
Fast Safe Mission Plans for Autonomous Vehicles

Debadeepta Dey, Dorsa Sadigh and Ashish Kapoor

Abstract— Guaranteeing safety is a key problem that needs
to be addressed in order to enable the real-world deployment
of robots and autonomous cyber-physical systems (CPS). While
there is a lot of interest in deploying sensors and predictors
that would identify obstacles and unsafe situations, there is
little research on how to use such learned systems to plan and
execute missions safely and efficiently. Recent research on safe
planning and control not only admits to simplistic constraints,
most of them assumed to be known a priori, but attempting such
synthesis often results in large optimization problems which
are often impractical to solve given real time constraints of
such systems. In this work we propose a novel combination
of sampling-based motion planning with safe control synthesis
methods for generating safe high-level plans in real-time. The
distinguishing aspect of our work is that it provides a natural
framework of incorporating sensor data and the associated
prediction about the obstacles to quickly determine the safe
mission plan. We showcase this approach with autonomous car
scenarios.

I. INTRODUCTION

Robotic and cyber-physical systems are proliferating at
a breakneck pace. Semi-autonomous and fully autonomous
cars and unmanned aerial vehicles (UAVs) are already reality
and are expected to integrate more closely with humans
in the near future [29]. A key technological hurdle in
this process is to ensure the safety of such systems at all
times especially within the proximity of humans and while
carrying out mission-critical tasks. While there has been
a push in identifying obstacles and unsafe situations via
sensors and machine learned predictors [4], [1], the task
of embedding such information to determine safe course
while obeying rules-of-the-road is non-trivial [22]. Further,
the uncertainty and noise in prediction together with near
real-time requirements under bounded computation resources
makes this problem very challenging [7].

This work proposes an architecture for fast and safe
planning of autonomous missions. The key idea behind this
work is to consider recent research on optimization based
safe controllers and then incorporate fast sampling based pro-
cedures to generate in real-time the mission plans for com-
plex scenarios. Specifically, we build upon the recent work
in Probabilistic Signal Temporal Logic (PrSTL) [27] that
synthesizes provably safe controllers that take into account
the noisy sensor readings and the associated uncertainty
in learned classifier or regressor predictions. Currently, the
state-of-the-art solution for PrSTL requires solving Mixed

Debadeepta Dey and Ashish Kapoor are with Microsoft Re-
search, One Microsoft Way, Redmond, WA 98052, USA {dedey,
akapoor}@microsoft.com

Dorsa Sadigh is with the Department of Electrical Engi-
neering, University of California, Berkeley, CA 94720, USA
dsadigh@eecs.berkeley.edu

Integer Semi-Definite Programs (MISDPs), which quickly
become infeasible to solve in reasonable time as the number
of constraints grow. Further, PrSTL needs the description
of the mission goal and the required safety invariants as
logical formulations and often expressing such objectives
and constraints for long horizons and complicated rules-of-
the-road remain non-trivial at best. Finally, the near real-
time planning requirements under constrained computational
resources makes such approaches impractical.

We alleviate these problems by combining PrSTL with
random sampling based planners. We propose using Rapidly-
exploring Random Trees (RRT) [15] and associated variants
like RRT* [11] to simplify computation by first efficiently
sampling feasible points in the robot’s configuration space
and then generating trajectories by connecting them via safe
control. Such fast sampling of the feasible trajectories effec-
tively reduces the optimization from a MISDP to a sequence
of Second Order Cone Programs (SOCP), which being
convex, can be solved much more efficiently. Furthermore,
the RRT/RRT* framework only needs a procedure/function
to check the violation of safety constraints. Consequently
there is no requirement enforcing that all the invariants must
be written as logical programs. Instead we can use only
the convex subset of invariants in PrSTL to encode safety
constraints. Specifically, our contributions in this paper are:
• A framework for fast and safe mission planning under

uncertainty.
• Combining RRT* with control for PrSTL to generate

adaptive plans such that the resulting trajectories satisfy
both the safety and the PrSTL specifications using
SOCP.

• A toolbox implementing the framework and experi-
ments in autonomous driving and control of quadrotors.

In the rest of this paper, we first discuss some of the related
work and preliminaries, we then describe our framework
and show our solution along with some experimental results
which shows the large speedup obtained in long range
planning without sacrificing safety.

