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Abstract 
Multibody structure f rom motion could be solved 

by the factorization approach. However, the noise 
measurements would make the segmentation daficult 
when analyzing the shape interaction matrix. This  
paper presents an orthogonal subspace decomposition 
and grouping technique t o  approach such a problem. 
W e  decompose the object shape spaces into signal sub- 
spaces and noise subspaces. W e  show that the signal 
subspaces of the object shape spaces are orthogonal t o  
each other. Instead of using the shape interaction ma- 
trix contaminated by noise, we introduce the shape sig- 
nal subspace distance matrix for shape space grouping. 
Outliers could be easily identified by this approach. The 
robustness of the proposed approach lies in the fact that 
the shape space decomposition alleviates the influence 
of noise, and has been verzfied with extensive experi- 
ments.  

1 Introduction 
Most realistic vision tasks involve multibody mo- 

tions. A simple scenario of tracking a car with a mov- 
ing camera already involves two moving objects (ig- 
noring the wheels). Multibody tracking and segmen- 
tation are essential for many applications including 
structure from motion, human-computer interaction, 
surveillance, and video coding. In this paper, we only 
consider the problem of segmentation, assuming track- 
ing is done, e.g., with the KLT feature tracker [9]. We 
allow outliers in the matches, though. 

Among many techniques proposed in the literature, 
factorization is particularly interesting for three rea- 
sons: no knowledge of the number of objects is re- 
quired; no initial segmentation is necessary; and a mea- 
surement matrix is globally factorized into two matrices 
(one for motion, and the other for structure), achiev- 
ing higher robustness to data noise. Factorization was 
originally developed by Tomasi and Kanade for struc- 
ture from motion of a single object under orthographic 
projection [ll], and was later extended to paraperspec- 

tive or affine cameras in [8]. A sequential version was 
proposed in [7]. Attempts were made to  generalize the 
technique for full perspective [lo], but due to  the inher- 
ent nonlinearity of camera projection, some preprocess- 
ing (especially depth estimation) is necessary, which 
leads to a sub-optimal solution. 

Costeira and Kanade proposed a first algorithm 
for multibody segmentation based on factorization [2]. 
Similar approaches were later developed for linearly 
moving objects [4] and for deformable objects [l]. In 
this paper, we only consider Costeira and Kanade’s 
original problem: Given p feature points tracked over 
T frames with an affine camera, determine the num- 
ber of moving objects in the scene, their motions and 
their structures. This is a formidable problem because 
of the inherent combinatorial property and data noise. 
Costeira and Kanade [2] based their segmentation al- 
gorithm on a so-called shape interaction matrix Q (see 
below). If two features belong to  two different objects, 
their corresponding element in Q should be zero; other- 
wise, the value should be non-zero. They then grouped 
features into objects by thresholding and sorting Q. 
Gear [3] formulated the problem as graph matching by 
placing appropriate weights on the graph edges, which 
are difficult to determine. Unfortunately, the perfor- 
mance of both techniques degrades quickly when data 
points are corrupted with noise; the reason is that the 
relationship between data noise and the coefficients of 
Q (or weights of the graph edges) is very complicated, 
making it hard to determine an appropriate thresh- 
old. Ichimura [5 )  proposed an improved algorithm by 
applying a discriminant criterion for thresholding, but 
the discriminant analysis is still performed on the el- 
ements of Q, resulting in a similar degradation with 
noise. To avoid this problem, Kanatani [6] proposed to 
work in the original data space by incorporating such 
techniques as dimension correction (fitting a subspace 
to a group of points and replacing them with their pro- 
jections onto the fitted subspace) and model selection 
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(using a geometric information criterion to determine 
whether two subspaces can be merged). 

In this paper, we propose a new grouping technique 
based on orthogonal subspace decomposition. After 
performing a singular value decomposition (SVD) of 
the measurement matrix, we decompose the object 
shape spaces into signal subspaces and noise subspaces. 
We show the signal subspaces of the object shape 
spaces are orthogonal to each other. Instead of using 
the shape interaction matrix contaminated by noise, we 
introduce the shape signal subspace distance matrix (or 
subspace distance matrix for short), D, for shape space 
grouping, based on a distance measure defined over the 
subspaces. The values of most entries of D are around 
0 or 1, making the grouping procedure much easier. 
Outliers are easily identifiable because their distances 
to all object subspaces are comparable. The robustness 
of the proposed approach lies in the fact that the shape 
space decomposition alleviates the influence of noise. 
This has been verified with extensive experiments. 

