., splotches
[Chatterjee et al. 2011]) in the real imaging pipeline.

The above fusion does not exploit spatial information which plays
a central role in single image denoising algorithms [Zontak et al.
2013]. Here, we replace the temporal fusion result z° in Equation
(3) with a very fast filtering in the spatial domain:

z’ = Ptex X f(l’g) + (1 _ptex) X (xs_l) T 4

where the filtering operator f(z°) is a directional spatial pixel fu-
sion. We find all spatially consistent pixels along the most probable

3Since we detect motion at a coarser and relatively clean scale, we can
use a constant threshold instead of an adaptive threshold, which may require
complex noise modeling. We find that it works well in our experiments.



edge direction within a 5 X 5 window. Then a LMMSE estimator
described in Equation (2) is used on these pixels. For efficiency, we
only apply the spatial fusion on texture pixels (pse. > 0.01).

The textureness probability pie. is computed by a sigmoid func-
tion 1/(1 + exp (=5 X (g/o — 3))), in which g is the maximum
absolute difference between the pixel and its 4 neighbors, and o is
the estimated standard deviation of noise. For efficiency, we esti-
mate o by computing the standard deviation of pixels differences
between the median image and the reference image within the flat
(non-textured) areas. On these areas, the median image (generated
in the coarse scale) is a good approximation to a clean version of
the reference image. For real noise, we use an approach similar
to [Liu et al. 2008] to divide the illuminance into 10 discrete bins
and estimate the corresponding o for each bin.

Extension to patch. The idea of combining temporal and multi-
scale fusion can also be extended to the patch level for better de-
noising quality. Different from point-wise fusion, the LMMSE es-
timator for patches is applied in the frequency domain, which is
similar to the Wiener filter used in the transform domain [Dabov
et al. 2007b]. In addition, the patch-based LMMSE estimator pro-
vides overlapping estimates for every pixel, which need patch ag-
gregation (along the temporal axis or spatial edge direction) to get
the final fusion result.

Algorithm validation. We perform a quantitative evaluation on a
synthetic data set. The ground-truth clean images come from 68
images of BSD300 [Martin et al. 2001]. To simulate the camera
motion, we reuse the estimated global homographies from the real
data (Figure 4) and randomly apply them on one of the clean images
to generate a burst of images (10 frames). Then, we add Gaussian
noise with various noise levels (¢ = 20 ~ 60). Note that our
synthetic data set ignores many key factors in real data: parallax,
non-Gaussian noise, and non-rigid object motion. Ignoring these
key factors may lead to incomplete conclusions. However, we still
provide a preliminary evaluation here for reference and to help us
gain a better understanding.

Figure 6(a) shows the average PSNRs of: average (baseline),
optical flow + median filtering, VBM3D [Dabov et al. 2007a],
BM4D [Maggioni et al. 2013], our method (with pixel fusion), and
our method (with patch fusion). We applied the same global ho-
mography to all methods for better results.

Overall, our method (with pixel fusion) performs comparably to
VBM3D and BM4D (two state-of-the-art denoising methods) and
better than averaging and optical flow at all noise levels. When
the noise level increases, our method performs slightly worse than
BM4D, but VBM3D drops more quickly than ours. This evaluation
partially demonstrates the true power of our method in the presence
of real camera motion and registration error. Keep in mind that
our method is 2-3 orders of magnitude faster than VBM3D, opti-
cal flow, and BM4D. Figure 6(b) shows the running time of these
methods on different image sizes.

In addition, we can achieve the best results by extending our fu-
sion to the patch level. Compared with two patch-based methods
(VBM3D and BM4D), our patch-based fusion is still efficient (1-2
orders of magnitude faster). Figure 7 also demonstrates that patches
perform better in both temporal and multi-scale fusion than pix-
els. The conclusion is consistent to previous work since patches
can usually use more spatially correlated information than pixels.
More interestingly, multiscale fusion as complementary to tempo-
ral pixel fusion plays an important role in our pixel-based method.
It helps greatly reduce the gap between our pixel-based method and
our patch-based method.
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Figure 6: PSNR of different methods on the synthetic data. For
VBM3D [Dabov et al. 2007a] and BM4D [Maggioni et al. 2013],
we apply a pre-warp using the same estimated global homography
for better results.
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Figure 7: PSNR comparison of our different fusions.