II. BACKGROUND

A. Planning and Control

Most autonomous systems today are implemented as hy-
brid hierarchical systems with a mission planner at the
top level that gives low level controllers smaller primitives
(e.g. trajectories) to execute [29], [3]. The objective of the
mission planner is to satisfy the mission-level objectives
while observing the rules-of-the-road and avoiding obstacles.
In contrast controllers at lower levels of the hierarchy (e.g.

PID [33], LQR [16], H-infinity [32]) are responsible for
executing trajectories handed to them and actually making
the system reach the goal state [32].

Examples of high level mission planners include state-
lattice motion primitives [21], incomplete planners like
CHOMP [26] and complete sampling-based motion planning
like Probabilistic Road Maps (PRM) [12], Rapidly-Exploring
Random Tree (RRT) [15] and variants like RRT* [11]. In the
past few years sampling-based motion planners have shown
great improvements in solving high dimensional kinody-
namic motion planning problems for a wide variety of robotic
systems from high-degrees-of-freedom manipulators [2] to
mobile robot navigation [14]. They are relatively simple
to implement and overcome the curse of dimensionality
problem by cleverly leveraging the lower dimensionality of
the task space as compared to the configuration (joint) space
of robots. RRT [15] is probabilistically complete in the sense
that if there exists a feasible path, RRT is guaranteed to
find that path given enough time. Nonetheless, RRT was
proven to converge to sub-optimal solutions and the proposed
alternative RRT* [10] is provably asymptotically optimal
albeit at the cost of increased computational complexity.

A major limitation of such planners is that they assume
that the environment is perfectly known beforehand. In
practice this is rarely the case and most autonomous robots
have onboard sensors (e.g cameras, radars, lidars) which
perceive the environment in the immediate vicinity with
some uncertainty. Additionally there may be uncertainty in
dynamics as well. Along with the growing proximity to
humans of such systems such as autonomous cars and drones,
constructing plans in real-time which are provably safe is
becoming a challenge of growing importance. While there
have been previous efforts to incorporate such uncertainty
into planning [19], [4], [30], safety guarantees have been
difficult to provide in such settings especially under con-
strained computational budget. One of the closest approaches
to our work is that of [17] who propose a chance-constrained
RRT (CC-RRT) where uncertainty in dynamic obstacles and
sensing is propagated down the tree and only those paths in
the tree are kept such that they satisfy a real-time constraint.
In contrast to CC-RRT, our approach uses PrSTL in the
steering function, and allows a much richer class of Boolean
and temporal constraints to be specified in addition to prob-
abilistic constraints. Furthermore, using our approach with
PrSTL constraints instead of CC-RRT provides a natural way
of expressing uncertainties present from Bayesian classifiers
that update their beliefs by inference.

There has been recent developments in synthesizing con-
trollers, inspired from tools and techniques in program veri-
fication and artificial intelligence where the goal is to synthe-
size control policies that satisfy temporal properties, disjunc-
tions, conjunctions or negations of user-specified predicates.
Examples of such constraints include “The robot must always
stay 2 meters away from all obstacles” or “First go to X and
then do Y”. Several temporal logic specification languages
have been developed and adapted for synthesizing controllers
such as Linear Temporal Logic (LTL) [13], [28], Metric

Temporal Logic (MTL) [8], Probabilistic Temporal Logic
(PTL) [31] and Signal Temporal Logic (STL) [24], [23], [18].
These approaches can be used for task planning [22], where
a system designer a priori specifies logical specifications
composed of disjunctions, conjunctions, negations as well
as temporal permutations of those combinations. Previous
work has also proposed methods for combining sampling-
based motion planners with such specification languages to
do joint task and motion planning for autonomous robots [9],
[8]. However, these approaches are limited in their capacity
to both express the constraints as well as the capability to
account for uncertainty in sensors and dynamics.