Section 2 reviews the factorization method. Sec- 
tion 3 describes our orthogonal subspace approach. 
Section 4 provides experimental results with both sim- 
ulated and real data. 

2 The Factorization Method 
Suppose there are n independently moving objects 

in a scene, and the structure of each object is repre 
sented by a set of pk 3D points, i.e., 

So, the 3D structure of the whole scene could be r e p  
resented by 

s= [ s1 ... s n ]  (2) 

where the off-block-diagonal elements are equal to zero. 
When we assume affine projection (orthographic, weak 
perspective or paraperspective), the projection of the 
scene on the image plane is: 

where Mk ( k  = 1,. . . , n) is the projection matrix re- 
lated to object k, t is the camera translation, and 
p = & p k .  t could be eliminated by subtracting 
the mean of the 2D projections. When considering T 

frames, we have: 

W =  

And we can also write: 

(4) 

] (5) 
s n  

For each rigid object, its structure and motion could be 
solved by the factorization method [ll] based on SVD 
decomposition, i.e., 

And its motion M and structure 9 could be factorized 
by: 

where A is an invertible matrix and can be solved using 
the fact that M must have certain properties. There- 
fore, we could write: 

w = [U1 . . . Un] [ ... [ K T  ... , ]  
Let 

v = [ "  ... vn] 

For multibody structure from motion problem, the 
identities of the set of feature points are unavailable, 
except the correspondences are given. Therefore, V 
would not be a block diagonal matrix, instead, struc- 
ture vectors of different objects would be mixed up. In 
order to solve the structure and motion, we have to re- 
veal the identities of each feature points, i.e., solve the 
multibody grouping problem. 

Fortunately, it is easy to show that the shape inter- 
action matrix Q, defined by 

Q = W T  (8) 
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is motion invariant [6] .  More interestingly, Q has a 
very nice property: 

Qij = { if point i and j belong to different objects 
if point i and j belong to the same object 

(9) 

where * indicates any possible value. Such a property 
provides a clue for the segmentation of multiple ob- 
jects, i.e., if KT& # 0, the i-th and j-th feature points 
should be grouped together; otherwise, they may be- 
long to different objects. Therefore, the segmentation 
could be achieved by permuting V to  make Q block 
diagonal. This was the basic idea in [2] for multibody 
structure from motion. It could be illustrated in Figure 
1, where (a) displays the original Q, while (b) displays 
the Q after permutation. 

Figure 1: The shape interaction matrix Q before and after per- 
mutation 

It is noticed that the nice property of the shape in- 
teraction matrix Q is valid only for the ideal case where 
there are no noise and outliers. Unfortunately, in prac- 
tice, the extraction and tracking of feature points would 
incur some inaccuracy, thus the measurement noise is 
unavoidable. Thus, even if two feature points belong 
to different objects, Qii may not be equal to  zero. This 
will be illustrated in Figure 3. 

3 Orthogonal Subspace Approach 
This section describes our approach to this prob- 

lem based on orthogonal subspace decomposition and 
grouping methods. 
3.1 Orthogonal Subspace Decomposition 

Any vector x in a Hilbert space Rn could be repre- 
sented by a summation of two projection vectors from 
two subspaces M and M I ,  i.e., x = PMX + (I - PM)z, 
where PM is the projection matrix of the subspace 
M and I - PM is that of the subspace M I .  At the 
same time, if a Hilbert space is spanned by a set of 
m linearly independent vectors X = [ X I  . . . ~ m ] ,  i.e., 
M = span(x1,  ... , x m } ,  then the projection matrix 
onto the space M will be given by: 

PM = X(X, X)--lXT (10) 

where (XI,  X2) defines the inner product of XI and 
X2 in the Hilbert space, and the projection is given by 

PMX = X(X,X)-'XTz,Vz E R". Usually, we could 
write PM = X(XTx)-lXT.  Obviously, if 2 k ' S  are 
orthogonal to  each other, PM will be given by PM = 
XXT. It is also very easy to  show some properties of 
PM,  such as PMPM = PM,  P z  = PM, Ph = I - PM 
and PA PM = 0.  

