Location-Aware Services in an In-Building Environment

Collaborators:
Victor Bahl, Venkat Padmanabham, Anand Balachandran (UCSD), Yi-Min Wang, and Wilf Russell
The RADAR System

Research Goal

Leverage the *existing infrastructure* of an *indoor* RF wireless LAN to build applications that take advantage of location information.
Related Work in Positioning System

Outdoor (Cellular) Systems
- GPS, DGPS, etc. (QualComm/SnapTrack, ...)
- Time Difference of Arrival (TruePosition System...)
- Angle of Arrival (KSI, ...)

Solutions designed for the outdoors are either ineffective or too costly indoors
Related Work in Indoor Positioning Systems

Infrared-based systems
- AT&T Research’s Active Badge System
 - Accurate due to short range and line-of-sight property
 - Scales poorly, limited by LoS, requires specialized infrastructure

Radio Frequency-based systems
- Cell-level granularity [HKSR97]
- Duress Alarm Location System, PinPoint

Alternative technologies: magnetic, optical, acoustic
- MIT’s Cricket System (MobiCom ‘99, ‘00), AT&T’s Bat
 - Very accurate (cm resolution)
 - Requires dedicated infrastructure
 - Targeted at specialized applications, e.g. head tracking, Orientation etc.

Traditional approach has been based on dedicated technology and infrastructure
The RADAR System

Our Approach

- Leverage *existing* infrastructure
- Use off-the-shelf RF wireless LAN
- Several advantages
 - WLAN deployed primarily to provide data connectivity
 - Software adds value to wireless hardware
 - Better scalability and lower cost than all available solutions
 - Not too hard to install and easy to manage
 - One-time cost for building signal-strength database
 - One-time cost for building the location hierarchy

Three Components

- User Location and Tracking
- Location Information Management
- Programmability
Location Determination

Algorithmic Components

- RF fingerprinting and matching
- RF environment profiling and matching
- Trajectory prediction
- Scanning and channel switching
- Location databases and location services
How good an indicator of location is signal strength?

Signal strength correlates well with distance.
Signal Processing in RADAR

Key idea:
- Map signal strengths to physical locations (*Radio Fingerprinting*)

Inputs:
- signal strength of access point beacons
- building geometry

Offline phase: Construct a **Radio Map**
- tabulate <location, SS> information

Real-time phase:
- extract SS from base station beacons
- find Radio Map entry that best matches the measured SS
Radio Map Construction

Empirical method
- Access Points emit beacons periodically
- measure SS at various locations
- record SS along with corresponding coordinates
 - user orientation needs to be included too!
 - tuples of the form \((x, y, z, d, s_1, ..., s_n)\)
- accurate but laborious

Mathematical method
- compute SS using a simple propagation model
 - factor in free space loss and wall attenuation
 - Cohen-Sutherland line clipping algorithm
- more convenient but less accurate
Demo

RADAR Demo

Victor Bahl
Baseline Performance

Median error distance is 2.94 meters
Neighbor Averaging

- Find nearest neighbor in signal space (NNSS)
 - default metric is Euclidean distance
- Phys. coordinates of NNSS ⇒ user location
- Refinement: k-NNSS
 - average the coordinates of k nearest neighbors

N_1, N_2, N_3: neighbors
T: true location of user
G: guess based on averaging

Victor Bahl
Performance with Averaging

Median error distance is 2.13 meters when averaging is done over 3 neighbors

Victor Bahl
How extensive does the Radio Map have to be?

Diminishing returns as the number of physical points mapped increases
Radio Map Construction with RF Modeling

Signal Propagation Measurements

\[P(d)[\text{dBm}] = P(d_o)[\text{dBm}] - 10n \log \left(\frac{d}{d_o} \right) - \begin{cases}
 nW \cdot \text{WAF} & nW < C \\
 C \cdot \text{WAF} & nW \geq C
\end{cases} \]

Model parameters: \(P(d_o) = 28 \text{ dBm}, \ n = 1.53, \ \text{WAF} = 3.1 \text{ dBm}, \ C = 4 \text{ walls} \)
How well does WAF work?

Median error distance is 4.94 m compared to 2.94 m with empirically constructed radio map and 8.16 m with nearest base station method.

Victor Bahl
Are User Trajectory and Speed Predictable?