Temporal logics like STL are amenable to specification
of stochastic properties of continuous signals. These signals
could be functions of the robot state, environment and other
safety parameters. Recent work has proposed probabilistic
logical specification (PrSTL) [27] that introduces random
variables in logical formulae to express uncertainty in the
robot state, environment and other exogenous variables. Such
probabilistic formulation enables embedding of Bayesian
classifiers and predictors in the specification language,
thereby allowing the systems to operate in environments that
are only partially observed. In our framework we propose
a new method that builds upon RRT* and uses PrSTL as a
steering function. This method combines the positive aspects
of both the techniques: (1) PrSTL enables us to specify safety
invariants and allows embedding of machine learning predic-
tors operating on real-time signals. (2) The RRT* framework
allows fast computation of strategies circumventing the need
to solve computationally difficult problems that usually arise
in logical specification based control synthesis methods. We
next provide more details on PrSTL.

B. Probabilistic Signal Temporal Logic

Probabilistic Signal Temporal Logic (PrSTL) allows ex-
pressing stochastic properties over real-valued, dense-time
signals. Given the capabilities that PrSTL provides, we can
formally define temporal properties over uncertainties that
are present in sensors and classifiers of the system. For
example, we can express PrSTL formulas that represent
probability that the output of a Bayesian predictor would
lie in a desired range for time steps in the future.

Let x(t) denote a real-valued signal at time t, then (x, t) |=
ϕ specifies that the signal x satisfies the PrSTL formula ϕ at
time t. A PrSTL formula ϕ consists of temporal and Boolean
properties over atomic predicates represented as λεtαt

. Such
predicates are defined over time-varying random variables αt
drawn from a distribution at every time step. Furthermore,
εt ∈ [0, 0.5] represents a tolerance level for satisfaction of
the predicate. Therefore, satisfaction of this atomic predicate
translates to:

(x, t) |= λεtαt
⇐⇒ P

(
λαt

(x(t)) < 0
)
> 1− εt, (1)

where λαt
(x(t)) is a stochastic function of the signal,

which can express uncertainties regarding sensors, classifiers,
etc. For example, if αt represent parameters of a classifier
then computing the stochastic function simply corresponds

to application of the classifier to x(t). Consequently, the
atomic predicate described above signifies that only those
trajectories for which the condition λαt(x(t)) < 0 holds
with a high probability should be considered valid. PrSTL
allows nesting of temporal and Boolean properties over the
probabilistic predicates. Similar to other temporal logics,
PrSTL provides the capability of expressing rich properties
such as safety, response, surveillance, etc. in addition to
preserving the uncertainties inherent in sensors as part of
the formula. The syntax of PrSTL is defined as follows:

ϕ ::= λεtαt
| ¬̃λεtαt

|ϕ∧ψ |ϕ∨ψ |G[a,b]ψ |ϕU[a,b]ψ |F[a,b]ψ.

Here, ϕ is constructed as a probabilistic predicate λεtαt
,

its negation ¬̃λεtαt
, the Boolean conjunction or disjunction

of two PrSTL formulae, or temporal operators applied
over PrSTL formulae. The temporal operators consist of
G (globally), F (eventually) and U (until). For example,
G[5,7](P (λαt

(x(t)) < 0) > 0.8) is a formula indicating that
the stochastic function λαt

(x(t)) must be less than zero with
0.8 confidence for all times in the interval t ∈ [5, 7].

The satisfaction of each temporal or propositional formula
is then defined as follows:

(ξ, t) |= λεtαt
⇔ P (λαt

(ξ(t)) < 0) > 1− εt
(ξ, t) |= ¬̃λεtαt

⇔ P (−λαt
(ξ(t)) < 0) > 1− εt

(ξ, t) |= ϕ ∧ ψ ⇔ (ξ, t) |= ϕ ∧ (ξ, t) |= ψ
(ξ, t) |= ϕ ∨ ψ ⇔ (ξ, t) |= ϕ ∨ (ξ, t) |= ψ
(ξ, t) |= G[a,b]ϕ ⇔ ∀t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ
(ξ, t) |= F[a,b]ϕ ⇔ ∃t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ
(ξ, t) |= ϕ U[a,b] ψ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (ξ, t′) |= ψ

∧∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ.

The PrSTL formulas can be treated as constraints in
receding horizon optimization problems that synthesize safe
controllers. Also note that as the robot begins to traverse the
trajectory, it has the opportunity to observe new data and
update its beliefs over the parameters αt. Such evolution of
constraints allow the autonomous system to safely operate in
environment thats partially observed.