It is easy to  verify that the projection matrix PM is 
unique for any linearly independent vector set which 
spans M ,  since PM = XA(ATXTXA)-lATX = 
X(XTX)-IXT. Therefore, we can use the projec- 
tion matrix PM to  characterize the space M .  In this 
sense, we could define the distance between two sub- 
spaces. Suppose S1 and Sz are two subspaces of Rn, 
and dim(S1) = dirn(S2), then the distance between SI 
and S 2  could be defined by: 

where PI and P2 are two projection matrix onto S1 and 
Sa, respectively. 
3.2 Signal Subspace vs. Noise Subspace 

Given a set of vectors x = [ X I  . . . x, ] ,  where X k  E 
R", we could decompose X by SVD, i.e., X = UCVT,  
where C = diag(u1,. . . ,u+,u ,+l , . .  . , u,), and 01 2 
u2 2 . . . 2  urn. 

When the data are clear and the actual rank of X 
is T ,  then we should observe aj = 0,j 2 T + 1. On 
the other hand, if xk was contaminated by noise, there 
would be many small singular values, but u, >> u++1. 
In this case, {ul, . . . , a,} belong to the signal subspace 
S,, and {ur+1,.. . , urn} belong to the noise subspace 
S,,. The singular values suggest a way to  decompose 
the data space into signal subspace and noise subspace. 
Thus, 

x = x, + x, = V,C,V~ + v,c,v; (12) 

And the projection matrix P, Onto,the, signa! subspace 
S, would be given by P, = X,(X:X,)-'XT, where 
X ,  is a set of independent vectors from X,. Similarly, 
the projection matrix P, onto, the noiseA subspace Sn 
could be written as P, = X,(X:Xn)-'X,'. It is easy 
to  show that S, and S, are orthogonal to  each other 
(S, I S,), and P, + P, = I, 
3.3 Our Multibody Grouping Approach 

Let us first assume that we have grouped fea- 
ture points of different objects, we could write W = 
UCVT by SVD, where V = [V(l) . . . V(n)] and V(i)  = 
[U:) ...&I]. S(i) = span{v:) ,... ,@} defines the 
shape space for object i. 

Theorem I If no noise is present, we have S(%) I 
S(j),Vi # j. It means that the shape spaces of each 
object spanned by V(i) are orthogonal to  each other. 

11-254 

Authorized licensed use limited to: MICROSOFT. Downloaded on May 28,2010 at 00:46:50 UTC from IEEE Xplore.  Restrictions apply. 



This theorem is easy to show. Vug) E V(i) and 
Vu;’ E V(j ) ,  we have v ~ ) ~ v ~ )  = 0 according to 
the nice property of the shape interaction matrix Q 
in equation 9. Thus, suppose we have selected r = 
rank(V(k)) independent vectors q(k) = [Gr) . . . Gik’] 
for the k-th object, we could write the projection ma- 
trix onto the k-th shape space by 

p(k) = V ( k )  ( Q ( k ) T Q ( k )  1- lQ(k)T 

So, we easily have P(i)P(j) = 0 ,  and 

Theorem I1 If measurements contain noise, the sig- 
nal subspaces of each shape space are still orthogonal 
to each other, i.e., S,’o I S?),Vi # j, where the signal 
subspace S?) is separated by SVD from equation 12. 

Again, when a set of independent vectors is selected 
for each signal subspace, we can describe the projection 
matrix onto the signal subspace of the k-th object by 

p p  = ~ ~ k ) ( q ~ k ) T V ( k ) ) - l V ~ k ) T  

We have P,(i)Ps(j) = 0,  and 

II n 

k = l  k= l  

The shape interaction matrix Q could be used for 
grouping the feature points for different objects if the 
measurements are not contaminated by noise. Unfor- 
tunately, noisy data would make use of Q difficult for 
grouping. Noticing such a nice property that the signal 
subspaces of shape space for each object are orthogo- 
nal to each other even under noisy measurements, we 
could make use of the signal subspaces to  alleviate the 
noise influence. Instead of using the shape interaction 
matrix Q, we shall introduce the shape signal subspace 
distance matrix D, which would be cleaner than Q. 

