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Abstract� Almost all problems in computer vision are related in one form or an�
other to the problem of estimating parameters from noisy data In this tutorial�
we present what is probably the most commonly used techniques for parameter

estimation These include linear least�squares �pseudo�inverse and eigen analysis��

orthogonal least�squares� gradient�weighted least�squares� bias�corrected renormal�
ization� Kalman �ltering� and robust techniques �clustering� regression diagnostics�
M�estimators� least median of squares� Particular attention has been devoted to

discussions about the choice of appropriate minimization criteria and the robustness
of the di�erent techniques Their application to conic �tting is described
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Techniques d�estimation de param�tres �

un tutorial avec application � l�ajustement de coniques

R�sum� � Presque tous les probl�mes en vision par ordinateur sont reli�s d�une ma�

ni�re ou l�autre au probl�me de l�estimation de param�tres � partir de donn�es brui�
t�es Dans ce tutorial� nous pr�sentons des techniques qui sont probablement les plus
utilis�es pour l�estimation de param�tres Ce sont la technique des moindre�carr�s
lin�aires �pseudo�inverse� analyse par vecteurs propres�� la r�gression orthogonale�

la re�normalisation avec correction de biais� le �ltrage de Kalman� et des techniques
robustes �clustering� r�gression par diagnostics� M�estimateurs� la moindre m�diane
des carr�s� Un e�ort particulier est consacr� aux discussions sur le choix d�un cri�

t�re de minimisation appropri� et sur la robustesse des di��rentes techniques Le
probl�me de l�ajustement de coniques est utilis� pour illustrer l�expos�

Mots�cl� � Estimation de param�tres� moindre�carr�s� correction de biais� �ltrage
de Kalman� r�gression robuste
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� Introduction

Almost all problems in computer vision are related in one form or another to the

problem of estimating parameters from noisy data A few examples are line �tting�
camera calibration� image matching� surface reconstruction� pose determination� and
motion analysis A parameter estimation problem is usually formulated as an op�
timization one Because of di�erent optimization criteria and because of several

possible parameterizations� a given problem can be solved in many ways The pur�
pose of this paper is to show the importance of choosing an appropriate criterion
This will in�uence the accuracy of the estimated parameters� the e�ciency of com�

putation� the robustness to predictable or unpredictable errors Conic �tting is used
to illustrate these aspects because�

� it is one of the simplest problems in computer vision on one hand�

� it is� on the other hand� a relatively di�cult problem because of its nonlinear
nature

Needless to say the importance of conics in our daily life and in industry

� A Glance over Parameter Estimation in General

Parameter estimation is a discipline that provides tools for the e�cient use of data for
aiding in mathematically modelling of phenomena and the estimation of constants
appearing in these models ��� It can thus be visualized as a study of inverse pro�
blems Much of parameter estimation can be related to four optimization problems�

� criterion� the choice of the best function to optimize �minimize or maximize�

� estimation� the optimization of the chosen function

� design� optimal design to obtain the best parameter estimates

� modeling� the determination of the mathematical model which best describes

the system from which data are measured

In this paper we are mainly concerned with the �rst three problems� and we assume
the model is known �a conic in the examples�

Let p be the �state�parameter� vector containing the parameters to be estimated
The dimension of p� say m� is the number of parameters to be estimated Let z be

INRIA
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the �measurement� vector which is the output of the system to be modeled The
system is described by a vector function f which relates z to p such that

f�p� z� � � �

In practice� observed measurements y are only available for the system output z
corrupted with noise �� ie�

y � z� � �

We usually make a number of measurements for the system� say fyig �i � �� � � � � n��
and we want to estimate p using fyig As the data are noisy� the function f�p�yi� �
� is not valid anymore In this case� we write down a function

F�p� y�� � � � �yn�

which is to be optimized �without loss of generality� we will minimize the function�
This function is usually called the cost function or the objective function

If there are no constraints on p and the function F has �rst and second partial
derivatives everywhere� necessary conditions for a minimum are

�F
�p

� �

and

��F
�p�

� � �

By the last� we mean that the m�m�matrix is positive de�nite

� Conic Fitting Problem

The problem is to �t a conic section to a set of n points fxig � f�xi� yi�g �i �
�� � � � � n� A conic can be described by the following equation�

Q�x� y� � Ax� � �Bxy � Cy� � �Dx� �Ey � F � � � �	�

where A and C are not simultaneously zero In practice� we encounter ellipses� where

we must impose the constraint B� � AC � � However� this constraint is usually
ignored during the �tting because

RR n�����



� Zhengyou Zhang

� the constraint is usually satis�ed if data are not all situated in a �at section

� the computation will be very expensive if this constraint is considered

As the data are noisy� it is unlikely to �nd a set of parameters �A�B�C�D�E� F �
�except for the trivial solution A � B � C � D � E � F � �� such that Q�xi� yi� �
�� �i Instead� we will try to estimate them by minimizing some objective function

	 Least
Squares Fitting Based on Algebraic Distances

As said before� for noisy data� the system equation� Q�x� y� � � in the case of conic
�tting� can hardly hold true A common practice is to directly minimize the algebraic

distance Q�xi� yi�� ie� to minimize the following function�

F �

nX
i��

Q��xi� yi� �

Clearly� there exists a trivial solution A � B � C � D � E � F � � In order
to avoid it� we should normalize Q�x� y� There are many di�erent normalizations
proposed in the literature Here we describe three of them

��� Normalization with A� C � �

Since the trace A� C can never be zero for an ellipse� the arbitrary scale factor in

the coe�cients of the conic equation can be naturally removed by the normalization
A � C � � This normalization has been used by many researchers �	�� � � All
ellipse can then be described by a ��vector

p � �A�B�D�E� F 	T �

and the system equation Q�xi� yi� � � becomes�

fi
�
� aTi p� bi � � � ���

where

ai � �x�i � y�i � �xiyi� �xi� �yi� �	
T

bi � �y�i �
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Given n points� we have the following vector equation�

Ap � b �

where

A � �a��an� � � � �an	
T

b � �b�� b�� � � � � bn	
T �

The function to minimize becomes

F�p� � �Ap� b�T �Ap� b� �

Obtaining its partial derivative with respect to p and setting it to zero yield�

�AT �Ap� b� � � �

The solution is readily given by

p � �ATA���ATb � ���

This method is known as pseudo inverse technique

��� Normalization with A�
�B

�
�C

�
�D

�
�E

�
� F

�
� �

Let p � �A�B�C�D�E� F 	T  As kpk�� ie� the sum of squared coe�cients� can never
be zero for a conic� we can set kpk � � to remove the arbitrary scale factor in the

conic equation The system equation Q�xi� yi� � � becomes

aTi p � � with kpk � � �

where ai � �x�i � �xiyi� y
�
i � �xi� �yi� �	

T 
Given n points� we have the following vector equation�

Ap � � with kpk � � �

where A � �a��a�� � � � �an	
T  The function to minimize becomes�

F�p� � �Ap�T �Ap�
�
� pTBp subject to kpk � � � ���

where B � ATA is a symmetric matrix The solution is the eigenvector of B
corresponding to the smallest eigenvalue �see below�

RR n�����
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Indeed� any m�m symmetric matrix B �m � 
 in our case� can be decomposed
as

B � UEUT � ���

with

E � diag�v�� v�� � � � � vm� and U � �e�� e�� � � � � em	 �

where vi is the i�th eigenvalue� and ei is the corresponding eigenvector Without
loss of generality� we assume v� � v� � � � � � vm The original problem ��� can now

be restated as�

Find a�� a�� � � � � am such that pTBp is minimized with p � a�e��a�e��

� � �� amem subject to a�� � a�� � � � �� a�m � �

After some simple algebra� we have

pTBp � a��v� � a��v� � � � �� a�mvm �

The problem now becomes to minimize the following unconstrained function�

J � a��v� � a��v� � � � �� a�mvm � ��a�� � a�� � � � �� a�m � �� �

where � is the Lagrange multiplier Setting the derivatives of J with respect to a�
through am and � yields�

�a�v� � �a�� � �

�a�v� � �a�� � �
� � � � � �
�amvm � �am� � �

a�� � a�� � � � �� a�m � � � �

There exist m solutions The i�th solution is given by

ai � �� aj � � for j � �� � � � �m� except i� � � �vi �
The value of J corresponding to the i�th solution is

Ji � vi �

Since v� � v� � � � � � vm� the �rst solution is the one we need �the least�squares

solution�� ie�

a� � �� aj � � for j � �� � � � �m�

Thus the solution to the original problem ��� is the eigenvector of B corresponding
to the smallest eigenvalue
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��� Normalization with F � �

Another commonly used normalization is to set F � � If we use the same notations

as in the last subsection� the problem becomes to minimize the following function�

F�p� � �Ap�T �Ap� � pTBp subject to p� � � � ���

where p� is the sixth element of vector p� ie� p� � F 
Indeed� we seek for a least�squares solution to Ap � � under the constraint

p� � � The equation can be rewritten as

A�p� � �an �

where A� is the matrix formed by the �rst �n � �� columns of A� an is the last

column of A and p� is the vector �A�B�C�D�E	T  The problem can now be solved
by the technique described in Sect �	

In the following� we present another technique for solving this kind of problems�
ie�

Ap � � subject to pm � �

based on eigen analysis� where we consider a general formulation� that is A is a

n�m matrix� p is a m�vector� and pm is the last element of vector p The function
to minimize is

F�p� � �Ap�T �Ap�
�
� pTBp subject to pm � � � ���

As in the last subsection� the symmetric matrix B can be decomposed as in ����
ie� B � UEUT  Now if we normalize each eigenvalue and eigenvector by the last

element of the eigenvector� ie�

v�i � vie
�
im e�i �

�

eim
ei �

where eim is the last element of the eigenvector ei� then the last element of the new
eigenvector e�i is equal to one We now have

B � U�E�U�T �

where E� � diag�v��� v
�
�� � � � � v

�
m� and U

� � �e��� e
�
�� � � � � e

�
m	 The original problem ���

becomes�

RR n�����
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Find a�� a�� � � � � am such that pTBp is minimized with p � a�e
�
��a�e

�
��

� � �� ame
�
m subject to a� � a� � � � �� am � �

After some simple algebra� we have

pTBp � a��v
�
� � a��v

�
� � � � �� a�mv

�
m �

The problem now becomes to minimize the following unconstrained function�

J � a��v
�
� � a��v

�
� � � � �� a�mv

�
m � ��a� � a� � � � �� am � �� �

where � is the Lagrange multiplier Setting the derivatives of J with respect to a�
through am and � yields�

�a�v
�
� � � � �

�a�v�� � � � �

� � � � � �
�amv

�
m � � � �

a� � a� � � � �� am � � � �

The unique solution to the above equations is given by

ai �
�

v�i
S for i � �� � � � �m �

where S � �
� mX

j��

�

v�j
 The solution to the problem ��� is given by

p �

mX
i��

aie
�
i �

�
mX
i��

�

v�j
e�i

���� mX
j��

�

v�j

�A �

Note that this normalization �F � �� has singularities for all conics going through

the origin That is� this method cannot �t such conics because they require to set
F � � This might suggest that the other normalizations are superior to the F � �
normalization with respect to singularities However� as shown in �	
�� the singularity

problem can be overcome by shifting the data so that they are centered on the origin�
and better results by setting F � � has been obtained than by setting A� C � �
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� Least
Squares Fitting Based on Euclidean Distances

In the above section� we have described three general techniques for solving linear

least�squares problems� either unconstrained or constrained� based on algebraic dis�
tances In this section� we describe why such techniques usually do not provide
satisfactory results� and then propose to �t conics using directly Euclidean distances

��� Why are algebraic distances usually not satisfactory �

The big advantage of use of algebraic distances is the gain in computational e�ciency�
because closed�form solutions can usually be obtained In general� however� the
results are not satisfactory There are at least two major reasons

� The function to minimize is usually not invariant under Euclidean transfor�

mations For example� the function with normalization F � � is not invariant
with respect to translations This is a feature we dislike� because we usually
do not know in practice where is the best coordinate system to represent the

data

� A point may contribute di�erently to the parameter estimation depending on
its position on the conic If a priori all points are corrupted by the same
amount of noise� it is desirable for them to contribute the same way �The
problem with data points corrupted by di�erent noise will be addressed in

section ��

To understand the second point� consider a conic in the normalized system �see

Fig 	��

Q�x� y� � Ax� � Cy� � F � � �

The algebraic distance of a point �xi� yi� to the conic Q is given by �cite Bookstein��

Q�xi� yi� � Ax�i � Cy�i � F � �F �d�i 	c�i � �� �

where di is the distance from the point �xi� yi� to the center O of the conic� and ci is
the distance from the conic to its center along the ray from the center to the point
�xi� yi� It is thus clear that a point at the high curvature sections contributes less

to the conic �tting than a point having the same amount of noise but at the low
curvature sections This is because a point at the high curvature sections has a large
ci and its jQ�xi� yi�j� is small� while a point at the low curvature sections has a small

RR n�����
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O

Q

x

y

i i

ic

di
( )x   , y 

Fig 	� Normalized conic

ci and its jQ�xi� yi�j� is higher with respect to the same amount of noise in the data

points Concretely� methods based on algebraic distances tend to �t better a conic
to the points at low curvature sections than to those at high curvature sections This
problem is usually termed as high curvature bias

��� Orthogonal distance �tting

To overcome the problems with the algebraic distances� it is natural to replace them
by the orthogonal distances which are invariant to transformations in Euclidean

space and which do not exhibit the high curvature bias
The orthogonal distance di between a point xi � �xi� yi� and a conic Q�x� y� is

the Euclidean distance between xi and the point xt � �xti� yti� in the conic whose
tangent is orthogonal to the line joining xi and xt �see Fig �� Given n points

xi �i � �� � � � � n�� the orthogonal distance �tting is to estimate the conic Q by
minimizing the following function

F�p� �

nX
i��

d�i � ���

However� as the expression of di is very complicated �see below�� an iterative opti�
mization procedure must be carried out Many techniques are readily available� in�
cluding Gauss�Newton algorithm� Steepest Gradient Descent� Levenberg�Marquardt

INRIA
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( )

x , y  ( )

( )
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o o

i i

ti ti
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x    , y  

x   , y  

Fig �� Orthogonal distance of a point to a conic

procedure� and simplex method A software ODRPACK �written in Fortran� for weigh�
ted orthogonal distance regression is domain public and is available from NETLIB

�netlib!ornlgov� Initial guess of the conic parameters must be supplied� which can
be obtained using the techniques described in the last section

Let us now proceed to compute the orthogonal distance di The subscript i will
be omitted for clarity Refer again to Fig � The conic is assumed to be described

by

Q�x� y� � A�x� xo�
� � B�x� xo��y � yo� � C�y � yo�

� � � � � �

Point xt � �xt� yt� must satisfy the following two equations�

A�xt � xo�
� � B�xt � xo��yt � yo� � C�yt � yo�

� � � � � �
�

�y � yt�
�

�x
Q�xt� yt� � �x� xt�

�

�y
Q�xt� yt� �	 �

Equation �
� merely says the point xt is on the conic� while �	 � says that the

tangent at xt is orthogonal to the vector x� xt
Let �x � xt � xo and �y � yt � yo From �
��

�y �
�B�x � 


�C
� �		�
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where 
� � B���
x � �C�A��

x � �� � �B� � �AC���
x � �C From �	 ��

��A�x �B�y��y � yo ��y� � ��C�y � B�x��x� xo ��x� �

Substituting the value of �y �		� in the above equation leads to the following equa�

tion�

e��
�
x � e��x � e� � �e��x � e��
 � �	��

where

e� � B� � �AC

e� � �Be�

e� � �Ce��y � y��

e� � �BC

e� � B� � �C� � e�

e� � �C�B�y � y��� �C�x� x��	 �

Squaring the above equation� we have

�e��
�
x � e��x � e��

� � �e��x � e��
��e��

�
x � �C� �

Rearranging the terms� we obtain an equation of degree four in �x�

f��
�
x � f��

�
x � f��

�
x � f��x � f� � � � �	��

where

f� � e�� � e�e
�
�

f� � �e�e� � �e�e�e�

f� � e�� � �e�e� � e�e
�
� � �e��C

f� � �e�e� � e�e�C

f� � e�� � �e��C �

The two or four real roots of �	�� can be found in closed form For one solution �x�
we can obtain 
 from �	��� ie�


 � �e��
�
x � e��x � e��	�e��x � e�� �
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Thus� �y is computed from �		� Eventually comes the orthogonal distance d� which
is given by

d �
q
�x� xo ��x�� � �y � yo ��y�� �

Note that we possibly have four solutions Only the one which gives the smallest
distance is the one we are seeking for

� Gradient Weighted Least
Squares Fitting

The least�squares method described in the last sections is usually called ordinary

least�squares estimator �OLS� Formally� we are given n equations�

fi
�
� AT

i p� bi � �i �

where �i is the additive error in the i�th equation with mean zero� E��i� � �� and
variance ��i � ��i  Writing down in matrix form yields

Ap� b � e �

where

A �

�	
 AT
�

AT
n

�� � b �

�	
 b�

bn

�� � and e �

�	
 ��

�n

�� �

The OLS estimator tries to estimate p by minimizing the following sum of squared
errors�

F � eTe � �Ap� b�T �Ap� b� �

which gives� as we have already seen� the solution as

p � �ATA���ATb �

It can be shown �see� eg� ���� that the OLS estimator produces the optimal estimate
of p� "optimal# in terms ofminimum covariance of p� if the errors �i are uncorrelated
�ie� E��i�j� � ��i ij� and their variances are constant �ie� ��i � �� �i � ��� � � � � n	�

Now let us examine whether the above assumptions are valid or not for conic

�tting Data points are provided by some signal processing algorithm such as edge
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detection It is reasonable to assume that errors are independent from one point to
another� because when detecting a point we usually do not use any information from

other points It is also reasonable to assume the errors are constant for all points
because we use the same algorithm for edge detection However� we must note that
we are talking about the errors in the points� but not those in the equations �ie� �i�
Let the error in a point xi � �xi� yi	

T be Gaussian with mean zero and covariance

�x � ��I�� where I� is the ��� identity matrix That is� the error distribution is
assumed to be isotropic in both directions ���x � ��y � ��� �xy � �� In Sect �� we
will consider the case where each point may have di�erent noise distribution Refer

to Eq ��� We now compute the variance ��i of function fi from point �xi� yi� and
its uncertainty Let ��xi� �yi� be the true position of the point� we have certainly

�fi � ��x�i � �y�i �A� ��xi�yiB � ��xiD � ��yiE � F � �y�i � � �

We now expand fi into Taylor series at x � �xi and y � �yi� ie�

fi � �fi �
�fi
�xi

�xi � �xi� �
�fi
�yi

�yi � �yi� � O
�
�xi � �xi�

�
�
� O

�
�yi � �yi�

�
�
�

Ignoring the high order terms� we can now compute the variance of fi� ie�

��i � E�fi � �fi�
� �

�
�fi
�xi

��

E�xi � �xi�
� �

�
�fi
�yi

��
E�yi � �yi�

�

�

��
�fi
�xi

��

�

�
�fi
�yi

���
��

�
� rf�i �� �

where rfi is just the gradient of fi with respect to xi and yi� and

�fi
�xi

� �Axi � �Byi � �D
�fi
�yi

� ��Ayi � �Bxi � �E � �yi �
�	��

It is now clear that the variance of each equation is not the same� and thus the OLS

estimator does not yield an optimal solution
In order to obtain a constant variance function� it is su�cient to devide the

original function by its gradient� ie�

f �i � fi	rfi �
then f �i has the constant variance �� We can now try to �nd the parameters p by
minimizing the following function�

F �
X

f �i
�
�
X

f�i 	rf�i � �Ap� b�TW���Ap� b� �
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where W � diag�rf�� �rf�� � � � � �rf�n� This method is thus called Gradient Weigh�

ted Least�Squares� and the solution can be easily obtained by setting �F
�p

� ��Ap�
b�TW��A � �� which yields

p � �ATW��A���ATW��b � �	��

Note that the gradient�weighted LS is in general a nonlinear minimization pro�
blem and a closed�form solution does not exist In the above� we gave a closed�form
solution because we have ignored the dependence of W on p in computing �F

�p
 In

reality� W does depend on p� as can be seen in Eq �	�� Therefore� the above solu�
tion is only an approximation In practice� we run the following iterative procedure�

step �� k � � Compute p	�
 using OLS Eq ���

step �� Compute the weight matrix W	k


step �� Compute p	k
 using Gradient Weighted LS Eq �	��

step �� If p	k
 is very close to p	k��
� then stop�
otherwise go to step �

In the above� the superscript �k� denotes the iteration number

 Bias
Corrected Renormalization Fitting

Consider the biquadratic representation of an ellipse�

Ax� � �Bxy � Cy� � �Dx� �Ey � F � � �

Given n noisy points xi � �xi� yi	
T �i � �� � � � � n�� we want to estimate the coe�cients

of the ellipse� p � �A� B� C� D� E� F 	T  Due to the homogeneity� we set kpk � �

For each point xi� we thus have one scalar equation�

fi � MT
i p � � �

where

Mi � �x�i � �xiyi� y
�
i � �xi� �yi� �	

T �

Hence� p can be estimated by minimizing the following objective function �weighted
least�squares optimization�

F � �n
i��wi�M

T
i p�

� � �	��

RR n�����



	� Zhengyou Zhang

where wi�s are positive weights
Assume that each point has the same error distribution with mean zero and

covariance �xi �

�
��

��

�
 The covariance of fi is then given by

�fi �

�
�fi
�xi

�fi
�xi

�
�xi

�
�fi
�xi

�fi
�xi

�T
�

where

�fi
�xi

� ��Axi � Byi �D�
�fi
�yi

� ��Bxi � Cyi �D� �

Thus we have

�fi � �����A� � B��x�i � �B� � C��y�i
��B�A� C�xiyi � ��AD � BE�xi � ��BD � CE�yi � �D� � E��	 �

The weights can then be chosen to the inverse proportion of the variances Since
multiplication by a constant does not a�ect the result of the estimation� we set

wi � ���	�fi � �	��A� � B��x�i � �B� � C��y�i
��B�A� C�xiyi � ��AD � BE�xi � ��BD � CE�yi � �D� �E��	 �

The objective function �	�� can be rewritten as

F � pT
�
�n
i�� wiMiM

T
i

�
p �

which is a quadratic form in unit vector p Let

N � �n
i�� wiMiM

T
i �

The solution is the eigenvector of N associated to the smallest eigenvalue
If each point xi � �xi� yi	