It is shown that given αt is drawn from a Gaussian
distribution, the control synthesis problem under PrSTL
constraints can be solved as a mixed integer semi-definite
program (MISDP). While solving an MISDP is NP-complete,
there exists a subset of PrSTL called Convex PrSTL that
is recursively defined over the predicates using only con-
junctions or the globally operator. As the name implies
the optimization problem reduces to second order cone
programming (SOCP) and is convex. One of the advantages
of the framework proposed in this paper is that instead of
solving a general mission planning task as computationally
intensive PrSTL, it uses RRT* to decompose the problem
into a sequence of simpler convex optimization tasks.

III. APPROACH

In this section, we detail our approach for the general
scenario where a robot is tasked with navigating from a start

state to a goal state and an incomplete map of the environ-
ment is available. This means that there might be additional
obstacles and other latent variables on the map, which are
unknown in the beginning but as the robot navigates, onboard
sensors (noisily) detect them.

The key idea in our approach is to first sample the
configuration space for valid points that satisfy the safety
invariants, and then seek for a safe path or trajectory that
would connect these sets of sampled points. Such safe
trajectories are determined via safe control synthesis using
the PrSTL framework. Given the sampled points and the safe
trajectories that connect these, the framework finally chooses
the shortest path from the start to the goal which minimizes
the cost criterion of interest.

One big advantage of this framework is that the validity
test for random samples does not need a rigid logical specifi-
cation and can be expressed as an imperative procedure. Such
imperative descriptions allows checking of fairly complex
safety conditions, which might be very hard to evaluate
using PrSTL. For example, the boundaries of a flying arena
can be of arbitrary shape, and constraints on such non-
parametric boundaries cannot be easily expressed as logical
formulae. However, given a map of such arena it is easy
to check whether a sample is valid or not. Also note that
the PrSTL framework has the capability to embed an online
predictor that can continuously monitor the environment.
Consequently, any obstacle or unsafe conditions not known
a priori can also be handled in a seamless manner.

Algorithm 1 PRSTL-TREE: Safe planning and control to goal.

Require: Map of known obstacles M
Start state sstart
Goal state sgoal
Goal region radius gradius
Number of vertices in tree nvertices
Number of steps per planning cycle nsteps

Ensure: Path traversed to goal p = {sstart, s1, . . . , sgoal}
1: p = {}
2: scurrent = sstart
3: while dist(scurrent, sgoal) > gradius do
4: tree← BuildSafeTree(M, scurrent, sgoal, nvertices)
5: snearest ← FindNearestNeighbor(tree, sgoal)
6: pshortest ← ShortestPathToGoal(tree, scurrent, snearest)
7: (ptraversed, scurrent, obsv)← TakeNSteps(pshortest, nsteps)
8: p← p ∪ ptraversed
9: UpdateBelief(obsv)

10: end while

Algorithm 1 details the main steps of our approach, which
we term as PRSTL-TREE. The algorithm requires a mapM
of the environment which contains known obstacles and also
encodes rules-of-the-road like no-fly regions, a start state
sstart, a goal state sgoal, radius gradius which describes the
goal region centered around the goal state, the number of
vertices to be built into the sampling-based motion planner

tree nvertices at each planning cycle and the number of steps
nsteps that the robot will actually traverse each planning cycle.

Initially the path taken by the robot is set to the empty
sequence p = {} and the current state is set to scurrent (lines
1 − 2). While the robot is still more than gradius away from
the goal region the safe planner is invoked in a receding-
horizon style to find a safe path to goal (lines 3 − 10). In
line 4 the function BuildSafeTree invokes a sampling-based
motion planner on the map M of known obstacles. Suitable
choices for sampling-based motion planner include RRT [15]
and RRT* [10]. This function creates a tree so that it has
nvertices from the current state scurrent of the robot towards
the goal state sgoal. Note that it is not a requirement for
the tree to reach the goal in nvertices. Approaches like RRT
and RRT* build a tree towards the goal state by sampling
states at random, checking that they lie in free space and
then connecting the sampled state to the nearest node{s}
in the tree using a steering function which is responsible
for producing dynamically feasible trajectories. These tra-
jectories are then checked for collision and satisfaction of
rules-of-the-road and then added to the tree. In this work,
we take the approach of constructing dynamically feasible
and high-probability collision-free trajectories for connecting
states in the tree leveraging the PrSTL [27] framework for
synthesizing trajectories. PrSTL takes sensor uncertainty and
robot dynamics into account to synthesize trajectories which
are probabilistically safe up to user-specified confidence. If
it is not feasible to construct such a trajectory then the
PrSTL routine returns an empty trajectory and the sampled
state is rejected. So in line 4 the returned tree has edges
(trajectories) which are safe by construction.