Signal processing, and pattern recognition allow mobility management

Victor Bahl
Mobility Modeling and Prediction

User’s previous locations can provide a good hint of her next location

number of signal strength samples

mean Median 90th %tile

Victor Bahl
Environmental Profiling

RF propagation characteristics change all the time

Calculate location of known AP using different Radio Maps. Select the one that produces best result.

Victor Bahl
Channel Switching

For the mobile to “hear” neighboring APs – all APs must be on the same channel

Effects overall system cost

Switching channels to listen to AP beacons is possible

- Degrades performance considerably

Mobile on Ch.1

Aquiring beacons

AP1 on Ch. 1

AP2 on Ch. 6

AP3 on Ch. 11

Channel Switching Time = 10 msec
Beacons Interval = 100 msec
Programming Requirements for RADAR

Ability of the wireless NIC to scan specified channels

For every incoming packet from a specified MAC address, ability to retrieve the packet’s
- received signal strength,
- noise floor at the transmitter, and
- noise floor at the receiver.
AP Monitor in WinXP

Windows XP contains the necessary support to enable RADAR
Experimental Testbeds

<table>
<thead>
<tr>
<th></th>
<th>Testbed 1 (Bldg. 31/2)</th>
<th>Testbed 2 (Bldg. 112/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>RoamAbout</td>
<td>Aironet/Cisco</td>
</tr>
<tr>
<td>MAC</td>
<td>CSMA/CA</td>
<td>IEEE 802.11b</td>
</tr>
<tr>
<td>Modulation</td>
<td>SS DQPSK</td>
<td>SS CCK</td>
</tr>
<tr>
<td>Power</td>
<td>50 mW</td>
<td>30 mW</td>
</tr>
<tr>
<td>Raw Date Rate</td>
<td>1, 2 Mbps</td>
<td>1,2, 5.5, 11 Mbps</td>
</tr>
<tr>
<td># of APs</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Floor</td>
<td>43.2 m x 22.5 m</td>
<td>42.9 m x 21.8 m</td>
</tr>
<tr>
<td>OS</td>
<td>FreeBSD 3.0</td>
<td>Windows 2000</td>
</tr>
</tbody>
</table>
Exploiting Location

Subscription based:
- Location Information Service
- Location Alert Service
- Location based Buddy List Service
- OnSale Mall Buddy Service

Network Improvements
- AP Load balancing
- Node-level QoS
Location Information Service

WISH (Where IS Harry?)
"I wish I knew where Harry is."

User location system that works with Wireless LANs

Usage scenarios
- Locate people and devices
- Discover nearby resources (printers, offices, restrooms, etc.)
Location Information Service Architecture

WISH Client

WiLIB

Device Driver

http://wish

Eventing Infrastructure

WISH Server

Every 2 minutes

Every 30 seconds

Every 30 seconds

Access Point

Victor Bahl
Where IS Harry Service
Location Alert Service

When I can’t find Harry...

“Alert me when you find Harry.”

Soft-state eventing infrastructure to trigger alerts when event matches are found.

Personalized alert delivery through Instant Messaging, emails, cell phone SMS
Location Alert Service Architecture

- WISH Client
- WISH Server
- WISH Alert Service
- Eventing Infrastructure
- SIMBA Library
- MyAlertBuddy

Alert Subscription Page

Victor Bahl
Location-Based Buddy List Service

When Harry is my buddy..

"Alert me if Harry happens to be close by."

Subject-based publish/subscribe eventing based on user profiles

Integrated tightly with MSN buddy list
Location-Based Buddy List Service Architecture

“Victor is in the mall.”

“Wilf is in the mall.”

http://www.mschoice.com
http://choice
OnSale Mall Buddy Service

Personalized sales announcements

“Alert me when electronics are on sale.”

Subject-based publish/subscribe eventing based on product categories and user profiles

Victor Bahl
OnSale Mall Buddy Service Architecture

Profile

S

Shopping Profiles

Mall Buddy Client

Wilf

Mall Buddy Server

OnSale Server

Eventing Infrastructure

“Electronics are on sale.”

Victor Bahl
Summary

Takes advantage of existing Wireless LAN infrastructure

Easy to install and manage
- one-time cost for building signal-strength database
- one-time cost for building the location hierarchy

System does not require line-of-site communication

Provides security, replication, partitioning for scalability, and back-up and restore

RADAR: a software solution to indoor location determination

Victor Bahl
Thanks!

http://research.microsoft.com/~bahl