4 Experiments

We acquired 20 sets of burst images on various content with 5 cam-
eras, including 3 mobile phones, 1 DSLR camera, and 1 compact
camera. Each burst contains 10 shots. All our results are gener-
ated with a set of fixed parameters and by pixel-based fusion. All
original sequences and more results are provided on our webpage*.

4.1 Comparisons

We compare our method with three point-wise methods (spatial-
temporal filtering [Bennett and McMillan 2005], lucky imag-
ing [Joshi and Cohen 2010], and optical flow [Liu 2009] + tempo-
rally median filtering), and two state-of-the-art patch-based meth-
ods (VBM3D [Dabov et al. 2007a] and BM4D [Maggioni et al.
2013]). The former two are based our own implementations, and
optical flow and the latter two are from the authors. For all methods,
we apply the same global homography estimated by our method to
help them to obtain more reliable correspondences. Since some al-
gorithms require a known noise variance, we try all possible noise
levels and choose the result with the best visual quality through a
balanced tradeoff between detail recovery and noise reduction.

Static scene. The example in Figure 8 was captured by a HTC 802d
Android phone. The motion is mainly caused by camera movement.
The challenges in this case are on how to remove strong noise in the
sky and recover building structures. As we can see, spatial-temporal
filtering, VBM3D, and BM4D still leave certain noises in flat re-
gions (e.g., sky area). The building structures (in Figure 8(b)(f))
are not well restored by VBM3D and BM4D. This is because, in
the presence of structure noise, either the spatial-temporal bilateral

“http://personal.ie.cuhk.edu.hk/~1z013/projects/BurstDenoising.html
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Figure 9: Portrait with small motion. (a) input images. (b) spatial-temporal filtering [Bennett and McMillan 2005] (c) lucky imaging [Joshi
and Cohen 2010] (d) optical flow [Liu 2009] + median, (¢) VBM3D [Dabov et al. 2007a], (f) BM4D [Maggioni et al. 2013], (g) our result.

filter or patch matching has the risk to find mismatched correspon-
dences which will eventually lead to undesired results. Overall, the
results by optical flow, lucky imaging, and ours are comparable,
with our result being slightly cleaner.

Portrait with small motion. This is a typical scenario for tak-
ing a portrait photo in dark lighting. The example in Figure 9 was
recorded by a JVC GC-PX10 camera. Spatial-temporal filtering,
lucky imaging, and the optical flow method produced “staircase”
artifacts around the eyes (Figure 9 (b)(c)(d)). This is because of
small non-rigid motion of the subject. VBM3D and BM4D do not
have this issue but blurred fine details on scarves (Figure 9 (e)(f)).
Our result achieves the best on both kinds of regions.

Complex scene motion. Figure 10 and Figure 11 show two cases
of complex dynamic scenes. The first example was captured by
a Cannon EOS 500D with ISO 6400. Its noise level is relatively
low. The later example was obtained by a Nokia Lumia920. As
we can see from both examples, lucky imaging and optical flow
(+ median filtering) based results contain noticeable ghosting while
the VBM3D results are over-smoothed. BM4D is better than the
former two methods but still leaves a certain amount of chromi-
nance noise patterns on the background. In our solution, we can
automatically choose pixel colors consistent to the reference frame
on the dynamic regions and collect more consistent pixels on the
static regions (e.g., cloth and door). As a result, our result strikes
the best balance among removing noise, reconstructing fine details,
and avoiding ghosting.

4.2 More Results

Handling motion blur. During the capture, some individual frames
(e.g., 10% ~ 30% of the total frames) may be blurry due to sudden
camera shake or object motion. Figure 12 shows such an example
captured with an iPhone 5S. We examined what would happen if a
blurry frame were selected as the reference frame. To know this,
we separately select frame 4 (sharp) and frame 5 (blurry) as the ref-
erence frame and generate two results. Figure 12 (b) and (d) show
that our method is insensitive to the selection. This is because our
method is capable of finding consistent pixels from the the majority
of frames. A similar method was proposed in video deblurring [Cho
et al. 2012], which found similar patches from sharp frames for de-
blurring.

Handling extreme low light. Figure 13 is a sequence captured
by an iPhone 4S under an extreme low-light condition. Since the
inputs are extremely dark, we preprocess the inputs by boosting
the brightness (applying a shadow/highlight adjustment). While the
noise after the boosting is very strong, our method still managed to
produce a clean image with fine details (thin wires in the air and
steel tower on the left).