In line 5 the nearest state snearest in the tree to the goal
state is found by an efficient nearest neighbor search. Then
the shortest path in the tree from root (scurrent) to snearest is
computed using A* [6] or Dijkstra’s shortest path algorithm
[5] in line 6 to give a path pshortest.

In line 7 the robot executes nsteps of pshortest and ends
up in a new current state scurrent. Along the way it makes
observations using its onboard (noisy) sensors which then
can be used to update the obstacle classifier embedded in
the PrSTL framework. If the robot is not in the goal region
at this time, it builds a safe tree again using its updated
beliefs from its current state.

PRSTL-TREE mitigates the chief limitation of using
PRSTL alone for long-horizon mission planning with ar-
bitrarily complicated obstacle maps and rules-of-the-road:
it eliminates the use of mixed-integer constraints which
are necessary for accounting for obstacles and sequential
waypoints in PRSTL. Since mixed-integer SOCPs or SDPs
are NP-hard [20] these are usually solved sub-optimally by
branch-and-bound based algorithms and have large runtimes
for non-trivial problem sizes. By relegating this difficult task
of modeling known obstacles and waypoints to a sample-
based planner, only the convex subset of PRSTL is needed
which gives rise to SOCPs which are convex and can be
solved optimally in polynomial time.

In section IV we show via two examples in simulation the

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) Initial state of the robot.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) Final state of the robot.

Fig. 1: Autonomous robot reaching a final goal while avoiding
obstacles. Here, the red car on the road shows the autonomous
robot. The robot’s goal is to travel on the circular road while
avoiding obstacles and staying within boundaries. The orange
triangles represent the obstacles on the road. The green line on
both figures shows the computed future trajectory of the robot for
the next horizon. The blue line in 1b shows the trajectory computed
and taken by the robot to reach its goal.

large speedup in time obtained by using PRSTL-TREE as
opposed to PRSTL.

IV. CASE STUDY: EXPERIMENT WITH AUTONOMOUS
ROBOT OBSTACLE AVOIDANCE

In this section, we study safe control of an autonomous
ground robot under known obstacles and uncertain envi-
ronments. We let the dynamics of the robot be a simple
point-mass model, where the state of the robot is: x =
[x y θ v]>. Here, x and y are the coordinates of the
robot, θ is the heading angle , and v is the speed. The control
input of this robot is u = [u1 u2], where u1 is the steering
angle and u2 is the acceleration. Then, given m is the mass
of the ground robot, the dynamics model of the robot is:

ẋ = v cos(θ) ẏ = v sin(θ)

θ̇ =
v

m
u1 v̇ = u2

(2)

Our goal in this case study is to find control inputs for the
ground robot so it reaches a final goal while avoiding obsta-
cles and staying within the road boundaries. Figure 1a shows
the initial setting of our experiment. The red car represents
our ground vehicle that must stay within the boundaries of
the circular road. The orange triangles represent the obstacles
present in this scenario. The robot is constrained to travel on
the road while avoiding the orange triangles. These obstacles
can either be known a priori or only known locally based on
uncertainties arising from classifiers.

In this case study, we compare two techniques for solving
the safe controller synthesis problem: (i) Using receding
horizon controller synthesis methods with PrSTL constraints
for reaching the goal state as in [27]. (ii) Using our proposed
method, PrSTL-Tree, which allows RRT planning as well as
applying safe control for connecting the nodes of the tree.

In our experiments, we make this comparison between
the two methods for both cases with known and unknown
obstacles. Known obstacles refer to when the coordinates of
all obstacles in the environment are known a priori, while

!

"
#

$ = 	 '(

$ =	 '(

!