Suppose N groups of feature points have been iden- 
tified. This could be done by analyzing the Q ma- 
trix. We can simply threshold the Q matrix or use 
the discriminant analysis method described in [5]. If 
Q, j  2 tQ,  the i-th and j-th feature point will be put in 
the same group. If the measurements contain no noise 
and Q is very clean, the threshold tQ is easy to set. 
Unfortunately, this is not apparent under noisy data. 
But we could generally set a higher threshold, which 
would result in several group fragments corresponding 
to  the same object. And these group fragments should 
be grouped together later. Meanwhile, there would be 

some feature points that may not be grouped to any 
other group fragments. We will also handle them later. 

Each of such group fragments V ( k )  = [U?) . . .us)] 
would span a space S(k) = s p a n { v ~ ) .  . . uz)}. Since 
the space S@) contains noise, we could identify its sig- 
nal subspace SLk) by the method described before, and 
we could also calculate the projection matrix Pjk) to 
represent the k-th group fragment. So, the shape signal 
subspace distance matrix  is defined by: 

D = {D. .  Y : D . .  ‘3 - - D(P;’),P?)),Vi,j _< N }  (13) 

where Dij = D(Pii), Pi’)) is the distance between the 
signal subspaces of the i-th and j-th group fragments. 
We notice that if Pia) and P?) are orthogonal, then 
Dij = 0; if P?) and characterize the same space, 
then D%j = 1; otherwise, 0 < Dij < 1. Since the sig- 
nal subspace excludes the noise, we would see that the 
D matrix is cleaner than Q. We have observed such 
a property of the D matrix in our extensive experi- 
ments. The values of most entries of D are around 1 
or 0. Consequently, further grouping of the fragments 
based on D would be performed easily. We simply set 
a threshold for D. Our approach tolerate a large vari- 
ation in the value of this threshold because it is more 
discriminating in D for different group fragments. The 
procedure is simple: if Dij I to, then we merge the 
i-th and j-th group fragments together. 

After these fragments are grouped together into ob- 
ject groups, we calculate and update the signal sub- 
space and its projection matrix Pik) for each object. 
Outliers could be simply identified if the orthogonal 
projections of such feature point onto all the object 
spaces are nearly equal or comparable, because such 
feature point could not be confidently classified into 
any of the object spaces. 

The outline of the proposed multibody segmentation 
method is summarized below: 

1. Decompose measurement matrix W by SVD and get 

2. Calculate the shape interaction matrix Q = VVT;  

3. Group v j  into group fragments Fk(l 5 IC 5 Pf) based 

4. Calculate signal subspace projection matrices 

5. Calculate signal subspace distance matrix D = {dij : 

6. Group Fk into objects Oi(1 5 a 5 P) based on D; 
7. Calculate signal subspace of each object 0, and iden- 

tify outliers, classify all feature points and update dl 
signal subspaces; 

v =  { V j  : 15j 5 m,vj  E R r } ;  

on Q; 

Pik’(l <_ k 5 Pf) for each F k ;  

d . .  - D(P:), ps’j)}; 
ZJ - 
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8. Calculate motion and structure for each object oi 

We shall ask the intuition why the grouping based 
on D is more robust than that based on Q. The basic 
difference between D and Q is that Q is point-level in- 
teraction, while D is grouplevel interaction. Based on 
Q, a single outlier could even fool the grouping because 
such grouping is based only on point similarities and 
the relationship between data noise and the coefficients 
of Q is very complicated. Matrix D, however, intro- 
duces more robustness because the grouping depends 
on a number of feature points, instead of one. F’urther- 
more, since signal subspaces are used, the entries of 
D are more or less around 0 or 1, which considerably 
facilitates the grouping decision. 

4 Experiments 

both simulated and real data. 
4.1 Simulation 

We have performed some simulations and quantita- 
tive analysis on a synthetic scene. The scene consists 
of two sets of 3D points. One set of 60 points describes 
a 3D cube, and the other set of 40 points represents 
the background. We permute the orders of the data 
points, and we know their identities. The image reso- 
lution is 160x120 pixels. Figure 2 shows two views of 
the synthetic scene. These two sets of points undergo 
different and independent motions, and we capture 4 
frames. We introduce noise to  the measurement data 
by adding a zero-mean Gaussian noise to  the coordi- 
nates of the projected points. 

based on segmentation. 