T is perturbed by noise of �xi � ��xi��yi	
T with

E��xi	 � � � and ��xi � E��xi�x
T
i 	 �

�
��

��

�
�

the matrix N is perturbed accordingly� N � �N��N� where �N is the unperturbed
matrix If E��N	 � �� then the estimate is statistically unbiased � otherwise� it is

statistically biased � because following the perturbation theorem the bias of p� ie�
E��p	 � O�E��N	�
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Let Ni � MiM
T
i � then N � �n

i�� wiNi We have

Ni �

�						


x�i �x�i yi x�i y
�
i �x�i �x�i yi x�i

�x�i yi �x�i y
�
i �xiy

�
i �x�i yi �xiy

�
i �xiyi

x�i y
�
i �xiy

�
i y�i �xiy

�
i �y�i y�i

�x�i �x�i yi �xiy
�
i �x�i �xiyi �xi

�x�i yi �xiy
�
i �y�i �xiyi �y�i �yi

x�i �xiyi y�i �xi �yi �

������� �

If we carry out the Taylor development and ignore quantities of order higher than
�� it can be shown that the expectation of �N is given by

E��N	 � ��

�						



x�i 
xiyi x�i � y�i 
xi �yi �

xiyi ��x�i � y�i � 
xiyi �yi �xi �

x�i � y�i 
xiyi 
y�i �xi 
yi �

xi �yi �xi � � �
�yi �xi 
yi � � �

� � � � � �

�������
�
� cBi �

It is clear that if we de�nebN � �n
i�� wi �Ni �E��N		 � �n

i�� wi�Ni � cBi	 �

then bN is unbiased� ie� E� bN	 � �N� and hence the unit eigenvector p of bN associated

to the smallest eigenvalue is an unbiased estimate of the exact solution �p
Ideally� the constant c should be chosen so that E�bN	 � �N� but this is impossible

unless image noise characteristics are known On the other hand� if E�bN	 � �N� we
have

E��pT bN�p	 � �pTE� bN	�p � �pT �N�p � � �

because F � pTNp takes its aboslute minimum  for the exact solution �p in the

absence of noise This suggests that we require that pTNp � � at each iteration If
for the current c and p� pT bNp � �min �� �� we can update c by �c such that

pT�n
i�� �wiNi � cwiBi	p� pT�n

i�� �cwiBi p � � �

That is�

�c �
�min

pT�n
i�� wiBi p

�

To summarize� the renormalization procedure can be described as�

RR n�����
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	 Let c � �� wi � � for i � �� � � � � n

� Compute the unit eigenvector p of

bN � �n
i�� wi�Ni � cBi	

associated to the smallest eigenvalue� which is denoted by �min

� Update c as

c	 c�
�min

pT�n
i�� wiBi p

and recompute wi using the new p

� Return p if the update has converged� go back to step � otherwise

Remark �� This implementation is di�erent from that described in the paper

of Kanatani ��� This is because in his implementation� he uses the N�vectors to
represent the ��D points In the derivation of the bias� he assumes that the per�
turbation in each N�vector� ie� �m� in his notations� has the same magnitude

�� �
p
E�k�m�

�k� This is an unrealistic assumption In fact� to the �rst order�

�m� � �p
x���y���f�

�
�x��y�
�

� � thus k�m�
�k� � �x����y��

x���y���f�
 Hence� E�k�m�

�k� �

���

x���y���f�
� where we assume the perturbation in image plane is the same for each

point �with mean zero and standard deviation ��
Remark �� This method is optimal only in the sense of unbiasness Another

criterion of optimality� namely theminimum variance of estimation� is not addressed
in this method

� Kalman Filtering Technique

Nota� The �rst four subsections are extracted from the book ����� �D Dynamic

Scene Analysis� A Stereo Based Approach� by Z Zhang $ O Faugeras �Springer

Berlin 	

��
Kalman �ltering� as pointed out by Lowe �		�� is likely to have applications throu�

ghout Computer Vision as a general method for integrating noisy measurements

The behavior of a dynamic system can be described by the evolution of a set
of variables� called state variables In practice� the individual state variables of a
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dynamic system cannot be determined exactly by direct measurements� instead� we
usually �nd that the measurements that we make are functions of the state variables

and that these measurements are corrupted by random noise The system itself may
also be subjected to random disturbances It is then required to estimate the state
variables from the noisy observations

If we denote the state vector by s and denote the measurement vector by x�� a

dynamic system �in discrete�time form� can be described by

si�� � hi�si� � ni � i � �� �� � � � � �	��

fi�x
�
i� si� � � � i � �� �� � � � � �	��

where ni is the vector of random disturbance of the dynamic system and is usually
modeled as white noise�

E�ni	 � � and E�nin
T
i 	 � Qi �

In practice� the system noise covariance Qi is usually determined on the basis of

experience and intuition �ie� it is guessed� In �	��� the vector x�i is called the mea�
surement vector In practice� the measurements that can be made contain random
errors We assume the measurement system is disturbed by additive white noise�

ie� the real observed measurement xi is expressed as

xi � x�i � �i � �	
�

where

E��i	 � � �

E��i�
T
j 	 �

�
��i for i � j �
� for i �� j �

The measurement noise covariance ��i is either provided by some signal processing

algorithm or guessed in the same manner as the system noise In general� these
noise levels are determined independently We assume then there is no correlation
between the noise process of the system and that of the observation� that is

E��in
T
j 	 � � for every i and j
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	�� Standard Kalman Filter

When hi�si� is a linear function

si�� � Hisi � ni

and we are able to write down explicitly a linear relationship

xi � Fisi � �i

from fi�x
�
i� si� � �� then the standard Kalman �lter is directly applicable

Kalman Filter

� Prediction of states�
�siji�� � Hi���si��

� Prediction of the covariance matrix of states�
Piji�� � Hi��Pi��H

T
i�� � Qi��

� Kalman gain matrix�

Ki � Piji��F
T
i �FiPiji��F

T
i ���i�

��

� Update of the state estimation�
�si � �siji�� �Ki�xi � Fi�siji���

� Update of the covariance matrix of states�
Pi � �I�KiFi�Piji��

� Initialization�

P�j� � �s�

�s�j� � E�s�	

Fi Hi�� Delay

Ki
j j� � � �

���

� �

�

%

�

�

xi ri

�siji�� �si��

�si

Fig �� Kalman �lter block diagram
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Figure � is a block diagram for the Kalman �lter At time ti� the system model
inherently in the �lter structure generates �siji��� the best prediction of the state�

using the previous state estimate �si�� The previous state covariance matrix Pi��

is extrapolated to the predicted state covariance matrix Piji�� Piji�� is then used
to compute the Kalman gain matrix Ki and to update the covariance matrix Pi
The system model generates also Fi�siji�� which is the best prediction of what the

measurement at time ti will be The real measurement xi is then read in� and the
measurement residual �also called innovation�

ri � xi � Fi�siji��

is computed Finally� the residual ri is weighted by the Kalman gain matrix Ki to
generate a correction term and is added to �siji�� to obtain the updated state �si

The Kalman �lter gives a linear� unbiased� and minimum error variance recursive
algorithm to optimally estimate the unknown state of a linear dynamic system from
noisy data taken at discrete real�time intervals Without entering into the theoretical
justi�cation of the Kalman �lter� for which the reader is referred to many existing

books such as ��� 	��� we insist here on the point that the Kalman �lter yields at
ti an optimal estimate of si� optimal in the sense that the spread of the estimate�
error probability density is minimized In other words� the estimate �si given by the

Kalman �lter minimizes the following cost function

Fi��si� � E���si � si�
TM��si � si�	 �

where M is an arbitrary� positive semide�nite matrix The optimal estimate �si of
the state vector si is easily understood to be a least�squares estimate of si with the
properties that ����

	 the transformation that yields �si from �xT� � � � xTi 	T is linear�

� �si is unbiased in the sense that E��si	 � E�si	�

� it yields a minimum variance estimate with the inverse of covariance matrix
of measurement as the optimal weight