#

(a) (b)

Fig. 2: Obstacle avoidance by staying on one side of a hyperplane.
p and q are the corners of an obstacle. We calculate ~n as the unit
normal to this hyperplane. For a state with coordinates r to be in
the yellow region, the dot product of ~n and vector ~px must be
negative. In (b), we show fitting a polygon to the inner circle in
order to enforce staying out of the inner road boundary.

unknown obstacles correspond to when we run Bayesian
classifiers to construct a belief of where the obstacles are
located at in the safe trajectory planning.

A. Known Obstacles

We first consider the case when all the obstacles are known
a priori. We represent avoiding each triangle constraint in
Figure 1, by stating that the robot must stay outside of the
triangle, which is equivalent to staying on one side of each
face of the triangle. Note, obstacle avoidance is a non-convex
property, which requires disjunction of properties that state
the robot must stay on one side of a hyperplane.

Let p and q denote the coordinates of the two corners of a
side of an obstacle as shown in Figure 2(a). We compute ~n,
the normal vector to the hyperplane represented by pq. Then,
to specify that the coordinates of a state r =

[
x y

]>
must

be exactly on one side of the hyperplane pq is equivalent to
the following linear constraint:

~n · (r− p) ≤ 0 (3)

This constraint specifies that the inner product of the normal
vector and the vector of ~pr must be negative meaning that
r is in the yellow region in Figure 2(a), which is outside the
obstacle.

Then, the PrSTL formula that represents avoiding each
triangle is a disjunction of staying on one side of each
hyperplane of the triangle for all time steps:

G[0,∞]

∨
i∈1,2,3

(~ni · (r− pi) ≤ 0) (4)

Here, i is an index for sides of each triangle.
In addition to obstacle avoidance, the robot must stay

within the boundaries of the road. Remaining inside the outer
boundary is a convex property:

G[0,∞)(||
[
x y

]> ||2) ≤ Rout, (5)

which indicates that the coordinates of the robot must stay
within an outer radius Rout. We represent remaining outside

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) The RRT generated for
reaching the goal.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) Reaching the final state by
following the tree.

Fig. 3: Using PrSTL-Tree approach for reaching the final goal
while staying safe. Here, all the obstacles are known a priori.

of the inner boundary by approximating the inner circle as a
polygon as shown in Figure 2. Then, to enforce being outside
of the inner circle is equivalent to enforce being outside of
each edge of the polygon. Each of such constraints is similar
to equation (3), which specifies staying on one side of a
hyperplane. In our experiments, we approximated the inner
circle with a 20-sided polygon, which was sufficient for the
robot to stay on the road.

We then compute the trajectory that travels a quarter of the
circular road shown in Figure 1b solely by using receding
horizon optimization with obstacle avoidance properties as
in equation (4). The blue trajectory in Figure 1b shows
the trajectory computed by this method, and the green line
represents the computed trajectory for the next horizon. The
solution to this optimization is found in 20.9898 seconds.

Using our PrSTL-Tree method, we create an RRT as
shown in Figure 3a, and use the safe controller synthesis
method with PrSTL constraints to connect nodes of this tree.
However, the RRT planning will handle remaining within
road boundaries and obstacle avoidance as all obstacles and
the road boundaries are known. Consequently, all the non-
convex properties are handled through RRT without being
considered as part of the safe control method. This hierar-
chical approach removes all the non-convex properties, and
significantly speeds up the controller synthesis algorithm.
The final trajectory using this approach is shown in green
in Figure 3b, and finding this solution took 1.4175 seconds.
This is approximately 15 times faster than using receding
horizon optimization with PrSTL constraints.

B. Unknown Obstacles

Although we have shown significant timing improvement
for the case of known obstacles, our PrSTL-Tree approach
shows its complete power for scenarios that involve un-
certainty. Uncertain scenarios, such as noisy range finders
or imperfect classifiers allow us to take advantage of the
expressibility of PrSTL. For this case study, we consider
the same driving scenario as shown in Figure 1 with the
difference that all the inner obstacles are not known a priori.
This is shown in Figure 4, where the pink obstacles are the
unknown obstacles whose location is learned online.

