Resource Assignment for Integrated Services in Wireless Multimedia Networks

Victor Bahl
bahl@microsoft.com
http://research.microsoft.com/~bahl

Microsoft Research
Redmond, Washington

August 8, 1997
Presentation Outline

1. Introduction and Problem Description
2. Bandwidth Allocation, Reservation, and Utilization
 → Connection level *Intra-Frame Statistical Multiplexing*
3. Bandwidth Partitioning
 → Priority Sharing with Restrictions (PSR)
 → The Smart Allocate Algorithm
4. Conclusions

Current Research Activities
Introduction and Problem Description

- Different broadband sources (traffic classes) require different amounts of bandwidth and have different transmission priorities
 - Bandwidth: Video > Voice > Data
 - Priorities: Voice > Video > Data

- Challenge for the network designer:
 Develop techniques that can assign bandwidth to the different traffic classes in manner such that
 - a guarantee on the level of service can be provided to a portion of the time-critical traffic classes, and
 - the needs of the system (i.e. maximize the # of supported connections) are balanced against the needs of the applications

(Bandwidth prediction and reservation for bursty sources such as VBR video is an unsolved problem, so how do we allocate bandwidth for such sources)
Possible Approaches

Adapt the application:

- Use an appropriate (joint source-channel) video codec

 • very low bit rate with high average PSNR and acceptable frame rate (subband based, MPEG-4, H.263L etc.)

- Use a CBR voice connection (e.g. GSM speech CODEC)

Adapt the communication layer:

- Carry out appropriate resource management (bandwidth reservation, allocation and utilization)

- Implement a “smart” bandwidth partitioning strategy

- Implement a complimentary MAC protocol
Bandwidth Reservation, Utilization, and Partitioning

Question
Can performance guarantees be provided to VBR video without significantly under-utilizing the bandwidth?

Answer
Yes! Use Intra-frame statistical multiplexing
Statistical Multiplexing: Connection Level and System Level

Connection-level Multiplexing

Data Source

Region 1 / Subband 1

Region 2 / Subband 2

Region n / Subband n

Video Source

Audio Source

System-level multiplexing

MUX

Laptop

MUX

Laptop

Laptop

Laptop

Laptop

Laptop
Effect -- Improved Bandwidth Utilization

Bandwidth usage with and without *intra-frame statistical multiplexing*
Possible Strategies:
+ Complete Sharing
+ Complete Partitioning (or Mutually Restricted Access)
+ Partitioning with Priority Borrowing (or Partial sharing)
Sharing Strategies -- Pros and Cons

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>CS</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Blocking level for each class easy to adjust</td>
<td>• Blocking level among classes not adjustable</td>
<td>• May be tunable to variable blocking requirements</td>
</tr>
<tr>
<td></td>
<td>• Complete Protection from overload of other classes</td>
<td>• No protection from overload of other classes</td>
<td>• May offer protection against overload from other classes</td>
</tr>
<tr>
<td></td>
<td>• Requires too much bandwidth</td>
<td>• Better Bandwidth usage than CP</td>
<td>• More efficient bandwidth usage than CP and CS</td>
</tr>
</tbody>
</table>
Proposal -- Priority Sharing with Restrictions (PSR)

Data	Packet Voice	Contend	Reserved
Moving boundary | Moving boundary | Fixed boundary

<table>
<thead>
<tr>
<th>Requester</th>
<th>Data</th>
<th>Voice</th>
<th>Video-Dynamic</th>
<th>Video-Static</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>-</td>
<td>BP</td>
<td>BP</td>
<td>BP</td>
</tr>
<tr>
<td>Voice</td>
<td>B</td>
<td>-</td>
<td>B</td>
<td>BP</td>
</tr>
<tr>
<td>Video-Dynamic</td>
<td>B</td>
<td>BP</td>
<td>-</td>
<td>BP</td>
</tr>
<tr>
<td>Video-Static</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

B --- Borrow | BP --- Borrow, but Preemption possible

August 8, 1997
Victor Bahl
Comparison of Bandwidth Partitioning Schemes

Voice + Data Traffic

- Voice Traffic Load = 30 Erlangs
- Data Traffic Load = 10 Erlangs

Video Traffic

- Compression = Region-based H.263
- Avg. Frame Rate = 7.5 Hz
- Avg. Video Bit rate = 24 kbps
- Image Dimensions = QCIF (176 x 144)
- # of Regions/Image = 5
- Peak for primary Region = 20 kbps
- Avg. PSNR = 30.4 dB

