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ABSTRACT
The recently developed depth sensors, e.g., the Kinect sen-
sor, have provided new opportunities for human-computer
interaction (HCI). Although great progress has been made
by leveraging the Kinect sensor, e.g. in human body tracking
and body gesture recognition, robust hand gesture recogni-
tion remains an open problem. Compared to the entire hu-
man body, the hand is a smaller object with more complex
articulations and more easily affected by segmentation er-
rors. It is thus a very challenging problem to recognize hand
gestures. This paper focuses on building a robust hand ges-
ture recognition system using the Kinect sensor. To handle
the noisy hand shape obtained from the Kinect sensor, we
propose a novel distance metric for hand dissimilarity mea-
sure, called Finger-Earth Mover’s Distance (FEMD). As it
only matches fingers while not the whole hand shape, it can
better distinguish hand gestures of slight differences. The
extensive experiments demonstrate the accuracy, efficiency,
and robustness of our hand gesture recognition system.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human information pro-
cessing; I.4.8 [Scene Analysis]: Depth cues, Shape

General Terms
Algorithm
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Hand Gesture Recognition, Human-Computer Interaction,
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1. INTRODUCTION
Hand gesture recognition is of great importance for human-

computer interaction (HCI), because of its extensive applica-
tions in virtual reality, sign language recognition, and com-
puter games [12]. Despite lots of previous work, traditional
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Figure 1: Some challenging cases for hand gesture
recognition, using depth cameras: the first and the
second hands have the same gesture while the third
hand confuses the recognition.

vision-based hand gesture recognition methods [4, 11] are
still far from satisfactory for real-life applications. Because
of the limitations of the optical sensors, the quality of the
captured images is sensitive to lighting conditions and clut-
tered backgrounds, thus it is usually not able to detect and
track the hands robustly, which largely affects the perfor-
mance of hand gesture recognition.

To enable a more robust hand gesture recognition, one
effective way is to use other sensors to capture the hand
gesture and motion, e.g. through the data glove [8]. Unlike
optical sensors, such sensors are usually more reliable and
are not affected by lighting conditions or cluttered back-
grounds. However, as it requires the user to wear a data
glove and sometimes requires calibration, it is inconvenient
for the user and may hinder the naturalness of hand gesture.
Also, such data gloves are expensive. As a result, it is not a
very popular way for hand gesture recognition.

Thanks to the recent development of inexpensive depth
cameras, e.g., the Kinect sensor, new opportunities for hand
gesture recognition emerge. In spite of many recent suc-
cesses in applying the Kinect sensor for face recognition [3]
and human body tracking [10], it is still an open problem
to use Kinect for hand gesture recognition. Due to the
low-resolution of the Kinect depth map, typically, of only
640×480, although it works well to track a large object, e.g.
the human body, it is difficult to detect and segment a small
object from an image with this resolution, e.g., a human
hand which occupies a very small portion of the image with
more complex articulations. In such a case, the segmenta-
tion of the hand is usually inaccurate, thus may significantly
affect the recognition step.

To illustrate the above problem, Fig.1 shows some exam-
ples. It can be seen that the contours have significant local
distortions in addition to pose variations. Due to the low res-
olution and inaccuracy of the Kinect sensor, the two fingers
in the second hand of Fig.1 are indistinguishable as they are
close to each other. Unfortunately, classic shape recognition
methods, such as shape contexts [2] and skeleton matching
[1], cannot robustly recognize the shape contour with severe
distortions. Clearly, recognizing noisy shapes is very chal-
lenging, especially if there are many gestures to recognize.



Figure 2: Hand detection. (a) The rough hand seg-
mented by depth thresholding; (b) A more accurate
hand detected with black belt (the green line), the
initial point (the red point) and the center point (the
cyan point); (c) Its time-series curve representation.

In order to address this problem, we propose a novel shape
distance metric called Finger-Earth Mover’s Distance (FEMD).
FEMD is specifically designed for hand shapes. It consid-
ers each finger as a cluster and penalizes unmatched fingers.
By testing on a 10-gesture dataset, our method is accurate,
efficient, and performs robustly to articulations, local dis-
tortions, orientation and scale changes. To the best of our
knowledge, this is the first attempt in real-life hand gesture
recognition using Kinect sensor.