We then use a mesh of points around the robot that act as
range finders that can detect obstacles. Using linear Gaussian
Processes [25], we are able to predict if a point in the space is
an obstacle or not based on the learned Gaussian distribution.
Therefore, the problem of obstacle avoidance translates to
probabilistic constraints as follows:

G[0,∞)

(
Pr(v ·

[
x y 1

]> ≤ 0) ≥ 1− ε
)

(6)

Here, v is a Gaussian vector learned by linear Gaussian
Processes, and (x, y) are the coordinates of the robot. The
inner product of v and

[
x y 1

]>
represents the current

belief of coordinates (x, y) being in an obstacle or not. We
would like to enforce that the coordinates are outside of
obstacles with high probability 1− ε at all times t ∈ [0,∞).
For our experiments, we chose ε = 0.5, which allows an
easier fit of a prediction line to triangular shaped obstacles.
Although ε is large, the resulting trajectories in Figure 4 do
not collide with any obstacles.

Note, in this case, the probabilistic constraints can equiv-
alently be written as semi-definite programs which makes
the constraints corresponding to uncertain obstacles convex.
However, the known obstacles and the boundary conditions
of the road are still non-convex constraints. Using the
receding horizon safe control technique, we compute the
optimal trajectory of traveling a quarter of the circular road in
16.9848 seconds. This is shown in Figure 4a, where the blue
line shows the trajectory computed and taken by the robot
and the green line is the next horizon’s planned trajectory.
The computation time for this example is smaller than the
same example with known obstacles. Obstacle avoidance
under uncertainty results in convex properties, which can
help lowering the computation time by reducing the number
of disjunctions in the formula.

Using our method of PrSTL-Tree, we were able to find
the controller in 2.1339 seconds. This value is again sig-
nificantly (approximately 8 times) smaller than only using
the optimization based method with PrSTL constraints. Note,
this computation time is larger than the same scenario but
with all known obstacles. This is because, the safe control
optimization that connects the nodes in the graph has to solve
a more complex problem including obstacle avoidance under
uncertainty.

V. CONCLUSION

We propose a framework for efficiently computing mission
plans that are safe even under uncertain environments. The
core idea of the proposed approach is to combine recent
techniques in controller synthesis via Probabilistic logical
specifications with sampling based mission planners. In par-
ticular, the proposed method gets around the computational
and semantic limitations of PrSTL by embedding into an
RRT* sampling strategy. We demonstrate the framework on
the task of autonomous driving and quadrotor scenarios.
Future work includes application of this work to other
domains including airline flight planning and other robotic
tasks.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) Reaching the final state by
receding horizon optimization
for PrSTL under uncertainty.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) Reaching the final state
by following PrSTL-Tree un-
der uncertainty.

Fig. 4: Comparing receding horizon optimization for safe control
on the left and PrSTL-Tree approach on the right for reaching
the same final goal while staying safe. Here, the orange triangles
represent the known obstacles and the pink ones represent the
unknown obstacles.

REFERENCES

[1] Georges S Aoude, Brandon D Luders, Joshua M Joseph, Nicholas
Roy, and Jonathan P How. Probabilistically safe motion planning to
avoid dynamic obstacles with uncertain motion patterns. Autonomous
Robots, 2013.

[2] Dmitry Berenson, Siddhartha S Srinivasa, Dave Ferguson, Alvaro
Collet, and James J Kuffner. Manipulation planning with workspace
goal regions. In Robotics and Automation, 2009. ICRA’09. IEEE
International Conference on, pages 618–624. IEEE, 2009.

[3] Raghvendra V Cowlagi. Hierarchical motion planning for autonomous
aerial and terrestrial vehicles. PhD thesis, Georgia Institute of
Technology, 2011.

[4] Debadeepta Dey, Kumar Shaurya Shankar, Sam Zeng, Rupesh Mehta,
M. Talha Agcayazi, Christopher Eriksen, Shreyansh Daftry, Martial
Hebert, and J. Andrew Bagnell. Vision and learning for deliberative
monocular cluttered flight. Field and Service Robotics, 2015.

[5] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1959.

[6] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. Systems Science
and Cybernetics, IEEE Transactions on, 1968.

[7] Eric Horvitz. Principles and applications of continual computation.
Artificial Intelligence, 2001.

[8] S Karaman and E Frazzoli. Optimal vehicle routing with metric
temporal logic specifications. In IEEE Conference on Decision and
Control, 2008.

[9] Sertac Karaman and Emilio Frazzoli. Sampling-based motion planning
with deterministic µ-calculus specifications. In Decision and Control,
2009.