By inspecting the Kalman �lter equations� the behavior of the �lter agrees with
our intuition First� let us look at the Kalman gain Ki After some matrix manipu�

lation� we express the gain matrix in the form�

Ki � PiF
T
i �

��
�i

� �� �
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Thus� the gain matrix is "proportional# to the uncertainty in the estimate and
"inversely proportional# to that in the measurement If the measurement is very

uncertain and the state estimate is relatively precise� then the residual ri is resulted
mainly by the noise and little change in the state estimate should be made On the
other hand� if the uncertainty in the measurement is small and that in the state
estimate is big� then the residual ri contains considerable information about errors

in the state estimate and strong correction should be made to the state estimate
All these are exactly re�ected in �� �

Now� let us examine the covariance matrix Pi of the state estimate By inverting

Pi and replacing Ki by its explicit form �� �� we obtain�

P��
i � P��

iji�� � FT
i �

��
�i
Fi � ��	�

From this equation� we observe that if a measurement is very uncertain ���i is
big�� the covariance matrix Pi will decrease only a little if this measurement is used
That is� the measurement contributes little to reducing the estimation error On the
other hand� if a measurement is very precise ���i is small�� the covariance Pi will

decrease considerably This is logic As described in the previous paragraph� such
measurement contributes considerably to reducing the estimation error Note that
Equation ��	� should not be used when measurements are noise free because ����i is

not de�ned

	�� Extended Kalman Filter

If hi�si� is not linear or a linear relationship between xi and si cannot be written

down� the so�called Extended Kalman Filter �EKF for abbreviation� can be applied�
The EKF approach is to apply the standard Kalman �lter �for linear systems� to

nonlinear systems with additive white noise by continually updating a linearization
around the previous state estimate� starting with an initial guess In other words� we

only consider a linear Taylor approximation of the system function at the previous
state estimate and that of the observation function at the corresponding predicted
position This approach gives a simple and e�cient algorithm to handle a nonlinear
model However� convergence to a reasonable estimate may not be obtained if the

initial guess is poor or if the disturbances are so large that the linearization is
inadequate to describe the system

�Note that in the usual formulation of the EKF� the measurement �observation� function
fi�x

�
i� si� is of the form x�

i � gi�si�	 Unfortunately� that formulation is not general enough to
deal with the problems addressed in this monograph	
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We expand fi�x
�
i� si� into a Taylor series about �xi��siji����

fi�x
�
i� si� � fi�xi� �siji��� �

�fi�xi��siji���

�x�i
�x�i � xi� �

�fi�xi��siji���

�si
�si � �siji���

�O��x�i � xi��� � O��si� �siji���
�� � ����

By ignoring the second order terms� we get a linearized measurement equation�

yi � Misi � �i � ����

where yi is the new measurement vector� �i is the noise vector of the new measure�
ment� and Mi is the linearized transformation matrix They are given by

Mi �
�fi�xi� �siji���

�si
�

yi � �fi�xi� �siji��� �
�fi�xi��siji���

�si
�siji�� �

�i �
�fi�xi� �siji���

�x�i
�x�i � xi� � ��fi�xi��siji���

�x�i
�i �

Clearly� we have E��i	 � �� and E��i�
T
i 	 �

�fi	xi�siji��


�x�i
��i

�fi	xi�siji��


�x�i

T �
� ��i

The extended Kalman �lter equations are given in the following algorithm� where
the derivative �hi

�si
is computed at si � �si��

Algorithm� Extended Kalman Filter

� Prediction of states�
�siji�� � hi��si���

� Prediction of the covariance matrix of states�

Piji�� �
�hi
�si

Pi��
�hi
�si

T

� Qi��

� Kalman gain matrix�
Ki � Piji��M

T
i �MiPiji��M

T
i � ��i�

��

� Update of the state estimation�
�si � �siji�� �Ki�yi �Mi�siji���

� �siji�� �Kifi�xi� �siji���

� Update of the covariance matrix of states�

Pi � �I�KiMi�Piji��

� Initialization�
P�j� � �s� and �s�j� � E�s�	
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	�� Discussion

The above Kalman �lter formalism is under the assumptions that the system�noise

process and the measurement�noise process are uncorrelated and that they are all
Gaussian white noise sequences These assumptions are adequate in solving the pro�
blems addressed in this monograph In the case that noise processes are correlated or

they are not white �ie� colored�� the reader is referred to ��� for the derivation of the
Kalman �lter equations The numerical unstability of Kalman �lter implementation
is well known Several techniques are developed to overcome those problems� such
as square�root �ltering and U�D factorization See �	�� for a thorough discussion

There exist many other methods to solve the parameter estimation problem�
general minimization procedures� weighted least�squares method� and the Bayesian
decision�theoretic approach In the appendix to this chapter� we review brie�y
several least�squares techniques We choose the Kalman �lter approach as our main

tool to solve the parameter estimation problem This is for the following reasons�

� the Kalman �lter takes explicitly into account the measurement uncertainties�

� the Kalman �lter takes measurements into account incrementally �recursivity��

� the Kalman �lter is a simple and e�cient procedure to solve the problem
�computational tractability��

� the Kalman �lter can take into account a priori information� if any

The linearization of a nonlinear model leads to small errors in the estimates�

which in general can be neglected� especially if the relative accuracy is better than
	 & �	�� �� However� as pointed by Maybank �	��� the extended Kalman �lter
seriously underestimates covariance Furthermore� if the current estimate �siji�� is

very di�erent from the true one� the �rst�order approximation� ��� and ���� is not
good anymore� and the �nal estimate given by the �lter may be signi�cantly di�erent
from the true one One approach to reduce the e�ect of nonlinearities is to apply

iteratively the Kalman �lter �called the iterated extended Kalman �lter�

	�� Iterated Extended Kalman Filter

The Iterated Extended Kalman Filter �IEKF� could be applied either globally or
locally

The global IEKF is applied to the whole observed data Given a set of n ob�
servations fxi � i � � � � ng The initial state estimate is �s� with covariance matrix
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�s�  After applying the EKF to the set fxig� we get an estimate �s�n with covariance
matrix P �

n �the superscript� 	 here� denotes the number of iteration� Before perfor�

ming the next iteration� we must back propagate �s�n to time t�� denoted by ��s
�
n At

iteration �� ��s
�
n is used as the initial state estimate� but the original initial covariance

matrix �s� is again used as the initial covariance matrix at this iteration This is
because if we use the new covariance matrix� it would mean we have two identical

sets of measurements Due to the requirement of the back propagation of the state
estimate� the application of the global IEKF is very limited Maybe it is interesting
only when the state does not evolve over time �	� In that case� no back propagation

is required In the problem of estimating �D motion between two frames� the EKF
is applied spatially� ie� it is applied to a number of matches The �D motion �the
state� does not change from one match to another� thus the global IEKF can be
applied

The local IEKF ��� 	�� is applied to a single sample data by rede�ning the nomi�
nal trajectory and relinearizing the measurement equation It is capable of providing
better performance than the basic EKF� especially in the case of signi�cant nonli�
nearity in the measurement function fi�x

�
i� s� This is because when �si is generated

after measurement incorporation� this value can serve as a better state estimate
than �siji�� for evaluating fi and Mi in the measurement update relations Then the
state estimate after measurement incorporation could be recomputed� iteratively if

desired Thus� in IEKF� the measurement update relations are replaced by setting
�s�i � �siji�� �here� the superscript denotes again the number of iteration� and doing
iteration on