Bandwidth Partitioning and VBR Video

Offered Video Traffic Load (Erlangs)

Average PSNR

- PB
- PSR
- CS
Comparison of Bandwidth Partitioning Schemes

Bandwidth Partitioning and VBR Video

- Voice: 60 erlangs
- Data: 10 erlangs

Average PSNR

- PB
- PSR
- CS

Offered Video Traffic Load (Erlangs)
Optimal Bandwidth Partitioning

Problem
Can performance guarantees be provided to VBR video without significantly under-utilizing the bandwidth and can this be done in conjunction with minimizing the blocking probability for voice and data traffic?

Alternatively
How do we decide, how much of the available bandwidth should be allocated to each traffic class?

Solution
Allocate bandwidth so the maximum call blocking probability is minimized.
Minimize the Maximum Blocking Probability

Problem Statement

Given the aggregate load D_i for each traffic type T_i and the total system bandwidth B, determine the allocated transmission capacity for each traffic type such that

$$\Theta = \max_i P(d_i(t) \geq B_i)$$

is minimized

subject to

$$\sum_{i=1}^{N} B_i = B$$

where $d_i(t)$ is the instantaneous demand
Minimize

$$\Theta = \max_i P(d_i(t) \geq B_i)$$

Theorem

Let X_1, \ldots, X_N be independent random variables taking their values from the interval $[0, 1]$. Their probability distributions are otherwise arbitrary and not necessarily identical. Set $X = \sum_i X_i$ and $D = \mathbb{E}(X)$ then for any $C \geq D$, the following estimation holds:

$$P(X \geq C) \leq \left(\frac{D}{C}\right)^C e^{C - D}$$

Furthermore, this estimation is best possible in the following sense: For any fixed $\varepsilon > 0$ and for any fixed D and C with $C \geq D$ there exist infinitely many counter examples for which the reverse holds.
Minimize \[\Theta = \max_i P(d_i(t) \geq B_i) \]

New Problem Statement

Given the aggregate load \(D_i \) for each traffic type \(T_i \) and the total system transmission bandwidth \(B \), determine the allocated transmission capacity for each traffic type, such that

\[\Theta = \max_i \left\{ \left(\frac{D_i}{B_i} \right)^{B_i} e^{B_i - D_i} \right\} \quad \text{is minimized} \]

subject to \[\sum_{i=1}^{N} B_i = B \]
Basis for Determining B_i s

Can prove: Allocation of B_i is *asymptotically optimal if and only if*

$$\left(\frac{D_1}{B_1} \right)^{B_1} e^{B_1 - D_1} = \ldots = \left(\frac{D_N}{B_N} \right)^{B_N} e^{B_N - D_N}$$

Thus the problem is solved by letting,

$$\left(\frac{D_i}{B_i} \right)^{B_i} e^{B_i - D_i} = \sigma$$

and iteratively searching for a value $0 < \sigma \leq 1$ for which $\sum_{i=1}^{N} B_i = B$

holds within a given error bound $\varepsilon > 0$
Basis for Determining D_i

Method

If X_i is the size of ith frame (or region or subband) in a video sequence which has n frames, and if we define:

$$Y_n = \max(X_1, X_2, ..., X_n)$$

then by letting $Y = \lim_{n \to \infty} Y_n$ and deriving $f_{Y_n}(y)$

we can calculate the mean η_y and determine D_i

$$D_i = M \times \eta_y$$

where M is the # of video connections to be supported.
Statistical Characterization (VBR Video)

Inter-Frame Coding
“Headline News”

Avg. PSNR = 30.44 dB

Intra-Frame Coding
“Headline News”

Avg. PSNR = 31.52 dB

Bi-Normal distribution
“Amadeus”

QQ plot for “Headline News” (JPEG)
Using Weibull Distribution
Statistical Characterization (VBR Video)

Mean Square Error (inter-frame compressed, CNN sequence)