[10] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms
for optimal motion planning. The International Journal of Robotics
Research, 2011.

[11] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli,
and Seth Teller. Anytime motion planning using the rrt*. In ICRA.

[12] Lydia E Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H
Overmars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. Robotics and Automation, IEEE
Transactions on, 1996.

[13] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas.
Temporal-logic-based reactive mission and motion planning. Robotics,
IEEE Transactions on, 25(6):1370–1381, 2009.

[14] Yoshiaki Kuwata, Gaston A Fiore, Justin Teo, Emilio Frazzoli, and
Jonathan P How. Motion planning for urban driving using rrt. In
Intelligent Robots and Systems, 2008.

[15] Steven M Lavalle and James J Kuffner Jr. Rapidly-exploring random
trees: Progress and prospects. In Algorithmic and Computational
Robotics: New Directions, 2000.

[16] Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator
design for nonlinear biological movement systems. In ICINCO (1),
2004.

[17] Brandon Luders, Mangal Kothari, and Jonathan P How. Chance con-
strained rrt for probabilistic robustness to environmental uncertainty.
In AIAA guidance, navigation, and control conference (GNC), Toronto,
Canada, 2010.

[18] Oded Maler and Dejan Nickovic. Monitoring temporal properties of
continuous signals. In Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems, pages 152–166. Springer, 2004.

[19] Nik A Melchior and Reid Simmons. Particle rrt for path planning with
uncertainty. In Robotics and Automation, 2007 IEEE International
Conference on, 2007.

[20] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial
optimization: algorithms and complexity. 1982.

[21] Mikhail Pivtoraiko and Alonzo Kelly . Efficient constrained path plan-
ning via search in state lattices. In The 8th International Symposium
on Artificial Intelligence, Robotics and Automation in Space, 2005.

[22] Erion Plaku and Sertac Karaman. Motion planning with temporal-logic
specifications: Progress and challenges. AI Communications, 2015.

[23] Vasumathi Raman, Alexandre Donzé, Mehdi Maasoumy, Richard M
Murray, Alberto Sangiovanni-Vincentelli, and Sanjit A Seshia. Model
predictive control with signal temporal logic specifications. In De-
cision and Control (CDC), 2014 IEEE 53rd Annual Conference on,
pages 81–87. IEEE, 2014.

[24] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M Mur-
ray, and Sanjit A Seshia. Reactive synthesis from signal temporal logic
specifications. In Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control, pages 239–248. ACM,
2015.

[25] Carl Rasmussen and Chris Williams. Gaussian processes for machine
learning. Gaussian Processes for Machine Learning, 2006.

[26] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srini-
vasa. Chomp: Gradient optimization techniques for efficient motion
planning. In Robotics and Automation, IEEE International Conference
on, 2009.

[27] Dorsa Sadigh and Ashish Kapoor. Safe control under uncertainty.
CoRR, abs/1510.07313, 2015.

[28] Paulo Tabuada and George J Pappas. Linear temporal logic control of
linear systems. IEEE Transactions on Automatic Control, 2004.

[29] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker,
Robert Bittner, MN Clark, John Dolan, Dave Duggins, Tugrul Galatali,
Chris Geyer, et al. Autonomous driving in urban environments: Boss
and the urban challenge. Journal of Field Robotics, 2008.

[30] Jur Van Den Berg, Sachin Patil, and Ron Alterovitz. Motion planning
under uncertainty using differential dynamic programming in belief
space. In Intl Symposium on Robotics Research, 2011.

[31] Chanyeol Yoo, Robert Fitch, and Salah Sukkarieh. Probabilistic
temporal logic for motion planning with resource threshold constraints.
2012.

[32] George Zames. Feedback and optimal sensitivity: Model reference
transformations, multiplicative seminorms, and approximate inverses.
Automatic Control, IEEE Transactions on, 1981.

[33] John G Ziegler and Nathaniel B Nichols. Optimum settings for
automatic controllers. trans. ASME, 64(11), 1942.

	Introduction
	Background
	Planning and Control
	Probabilistic Signal Temporal Logic

	Approach
	Case Study: Experiment with Autonomous Robot Obstacle Avoidance
	Known Obstacles
	Unknown Obstacles

	Conclusion
	References