Ki � Piji��M
k
i

T
�Mk

i Piji��M
k
i

T
� ��i�

�� � ����

�sk��i � �ski �Kif
k
i �xi� �s

k
i � ����

for iteration number k � �� �� � � � � N � � and then setting �si � �sNi  The iteration
could be stopped when consecutive values �ski and �s

k��
i di�er by less than a preselected

threshold The covariance matrix is then updated based on �sNi 

	�� Application to Conic Fitting

Let us choose the normalization with A�C � � �see Sect�	� The state vector can

now be de�ned as�

s � �A�B�D�E� F 	T �
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The measurement vector is� xi � �xi� yi	
T  As the conic parameters are the same for

all points� we have the following simple system equation�

si�� � si �

and the noise term ni is zero The observation function is

fi�xi� s� � �x�i � y�i �A� �xiyiB � �xiD � �yiE � F � y�i �

In order to apply the extended Kalman �lter� we need to compute the derivative

of fi�xi� s� with respect to s and that with respect to xi� which are given by

�fi�xi� s�

�s
� �x�i � y�i � �xiyi� �xi� �yi � �	 ����

�fi�xi� s�

�xi
� ��xiA� yiB �D� �yiA� xiB �E � yi	 � ����

� Robust Estimation


�� Introduction

As have been stated before� least�squares estimators assume that the noise corrup�
ting the data is of zero mean� which yields an unbiased parameter estimate If the
noise variance is known� an minimum�variance parameter estimate can be obtained
by choosing appropriate weights on the data Furthermore� least�squares estimators

implicitly assume that the entire set of data can be interpreted by only one parame�

ter vector of a given model Numerous studies have been conducted� which clearly
show that least�squares estimators are vulnerable to the violation of these assump�

tions Sometimes even when the data contains only one bad datum� least�squares
estimates may be completely perturbed During the last three decades� many robust

techniques have been proposed� which are not very sensitive to departure from the
assumptions on which they depend

Hampel ��� gives some justi�cations to the use of robustness �quoted in �	����

What are the reasons for using robust procedures� There are mainly

two observations which combined give an answer Often in statistics one
is using a parametric model implying a very limited set of probability
distributions though possible� such as the commonmodel of normally dis�

tributed errors� or that of exponentially distributed observations Clas�

sical �parametric� statistics derives results under the assumption that
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these models were strictly true However� apart from some simple dis�
crete models perhaps� such models are never exactly true We may try to

distinguish three main reasons for the derivations� �i� rounding and grou�
ping and other "local inaccuracies#� �ii� the occurrence of "gross errors#
such as blunders in measuring� wrong decimal points� errors in copying�
inadvertent measurement of a member of a di�erent population� or just

"something went wrong#� �iii� the model may have been conceived only
as an approximation anyway� eg by virtue of the central limit theorem

If we have some a priori knowledge about the parameters to be estimated� tech�
niques� eg Kalman �ltering technique� based on the test of Mahalanobis distance

can be used to yield a robust estimate ����
In the following� we describe four major approaches to robust estimation


�� Clustering or Hough Transform

One of the oldest robust methods used in image analysis and computer vision is
the Hough transform The idea is to map data into the parameter space� which

is appropriately quantized� and then seek for the most likely parameter values to
interpret data through clustering A classical example is the detection of straight
lines given a set of edge points In the following� we take the example of estimating

plane rigid motion from two sets of points
Given p �D points in the �rst set� noted fmig� and q �D points in the second

set� noted fm�
jg� we must �nd a rigid transformation between the two sets The

pairing between fmig and fm�
jg is assumed not known A rigid transformation can

be uniquely decomposed into a rotation around the origin and a translation� in that
order The corresponding parameter space is three�dimensional� one parameter for
the rotation angle � and two for the translation vector t � �tx� ty	

T  More precisely�
if mi is paired to m�

j � then

m�
j � Rmi � t

with

R �

�
cos � � sin �

sin � cos �

�
�

It is clear that at least two pairings are necessary for a unique estimate of rigid

transformation The three�dimensional parameter space is quantized as many levels
as necessary according to the required precision The rotation angle � ranges from
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� to �� We can �x the quantization interval for the rotation angle� say� at �	
�
and we have N� � �� units The translation is not bounded� but it is in practice

We can assume for example that the translation between two images cannot exceed
�  pixels in each direction �ie tx� ty � ������ ���	� If we choose an interval of � 
pixels� then we have Ntx � Nty � �� units in each direction The quantized space
can then considered as a three�dimensional accumulator� of N � N�NtxNty � ���

cells� that is initialized to zero
Since one pairing of points does not entirely constrain the motion� it is di�cult

to update the accumulator because the constraint on motion is not simple Instead�

we can match n�tuples of points in the �rst set and in the second set� where n is
the smallest value such that matching n points in the �rst set with n points in
the second set completely determines the motion �in our case� n � �� Let �zk� z

�
l�

be one of such matches� where zk and z�l are both vectors of dimension �n� each

composed of n points in the �rst and second set� respectively Then the number of
matches to be considered is of order of pnqn �of course� we do not need to consider all
matches in our particular problem� because the distance invariance between a pair
of points under rigid transformation can be used to discard the infeasible matches�

For each such match� we compute the motion parameters� and the corresponding
accumulator cell is increased by 	 After all matches have been considered� peaks in
the accumulator indicate the best candidates for the motion parameters

In general� if the number of data is not larger enough than the number of unk�
nowns� then the maximum peak is not much higher than other peaks� and it may
be not the correct one because of data noise and because of parameter space quan�
tization The Hough transform is thus highly suitable for problems having enough

data to support the expected solution
Because of noise in the measurements� the right peak in the accumulator may be

very blurred so that it is not easily detected The accuracy in the localization with
the above simple implementation may be poor There are several ways to improve

it

� Instead of select just the maximum peak� we can �t a quadratic hyper�surface
The position of its maximum gives a better localization in the parameter space�
and the curvature can be used as an indication of the uncertainty of the esti�

mation

� Statistical clustering techniques can be used to discriminate di�erent candi�
dates of the solution
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� Instead of using an integer accumulator� the uncertainty of data can be ta�
ken into account and propagated to the parameter estimation� which would

considerably increase the performance

The Hough transform technique actually follows the principle of maximum li�

kelihood estimation Let p be the parameter vector �p � ��� tx� ty	
T in the above

example� Let xm be one datum �xm � �zTk � z
�
l
T 	T in the above example� Under

the assumption that the data fxmg represent the complete sample of the probability
density function of p� fp�p�� we have

L�p� � fp�p� �
X
m

fp�pjxm� Pr�xm�

by using the law of total probability The maximum of fp�p� is considered as the

estimation of p The Hough transform described above can thus be considered as
one approximation

Because of its nature of global search� the Hough transform technique is rather
robust� even when there is a high percentage of gross errors in the data For better

accuracy in the localization of solution� we can increase the number of samples in
each dimension of the quantized parameter space The size of the accumulator

increases rapidly with the required accuracy and the number of unknowns This
technique is rarely applied to solve problems having more than three unknowns� and

is not suitable for conic �tting


�� Regression Diagnostics

Another old robust method is the so�called regression diagnostics It tries to iterati�
vely detect possibly wrong data and reject them through analysis of globally �tted
model The classical approach works as follows�

	 Determine an initial �t to the whole set of data through least squares

� Compute the residual for each datum

� Reject all data whose residuals exceed a predetermined threshold� if no data
have been removed� then stop