Captured & Compressed @ 15 fps

- mean = 5.17
- par = 9.89
- cov = 1.17
- avg. dev. = 4.12

Captured & Compressed @ 5 fps

- mean = 14.62
- par = 5.83
- cov = 0.57
- avg. dev. = 6.69

August 8, 1997

Victor Bahl
Determining $f_{Y_n}(y)$ and $D_i(\eta_y)$

Results from distribution-based modeling of single VBR video sources

<table>
<thead>
<tr>
<th>Coding Technique</th>
<th>Request Video</th>
<th>Conference Video</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Capture</td>
<td>Low Capture</td>
</tr>
<tr>
<td></td>
<td>Rate</td>
<td>Rate</td>
</tr>
<tr>
<td>Intra-Frame</td>
<td>High Action</td>
<td>Low Action</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>Normal/Gamma</td>
</tr>
<tr>
<td>Inter-Frame</td>
<td>Bi-Normal</td>
<td>Gamma/Lognormal</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>Gamma</td>
</tr>
</tbody>
</table>

Notice, most video frame distributions can be described as:

$$F_x(x) = 1 - e^{-g(x)}$$

where $g(x)$ is a increasing function of X

then we can prove,

$$F_Y(y) = \exp[-e^{-\alpha(y-u)}], \quad -\infty < y < \infty$$
Determining \(f_{Y_n}(y) \) and \(D_i \) \((\eta_y) \)

- Thus knowing \(F_Y(y) \) the mean can be computed as:

\[
\eta_y = u + \left(\frac{0.577}{\alpha} \right)
\]

where \(u \) and \(\alpha (\alpha > 0) \) are the location and scale parameters

- For Voice connections:

\[
D_a = M \times C
\]

where \(C \) is CBR (e.g. GSM - 13 KHz, DECT - 32 KHz, …) and \(M \) is the estimated number of voice connections

Note: Can use \(D_i \) s for Network Capacity Planning!
The Smart Allocate Algorithm

Begin

\[l = 0, u = 1 \]

Initialize

\[\sigma = \frac{l + u}{2} \]

Midpoint of \([l, u]\)

Compute \(B(\sigma) \)

Compute Total Capacity

\[\tilde{B} = \sum_{i=1}^{N} B_i(\sigma) \]

Check if Capacity is overused

\[\tilde{B} > B \]

Ease up on bound

\[l = \sigma \]

Strict bound

\[u = \sigma \]

Check if Capacity is underused

\[\tilde{B} < B - \epsilon \]

Yes

No

End

\[B_1 = B_1(\sigma), \ldots, B_N = B_N(\sigma) \]
Illustrative Example

Assume TDM-based system with 99 BBU

Let the aggregate average demands be
\[D_1 \text{ (voice)} = 20 \text{ Erlang} \quad \text{and} \quad D_2 \text{ (video)} = 40 \text{ Erlangs} \]

Then the **Load Proportional** approach gives
\[B_1 = 33, \quad B_2 = 66, \quad \text{with Erlang’s blocking probability} = 1\% \]

Smart Allocate algorithm gives
\[B_1 = 37 \quad \text{and} \quad B_2 = 62, \quad \text{blocking probability} = 0.57\% \]

Improvement of 43\%!
Conclusion - Advantages of PSR + Smart Allocate Algorithm

- Accommodates all traffic classes without shutting out any single one.

- Provides QoS guarantees for on-going VBR real-time video communications. This guarantee does not come at the expense of bandwidth and other traffic classes.

- Robust and insensitive to statistical assumptions. Does not require detailed knowledge of traffic, only aggregate average values (detailed statistical information is typically unavailable).

- Allocation based on minimizing a bound on the blocking probabilities that is proven to be asymptotically optimal - significant as it signifies that for large number of systems it is sufficient to know aggregate flow rates.
Current Projects at MSR
Peripatetic Computing for the Next Millenium

- Ad-Hoc multi-hop home networking
 - Protocols, Routing algorithms, architecture, roaming, locating, performance etc

- Hardware for hand-held communicators
 - RF issues, form factor, capacity, capability, user requirements, user interface etc.

- QoS in mobile multimedia
 - Content-Sensitive Video Coding (beyond MPEG-4), Resource assignment and management, etc.

- Operating system support for mobile users
 - caching, hoarding, prediction, data management, disconnected operations etc