2. HAND DETECTION
We use Kinect sensor as the input device, which captures

the color image and the depth map at 640×480 resolution.

2.1 Hand Segmentation
As for hand segmentation, we require the user to coop-

erate in two aspects (both are reasonable requirements in
HCI): first, the user need to make sure that the hand is the
frontmost object facing the sensor. Thus, by thresholding
from the nearest depth position with a certain gap, a rough
hand region can be obtained, as shown in Fig.2(a). Second,
the user need to wear a black belt on the gesturing hand’s
wrist. We use RANSAC to locate the position of the black
belt, and thus, a more precise hand shape can be detected, as
shown in Fig.2(b). The hand shape is generally of 120×120
resolution, which may cause severe distortions.

2.2 Shape Representation
After detecting the hand shape, we represent it as a time-

series curve, as shown in Fig.2(c). Such a shape represen-
tation has been successfully used for the classification and
clustering of shapes [6]. The time-series curve records the
relative distance between each contour vertex to a center
point. We define the center point as the point with the
maximal distance after Distance Transform on the shape
(the cyan point), as shown in Fig.2(b); and the initial point
(the red point) is defined according to the RANSAC line
detected from the black belt (the green line).
In our time-series representation, the horizontal axis de-

notes the angle between each contour vertex and the ini-
tial point relative to the center point, normalized by 360◦.
The vertical axis denotes the Euclidean distance between
the contour vertices and the center point, normalized by the

radius of the maximal inscribed circle. As shown in Fig.2,
the time-series curve captures nice topological properties of
the hand, such as the fingers.

3. HAND GESTURE RECOGNITION
With the hand shape and its time-series representation,

we apply template matching for robust recognition, i.e., the
input hand is recognized as the class with which it has the
minimum dissimilarity distance: c = argmin

c
FEMD(H, Tc),

where H is the input hand; Tc is the template of class c;
FEMD(H, Tc) denotes the proposed Finger-Earth Mover’s
Distance between the input hand and each template.

3.1 Finger-Earth Mover’s Distance
In [9], Rubner et al. presented a general and flexible met-

ric, called Earth Mover’s Distance (EMD), to measure the
distance between signatures or histograms. EMD is widely
used in many problems such as content-based image retrieval
and pattern recognition.

EMD is a measure of the distance between two probabil-
ity distributions. It is named after a physical analogy that
is drawn from the process of moving piles of earth spread
around one set of locations into another set of holes in the
same space. The locations of earth piles and holes denotes
the mean of each cluster in the signatures, the size of each
earth pile or hole is the weight of cluster, and the ground
distance between a pile and a hole is the amount of work
needed to move a unit of earth. To use this transportation
problem as a distance measure, i.e., a measure of dissimilar-
ity, one seeks the least cost transportation — the movement
of earth that requires the least amount of work.

Grauman and Darrell applied EMD to contour matching
and contour retrieval [5], which represents the contour by a
set of local descriptive features and computes the set of cor-
respondences with minimum EMD costs between the local
features. However, the existing EMD-based contour match-
ing algorithms have two deficiencies:
1. Two hand shapes differ mainly in global features while

not local features. As shown in Fig.3(a)(b), the fingers
(global features) are their major difference. Besides,
the large number of local features slows down the speed
of contour matching. Therefore, it is better to consider
global features in contour matching.

2. EMD allows for partial matching, i.e., a signature and its
subset are considered to be the same in EMD measure:
as in Fig.3(c)(d), the EMD distance of these two sig-
natures is zero because the signature in Fig.3(d) is a
subset of Fig.3(c). However, in many situations partial
matching is illogical, such as in the case of Fig.3(a)(b),
where the finger in Fig.3(b) is a partial set of the fin-
gers in Fig.3(a). Clearly, they should be considered
being very different.

Our Finger-Earth Mover’s Distance (FEMD) can address
these two deficiencies of EMD-based contour matching meth-
ods mentioned above. Different from the EMD-based algo-
rithm [5], which considers each local feature as a cluster, we
consider the input hand as a signature with each finger (the
global feature) as a cluster. And we add penalty on empty
holes to alleviate partial matches on global features.