� Determine a new �t to the remaining data� and goto step �

Clearly� the success of this method depends tightly upon the quality of the initial
�t If the initial �t is very poor� then the computed residuals based on it are
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meaningless� so is the diagnostics of them for outlier rejection As pointed out by
Barnett and Lewis� with least�squares techniques� even one or two outliers in a large

set can wreak havoc' This technique thus does not guarantee for a correct solution
However� experiences have shown that this technique works well for problems with
a moderate percentage of outliers and more importantly outliers only having gross

errors less than the size of good data

The threshold on residuals can be chosen by experiences using for example gra�
phical methods �plotting residuals in di�erent scales� Better is to use a priori
statistical noise model of data and a chosen con�dence level Let ri be the residual

of the ith data� and �i be the predicted variance of the ith residual based on the
characteristics of the data nose and the �t� the standard test statistics ei � ri	�i
can be used If ei is not acceptable� the corresponding datum should be rejected

One improvement to the above technique uses in�uence measures to pinpoint

potential outliers These measures asses the extent to which a particular datum
in�uences the �t by determining the change in the solution when that datum is
omitted The re�ned technique works as follows�

	 Determine an initial �t to the whole set of data through least squares

� Conduct a statistic test whether the measure of �t f �eg sum of square

residuals� is acceptable� if it is� then stop

� For each datum I� delete it from the data set and determine the new �t� each
giving a measure of �t denoted by fi Hence determine the change in the
measure of �t� ie �fi � f � fi� when datum i is deleted

� Delete datum i for which �fi is the largest� and goto step �

It can be shown ���� that the above two techniques agrees with each other at the

�rst order approximation� ie the datum with the largest residual is also that datum
inducing maximum change in the measure of �t at a �rst order expansion The
di�erence is that whereas the �rst technique simply rejects the datum that deviates

most from the current �t� the second technique rejects the point whose exclusion
will result in the best �t on the next iteration In other words� the second technique
looks ahead to the next �t to see what improvements will actually materialize

As can be remarked� the regression diagnostics approach depends heavily on a

priori knowledge in choosing the thresholds for outlier rejection
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�� M�estimators

One popular robust technique is the so�called M�estimators Let ri be the residual

of the ith datum� ie the di�erence between the ith observation and its �tted value
The standard least�squares method tries to minimize

P
i r�i � which is unstable if

there are outliers present in the data Outlying data give an e�ect so strong in the

minimization that the parameters thus estimated are distorted The M�estimators
try to reduce the e�ect of outliers by replacing the squared residuals r�i by another
function of the residuals� yielding

min
X
i

��ri� � ����

where � is a symmetric� positive�de�nite function with a unique minimum at zero�
and is chosen to be less increasing than square Instead of solving directly this

problem� we can implement it as an iterated reweighted least�squares one Now let
us see how

Let p � �p�� � � � � pm	
T be the parameter vector to be estimated The M�estimator

of p based on the function ��ri� is the vector p which is the solution of the following
m equations� X

i

��ri�
�ri
�pj

� � � for j � �� � � � �m� ��
�

where the derivative ��x� � d��x�	dx is called the in�uence function If now we
de�ne a weight function

w�x� �
��x�

x
� �� �

then Equation ��
� becomesX
i

w�ri�ri
�ri
�pj

� � � for j � �� � � � �m ��	�

This is exactly the system of equations that we obtain if we solve the following
iterated reweighted least�squares problem

min
X
i

w�r
	k��

i �r�i � ����
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where the superscript 	k
 indicates the iteration number The weight w�r
	k��

i �

should be recomputed after each iteration in order to be used in the next iteration
The in�uence function ��x� measures the in�uence of a datum on the value of

the parameter estimate For example� for the least�squares with ��x� � x�	�� the
in�uence function is ��x� � x� that is� the in�uence of a datum on the estimate

increases linearly with the size of its error� which con�rms the non�robusteness of
the least�squares estimate When an estimator is robust� it may be inferred that
the in�uence of any single observation �datum� is insu�cient to yield any signi�cant

o�set �	�� There are several constraints that a robust M �estimator should meet�

� The �rst is of course to have a bounded in�uence function

� The second is naturally the requirement of the robust estimator to be unique
This implies that the objective function of parameter vector p to be minimized
should have a unique minimum This requires that the individual ��function is

convex in variable p This is necessary because only requiring a ��function to
have a unique minimum is not su�cient This is the case with maxima when
considering mixture distribution� the sum of unimodal probability distributions
is very often multimodal The convexity constraint is equivalent to imposing

that ���		

�p�

is non�negative de�nite

� The third one is a practical requirement Whenever ���		

�p�

is singular� the

objective should have a gradient� ie ��		

�p �� � This avoids having to search

through the complete parameter space

Table 	 lists a few commonly used in�uence functions They are graphically dipicted
in Fig � Note that not all these functions satisfy the above requirements

Brie�y we give a few indications of these functions�

� L� �ie least�squres� estimators are not robust because their in�uence function
is not bounded

� L� �ie absolute value� estimators are not stable because the ��function jxj is
not trictly convex in x Indeed� the second derivative at x � � is unbounded�
and an indeterminant solution may result

� L� estimators reduce the in�uence of large errors� but they still have an in�
�uence because the in�uence function has no cut o� point
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Table 	� A few commonly used M�estimators
type ��x� ��x� w�x�

L� x�	� x �

L� jxj sgn�x�
�

jxj

L� � L� ��
p
� � x�	�� ��

xp
� � x�	�

�p
� � x�	�

Lp
jxj

�

sgn�x�jxj
�� jxj
��

"Fair# c��
jxj
c
� log�� �

jxj
c
�	

x

� � jxj	c
�

� � jxj	c

Huber

�
if jxj � k

if jxj 
 k

�
x�	�

k�jxj � k	��

�
x

k sgn�x�

�
�

k	jxj

Cauchy
c�

�
log�� � �x	c���

x

� � �x	c��
�

� � �x	c��

Geman�McClure
x�	�

� � x�
x

�� � x���
�

�� � x���

Welsch
c�

�
��� exp���x	c���	 x exp���x	c��� exp���x	c����

Tukey

�
if jxj � c

if jxj � c

���
c�




�
�� ��� �x	c��	�

�
�c�	
�

�
x��� �x	c��	�

�

�
��� �x	c��	�

�
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Fig �� Graphic representations of a few common M�estimators
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� L��L� estimators take both the advantage of the L� estimators to reduce the
in�uence of large errors and that of L� estimators to be convex

� The Lp �least�powers� function represents a family of functions It is L� with
� � � and L� with � � � The smaller �� the smaller is the incidence of
large errors in the estimate p It appears that � must be fairly moderate to

provide a relatively robust estimator or� in other words� to provide an estimator
scarcely perturbed by outlying data The selection of an optimal � has been
investigated� and for � around 	�� a good estimate may be expected �	��
However� many di�culties are encountered in the computation when parameter

� is in the range of interest � � � � �� because zero residuals are troublesome

� The function "Fair# is among the possibilities o�ered by the Roepack package
�see �	��� It has everywhere de�ned continuous derivatives of �rst three orders�

and yields a unique solution The 
�& asymptotic e�ciency on the standard
normal distribution is obtained with the tuning constan c � �����

� Huber�s function ��� is a parabola in the vicinity of zero� and increases linearly

at a given level jxj � k The 
�& asymptotic e�ciency on the standard normal
distribution is obtained with the tuning constant k � ����� This estimator
is so satisfactory that it has been recommended for almost all situations� very
rarely it has been found to be inferior to some other ��function However�

from time to time� di�culties are encountered� which may be due to the lack
of stability in the gradient values of the ��function because of its discontinuous
second derivative�

d���x�

dx�
�

�
� if jxj � k�

� if jxj 
 k

The modi�cation proposed in �	�� is the following

��x� �

�
c���� cos�x	c�	 if jxj	c � �	��

cjxj� c���� �	�� if jxj	c 
 �	�

The 
�& asymptotic e�ciency on the standard normal distribution is obtained
with the tuning constan c � ������

� Cauchy�s function� also known as the Lorentzian function� does not guarantee

a unique solution With a descending �rst derivative� such a function has a
tendency to yield erroneous solutions in a way which cannot be observed The
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�& asymptotic e�ciency on the standard normal distribution is obtained with
the tuning constan c � �����

� The other remaining functions have the same problem as the Cauchy function

As can be seen from the in�uence function� the in�uence of large errors only de�
creases linearily with their size The Geman�McClure and Welsh functions try
to further reduce the e�ect of large errors� and the Tukey�s biweight function

even suppress the outliers The 
�& asymptotic e�ciency on the standard nor�
mal distribution of the Tukey�s biweight function is obtained with the tuning
constant c � ��
��� that of the Welsch function� with c � ����


There still exist many other ��functions� such as Andrew�s cosine wave function
Another commonly used function is the following tri�weight one�

wi �

�����
� jrij � �

�	jrij � � jrij � ��

� �� � jrij �

where � is some estimated standard deviation of errors
It seems di�cult to select a ��function for general use without being rather

arbitrary Following Rey �	��� for the location �or regression� problems� the best
choice is the Lp in spite of its theoretical non�robustness� they are quasi�robust
However� it su�ers from its computational di�culties The second best function
is "Fair#� which can yield nicely converging computational procedures Eventually

comes the Huber�s function �either original or modi�ed form� All these functions
do not eliminate completely the in�uence of large gross errors

The four last functions do not quarantee unicity� but reduce considerably� or

even eliminate completely� the in�uence of large gross errors As proposed by Hu�
ber ���� one can start the iteration process with a convex ��function� iterate until
convergence� and then apply a few iterations with one of those non�convex functions
to eliminate the e�ect of large errors


�� Least Median of Squares

The least�median�of�squares �LMedS� method estimates the parameters by solving
the nonlinear minimization problem�

min med
i

r�i �
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That is� the estimator must yield the smallest value for the median of squared
residuals computed for the entire data set It turns out that this method is very

robust to false matches as well as outliers due to bad localization Unlike the M�
estimators� however� the LMedS problem cannot be reduced to a weighted least�
squares problem It is probably impossible to write down a straightforward formula
for the LMedS estimator It must be solved by a search in the space of possible

estimates generated from the data Since this space is too large� only a randomly
chosen subset of data can be analyzed The algorithm which we describe below
for robustly estimating a conic follows that structured in ��	� Chap ��� as outlined

below
Given n points� fmi � �xi� yi	

T g
	 A Monte Carlo type technique is used to draw m random subsamples of p

di�erent points For the problem at hand� we select �ve �ie p � �� points
because we need at least �ve points to de�ne a conic

� For each subsample� indexed by J � we use any of the techniques described in
Sect� to compute the conic parameters pJ  �Which technique is used is not
important because an exact solution is possible for �ve di�erent points�

� For each pJ � we can determine the median of the squared residuals� denoted
by MJ � with respect to the whole set of points� ie

MJ � med
i���			 �n

r�i �pJ �mi� �

Here� we have a number of choices for ri�pJ �mi�� the residual of the ith point
with respect to the conic pJ  Depending on the demanding precision� com�
putation requirement� etc� one can use the algebraic distance� the Euclidean

distance� or the gradient weighted distance

� We retain the estimate pJ for which MJ is minimal among all m MJ �s

The question now is� How do we determine m� A subsample is "good# if it consists
of p good data points Assuming that the whole set of points may contain up to a
fraction � of outliers� the probability that at least one of the m subsamples is good

is given by

P � �� ��� ��� ��p	m � ����
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By requiring that P must be near 	� one can determine m for given values of p and
��

m �
log��� P �

log��� ��� ��p	
�

In our implementation� we assume � � ��� and require P � ����� thusm � �� Note

that the algorithm can be speeded up considerably by means of parallel computing�
because the processing for each subsample can be done independently

As noted in ��	�� the LMedS e	ciency is poor in the presence of Gaussian noise
The e�ciency of a method is de�ned as the ratio between the lowest achievable

variance for the estimated parameters and the actual variance provided by the given
method To compensate for this de�ciency� we further carry out a weighted least�
squares procedure The robust standard deviation estimate is given by

�� � ����
�� � �	�n� p�	
p
MJ �

whereMJ is the minimal median The constant 	���� is a coe�cient to achieve the
same e�ciency as a least�squares in the presence of only Gaussian noise� �	�n � p�

is to compensate the e�ect of a small set of data The reader is referred to ��	� page
� �� for the details of these magic numbers Based on ��� we can assign a weight for
each correspondence�

wi �

�
� if r�i � ��������

� otherwise �

where ri is the residual of the ith point with respect to the conic p The correspon�
dences having wi � � are outliers and should not be further taken into account The

conic p is �nally estimated by solving the weighted least�squares problem�

min
p

X
i

wir
�
i

using one of the numerous techniques described before We have thus robustly
estimated the conic because outliers have been detected and discarded by the LMedS

method
As said previously� computational e�ciency of the LMedS method can be achie�

ved by applying a Monte�Carlo type technique However� the �ve points of a sub�

sample thus generated may be very close to each other Such a situation should be

avoided because the estimation of the conic from such points is highly instable and
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the result is useless It is a waste of time to evaluate such a subsample In order
to achieve higher stability and e�ciency� we develop a regularly random selection

method based on bucketing techniques� which works as follows We �rst calculate
the min and max of the coordinates of the points in the �rst image The region is
then evenly divided into b� b buckets �see Fig �� in our implementation� b � � To
each bucket is attached a set of points� and indirectly a set of matches� which fall in

it The buckets having no matches attached are excluded To generate a subsample
of � points� we �rst randomly select � mutually di�erent buckets� and then randomly
choose one match in each selected bucket

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig �� Illustration of a bucketing technique

One question remains� How many subsamples are required� If we assume that
bad points are uniformly distributed in space� and if each bucket has the same
number of points and the random selection is uniform� the formula ���� still holds
However� the number of points in one bucket may be quite di�erent from that in

another As a result� a point belonging to a bucket having fewer points has a higher

probability to be selected It is thus preferred that a bucket having many points
has a higher probability to be selected than a bucket having few points� in order
that each point has almost the same probability to be selected This can be realized

by the following procedure If we have in total l buckets� we divide �� �	 into l
intervals such that the width of the ith interval is equal to ni

�P
i ni� where ni is the

number of points attached to the ith bucket �see Fig �� During the bucket selection

procedure� a number� produced by a �� �	 uniform random generator� falling in the

ith interval implies that the ith bucket is selected
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� �

number of matches

bucket

random

variable

Fig �� Interval and bucket mapping

We have applied this technique to matching between two uncalibrated images ����
Given two uncalibrated images� the only available geometric constraint is the epi�

polar constraint The idea underlying our approach is to use classical techniques

�correlation and relaxation methods in our particular implementation� to �nd an
initial set of matches� and then use the Least Median of Squares �LMedS� to discard
false matches in this set The epipolar geometry can then be accurately estimated

using a meaningful image criterion More matches are eventually found� as in stereo
matching� by using the recovered epipolar geometry

�� Conclusions

In this tutorial� I have presented what is probably the most commonly used tech�
niques for parameter estimation in computer vision Particular attention has been

devoted to discussions about the choice of appropriate minimization criteria and the
robustness of the di�erent techniques Hopefully� the reader will �nd this tutorial
useful Comments are extremely welcome

Another technique� which I consider to be very important and becomes popular

now in Computer Vision� is the Minimum Description Length �MDL� principle
However� since I have not yet myself applied it to solve any problem� I am not in a
position to present it The reader is referred to �	�� 
� 	 �
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