Handling large occlusions. Figure 14 shows a sequence with a
large, fast moving foreground (person). The consistent pixel map in
the figure reveals how the mechanisms in our algorithm can reliably
deal with (fast) large occlusion.
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Figure 11: Complex scene motion II.

4.3 Time complexity.

‘We run our method on an Intel i5 3.2GHZ machine with 16G RAM.
Our unoptimized C++ implementation (single core, no SSE SIMD
acceleration) takes 920 ms on average to process 10 frames of SM-
pixel image. Specifically, our method takes 82ms, 177ms, 51ms,
30ms, 253ms, 328ms to build pyramid, extract and match sparse
features, estimate homography flow, select consistent pixels, run
temporal fusion, and execute multi-scale fusion. Our prototype on
a smartphone (Nokia Lumia 920) costs about 4.7 seconds on av-
erage, without using multi-core or NEON instructions or GPU ac-
celeration. As our solution is mainly based on point-wise opera-
tions, we expect it can be significantly accelerated. Table 1 further
demonstrates the processing time of different methods on the same
machine for Figure 8, 9, 10, and 11.

5 Concluding Remarks

In an image burst, we expect camera motion from hand shake and
small/moderate motion of the main subject(s). Our method is not
designed for handling dramatic motion (e.g., in sports), or denois-

[ | Figure8 | Figure9 [ Figure10 | Figure 11 |
[ Size | 1520 x 2688 | 1600 x 1200 | 2352 x 1568 | 1280 x 720 |
(© 337.85 139.88 304.75 81.54
(d 74.06 40.27 64.94 28.46
(e 577.39 298.73 538.02 126.63
() 214.83 123.42 198.36 53.92
() 1867.27 1019.31 1576.49 517.83
(h) 0.80 0.48 0.77 0.23

Table 1: Processing times (sec.) of different denoising methods.
(c) spatial-temporal filtering, (d) lucky imaging, (e) optical flow +
median filtering, (f) VBM3D, (g) BM4D and (h) our method.

ing a general video. When the motion between two frames cannot
be well represented by our homography flow, such as scene tran-
sition or fast camera panning, or even non-rigid deformation (e.g.,
water wave motion, flag waving), our approach will break.

Besides, there are two cases in which our consistent pixels selection
may fail. The first case is when motion blur caused by dynamic ob-
jects appears on a majority of frames (more than half of all frames).
On the dynamic regions, our pixel selection would automatically



(d) our result (use frame 5) close-up views

(c) frame 5 (reference)

Figure 12: A sequence with motion blurs in individual frames. We
respectively use the 4th frame (sharp) or the 5th frame (blurred) as
the reference frame. Our solution produces similar results for both.

(@ (b)

Figure 13: A sequence captured under an extreme low light condi-
tion. (a) input image sequence. (b) reference frame after brightness
amplification. (c) our result.

choose the reference-based strategy. If the reference frame con-
tains blur, our result would retain the blur effect. But if a sharp
frame is chosen as the reference, the issue can be avoided. Figure
15 (a) shows such an example. Therefore, we need a better strat-
egy for selecting the reference frame. Besides, fast moving objects
would be automatically removed by the median-based strategy for
aggressive denoising. To avoid this issue, we may provide another
option that allows users to choose the reference frame and constrain
the reference region for pixels selection.

The second case is when different moving objects and the back-
ground may have similar colors in the same pixel locations. Our
pixels selection algorithm relies on per-pixel color difference,
which is too weak to distinguish such objects. Figure 15 (b) shows
an example. Different moving persons have very similar color re-
gions and such ambiguous regions (indicated by highlight box) oc-
cur in a majority of frames (i.e., more than half of all frames). Fi-
nally, it will lead to ghosting because our selection wrongly regard
it as the background. This issue also appears in ghost-free HDR
reconstruction [Granados et al. 2013], which requires interactions
to exclude these ambiguous regions.

Despite the above issues, we believe that our highly efficient so-
lution is practical enough to be deployed for improving the photo
experience of users in a broad range of lighting conditions.
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Figure 14: A sequence with large occlusions (moving person). Top:
inputs. Bottom: the left map shows the number of selected consis-
tent pixels, and the right image is our result.

our re:
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Figure 15: Two failure cases. (a) motion blurs on dynamic ob-
Jects (on a majority of frames). (b) ambiguous regions (with similar
colors) from different moving objects.
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