Formally, let R={(r1, wr1), ..., (rm, wrm)} be the first
hand signature with m clusters, where ri is the cluster repre-
sentative and wri is the weight of the cluster; T={(t1, wt1),
..., (tn, wtn)} is the second hand signature with n clusters.



Figure 3: (a) (b): two hand shapes whose time-series curves are shown in (e) (f). (c) (d): two signatures
that partially match, whose EMD cost is 0. (e) (f): the signature representations of the time-series curves.
(g) (h): two finger detection methods, thresholding decomposition (g) and near-convex decomposition (h).

Now we show how to represent a time-series curve as a signa-
ture. Fig.3(e)(f) show the time-series curves of the hands in
Fig.3(a)(b) respectively, where each finger corresponds to a
segment of the curve. We define each cluster of a signature
as the finger segment of the time-series curve: the repre-
sentative of each cluster ri is defined as the angle interval
between the endpoints of each segment, ri=[ria, rib], where
0 ≤ ria < rib ≤ 1; and the weight of a cluster, wri ∈ (0, 1),
is defined as the normalized area within the finger segment.
D=[dij ] is the ground distance matrix of signature R and

T , where dij is the ground distance from cluster ri to tj .
dij is defined as the minimum moving distance for interval
[ria, rib] to totally overlap with [tja, tjb], i.e.:

dij =

{
0, ri totally overlap with tj ,

min(|ria − tja|, |rib − tjb|), otherwise.

For two signatures, R and T , their FEMD distance is de-
fined as the least work needed to move the earth piles plus
the penalty on the empty hole that is not filled with earth:

FEMD(R, T ) = βEmove + (1− β)Eempty ,

=

β
m∑
i=1

n∑
j=1

dijfij + (1− β)|
m∑
i=1

wri −
n∑

j=1
wtj |

m∑
i=1

n∑
j=1

fij

,

where
m∑
i=1

n∑
j=1

fij is the normalization factor, fij is the flow

from cluster ri to cluster tj , which constitutes the flow ma-
trix F. Parameter β modulates the importance between the
first and the second terms. As we can see, Eempty, dij are
constants given two signatures. To compute the FEMD, we
need to compute the flow matrix F. We follow the definition
of the flow matrix F in EMD, which is defined by minimizing
the work needed to move all the earth piles.

4. FINGER DETECTION
Before we can measure the FEMD distance between two

hand shapes, we have to obtain the finger clusters in their
time-series curves, namely to detect the fingers from the
hand shapes. We propose two ways for finger detection:

4.1 Thresholding decomposition
As mentioned before, the time-series curve reveals a hand’s

topological information well. As shown in Fig.3(g), each fin-
ger corresponds to a peak in the curve. Therefore, we can
apply the height information in time-series curve to decom-
pose the fingers. Specifically, we define a finger as a seg-
ment in the time-series curve, whose height is greater than
a threshold hf . In this way, we can detect the fingers fast.
However, choosing a good height threshold hf is essential.

4.2 Near-convex hand decomposition
Thresholding decomposition is sensitive to the threshold

hf , and it may introduce segmentation errors, e.g., the thumb
is incomplete in Fig.3(g). Now we introduce a more accu-
rate finger detection method based on the near-convex shape
decomposition scheme [8], as shown in Fig.3(h):

min α ∥ x ∥0+(1− α)w⊤x, s.t. Ax ≥ 1, x⊤Bx = 0, x ∈ {0, 1}n.

It formulates shape decomposition as a integer optimiza-
tion problem (details please refer to [8]). By relaxing 0<xi<1,
the problem becomes a linear programming problem.

5. EXPERIMENTS
5.1 Dataset

We collect a new hand gesture dataset with a Kinect sen-
sor (http://www.ntu.edu.sg/home/renzhou/HandGesture.htm).
Our dataset is collected from 10 subjects, and it contains 10
gestures. Each subject performs 10 different poses for the
same gesture. Thus in total our dataset has 10 subject ×
10 gestures/subject × 10cases/gesture = 1000 cases, each of
which consists of a color image and a depth map.