We provide in this section experimental results with 

I I 4  * “ .I ,* .. ,. I 
\ I . . .  ’ .I - .’ 

Figure 2: Two views of a synthetic scene for simulation. The scene 
consists of a set of points representing background, and another set 
of points from a 3D cube. 

Our first simulation set the standard deviation of 
the Gaussian noise to 2 pixels. Figure 3(a) shows the Q 
matrix of the shape space after the factorization. Ob- 
viously, the data points are not clustered. We perform 
a segmentation method based on a linear discriminate 
analysis, which is similar to  the method in [5], then 
permute the order of Q. n o m  Figure 3(b), we can 
see that the data are partially clustered, but not all. 
Figure 3(c)  illustrates the Q matrix after the grouping 
by our proposed method. The two groups represent- 
ing two objects become pretty clear in the permuted 

Q matrix. We can see that many Qij (i and j be- 
long to  different objects) are not zeros. Furthermore, 
we project the data of each object onto its signal sub- 
space. We have verified that the signal subspaces of 
the two objects are indeed orthogonal (Pi1)Pi2) = 0), 
which is illustrated by Figure 3(d). Almost all Qij (i 
and j belong to different objects) are zeros. 

.. a .  

. .  I .  

Figure 3: Experiments. (a) The noisy Q matrix; (b) The permuted 
Q matrix based on Ichimura’s method; (c) The permuted Q matrix 
of our method; (d) The permuted Q matrix of de-noised data. 

The second simulation compares three methods un- 
der noisy measurements. The first one is a simple 
thresholding method for grouping based on Q. The 
second one is the method based on a linear discrimi- 
nant analysis similar to [5]. And the third one is our 
method. The noise level ranges from 0 to  5 pixels with 
interval of 0.1 pixels (50 noise levels in total). We per- 
form 30 runs for each noise level and compute the av- 
erage of the mis-grouping error. The result is shown in 
Figure4. I t  clearly shows that the proposed subspace 
decomposition method performs the best. It is very ro- 
bust to  noise measurements. Only when the noise level. 
goes up to more than 4.5 pixels, our method outputs 
small mis-grouping error. The other two methods arc: 
not at all robust to  noise. 

We have also constructed another synthetic scene 
with 3 independent moving objects, and we have ob- 
served a similar result. 
4.2 Real Video 

We have also applied our algorithm to  some real 
video sequences. The first sequence contains a moving 
hand taken by a moving camera. We detect and track 
20 feature points in 15 frames. The segmentation of 
the hand and the background is shown in Figure 5. 

Another sequence contains two independent moving 
objects. The camera motion is not large. We detect 
and track 26 feature points in 20 frames. A couple 
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Figure 4: Comparison results. We compare the mis-grouping error 
rate against noise levels of three methods. Our method works the 
best. 

Figure 5: Motion segmentation. 20 feature points are detected and 
tracked in 15 frames. Feature points that belong to the background 
and the hand are shown by black ‘$0’’ and red “+”. 

of points were occluded during tracking. The segmen- 
tation of two hands and the background is shown in 
Figure 6. Our algorithm performed very well on these 
two sequences. 

5 Conclusions 
The factorization method proposed by Costeira and 

Kanade provides a flexible way for multibody structure 
from motion and motion segmentation. The segmenta- 
tion is based on the shape interaction matrix Q that in- 
dicates whether two feature points belong to the same 
object or not. However, their method is plagued by 
measurement noise. Measurement noise contributes to  
the distortion of the coefficients of Q in a very compli- 
cated way. It is not robust for grouping in point level. 
In this paper, we have proposed a grouping based on 
the shape signal subspace distance matrix D that de- 
scribes the relations among different groups of feature 
points. The shape signal subspace for a group of points 
is obtained by the subspace decomposition technique. 
We have shown that the signal subspaces for different 
objects are orthogonal to each other. Since signal sub- 
spaces are separated from noise, D is more robust for 
grouping. Extensive experiments have confirmed the 
robustness of our approach. 

Figure 6: The scene contains two moving object and a moving 
background represented by 26 feature points. Background is shown 
by black “o”, and the two moving hands by red “+I’ and blue “x” 
respectively. 

It would be interesting to investigate the incremen- 
tal method for multibody motion analysis. We shall 
also extend our approach to  multiple persons tracking 
and articulated object analysis. 
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