Our dataset is a very challenging real-life dataset, which
is collected in uncontrolled environments. Besides, for each
gesture, the subject poses with variations, namely the hand
changes in orientation, scale, articulation, etc.

5.2 Performance Evaluation on Robustness
First, our hand gesture recognition system is robust to

cluttered backgrounds, because the hand shape is detected



Thresholding Decomposition+FEMD Near-convex Decomposition+FEMD
Mean Accuracy 90.6% 93.9%

Mean Running Time 0.5004s 4.0012s

Table 1: The mean accuracy and the mean running time of the two proposed methods.

Figure 4: Our system is insensitive to the distortions
and articulation.

using depth information and the backgrounds can be eas-
ily removed. Then, our hand gesture recognition system is
robust to orientations changes. The reason is that the ini-
tial point and the center point are relatively fixed in each
shape. Thus the time-series curves of the hands with dif-
ferent orientations are similar, and their distances are very
small. Also, our hand gesture recognition system is robust to
scale changes. Because the time-series curve and the FEMD
distance are normalized, the hand shapes with scale changes
can be correctly recognized as the same gesture.
Furthermore, our hand gesture recognition method is ro-

bust to the articulations and distortions due to imperfect
hand segmentation. As the proposed FEMD distance met-
ric uses global features (fingers) to measure the dissimilarity,
local distortions are tolerable. As for the articulations, Fig.4
shows some examples: the color images show 4 hands of the
same gesture; the next columns shows the corresponding
hand shapes, and their time-series curves. As we can see,
the hand shapes in Fig.4(c)(d) are heavily distorted. How-
ever, as illustrated in their time-series curves, by detecting
the finger parts (the yellow regions), we represent each shape
as a signature whose clusters are the finger parts. Partic-
ularly, the signatures of Fig.4(a)(b) have 2 clusters: {(r1,
wr1), (r2, wr2)}, and the signatures of Fig.4(c)(d) only have
1 cluster: {(t1, wt1)}. From Section 3.1, we can estimate
that (wr1+wr2) ≈ wt1 , and the ground distance d11, d21
≈ 0. According to the definition, we know that the FEMD
distances among the 4 shapes ≈ 0. Therefore, our FEMD
metric is insensitive to distortions and articulations.

5.3 Accuracy and Efficiency
In Table 1, the mean accuracy and the mean running time

of FEMD based on the two finger detection methods are
given. The mean accuracy of near-convex decomposition
based FEMD (93.9%) is higher than that of thresholding de-
composition (90.6%), owing to more accurate finger decom-
position. In terms of recognition error, the near-convex de-
composition reduces the error rate from 9.4% of the thresh-
olding decomposition to 6.1%, which is a 35% reduction.
But on the other hand, the speed of the second method is
slower than that of the first one, because of the more com-
plex finger detection algorithm.
Fig.5 shows their confusion matrixes. Compared with the

thresholding decomposition based FEMD, the near-convex
decomposition based FEMD has less seriously confused cat-
egories. And the accuracies in all the classes are improved.
Here we fix the near-convex decomposition parameter α=0.5,
the FEMD parameter β=0.5, and the thresholding decom-
position parameter hf=0.6.

Figure 5: The confusion matrixes of thresholding de-
composition based FEMD (a) and near-convex de-
composition based FEMD (b).

We have built a demo to demonstrate the superiority of
our method in real-life applications [7].

6. CONCLUSIONS
Hand gesture recognition for real-life applications is very

challenging because of the requirements on its robustness,
accuracy and efficiency. In this paper, we presented a robust
real-life hand gesture recognition system using the Kinect
sensor. A novel distance metric, Finger-Earth Mover’s Dis-
tance, is used for dissimilarity measure, which treats each
finger as a cluster and penalize the empty finger-hole. In
order to accurately detect the fingers, we presented two
finger decomposition methods: thresholding decomposition
and near-convex decomposition. Extensive experiments on
a challenging 10-gesture dataset demonstrate that our hand
gesture recognition system is accurate, efficient, and robust
to articulations, distortions, and orientation, scale changes.
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