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ABSTRACT

Deep neural network models have been successfully applied to many
tasks such as image labeling and speech recognition. Mini-batch
stochastic gradient descent is the most prevalent method for training
these models. A critical part of successfully applying this method is
choosing appropriate initial values, as well as local and global learn-
ing rate scheduling algorithms. In this paper, we present a method
which is less sensitive to choice of initial values, works better than
popular learning rate adjustment algorithms, and speeds convergence
on model parameters. We show that using the Self-stabilized DNN
method, we no longer require initial learning rate tuning and training
converges quickly with a fixed global learning rate. The proposed
method provides promising results over conventional DNN structure
with better convergence rate.

Index Terms— self-stabilizer, stochastic gradient descent,
learning rate, scaling, deep neural network

1. INTRODUCTION

Deep neural networks provide huge improvement relative to state-
of-the-art Gaussian Mixture model(GMM) systems in speech recog-
nition tasks [1]. The networks are typically trained using minibatch
stochastic gradient descent (SGD).

Getting good performance with SGD requires tuning the ini-
tial and final learning rates and designing an annealing learning rate
schedule. Many researchers have proposed different global or local
per-parameter learning adjustment techniques [2], or try to involve
second order information into SGD algorithm, but the majority still
use the fast, simple SGD.

Setting initial learning rate is a challenging problem, where low
values can result in slow learning and a larger learning rate can cause
instability and divergence in training. It is not clear in very high
dimensional parameter space, whether it is the best to have a single
global learning rate, that can be estimated robustly, or a set of local
per-dimension learning rates, whose estimation will be less robust.

In this work, we introduce a novel DNN structure that results in
faster convergence and makes the model insensitive to initial choice
of learning rate. This model can be combined with other learning
rate annealing methods such as AdaGrad [3] or Natural Gradients
[4]. In the new model structure, a single parameter is added to each
layer as a trainable self stabilizer. This stabilizer scales parameters
in each layer with respect to the error back-propagated in this layer
during the training. These extra parameters are jointly trained with
whole network.

A related approach used in [5] is usefull in reducing activation
saturation by shrinking the parameters using some shrinkage factor.
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In this approach, the optimal shrinkage factors for updatable trans-
formations are computed using BFGS algorithm on validation sets
at end of each epochs. This method needs an extra computation
step and it doesn’t back-propagate the error through these shrinkage
parameters during training and they also need learning rate schedul-
ing. In another approach, batch normalization makes normalization
a part of the model architecture to reduce internal covariant shift [6],
making the overall model less sensitive to parameter initialization.

This paper is organized as follows. Section 2 gives an overview
of different learning rate scheduling techniques used for DNN train-
ing. Section 3 describes the new method in detail, including some
theoretical analysis. Section 4 presents and analyzes the results. Sec-
tion 4.2 investigates the relation of this method to activation in each
layer during training time. Section 4.3 investigates effectiveness of
new method and its combination with other learning rate scheduling
techniques on AMI [7] and section 4.4 presents the results on the
Switchboard [8] task. Section 5 presents the conclusions.

2. DNN TRAINING USING LEARNING RATE
SCHEDULING TECHNIQUES

2.1. Global learning rate scheduling methods

The goal of training a DNN is to update the set of parameters W
in order to optimize objective function L. The gradient descent al-
gorithms attempt to optimize the objective function by following the
negative of gradient direction ∂L

∂wt
defined as gt. It is mathematically

proved that SGD convergence strongly depends on step size in con-
vex problems [9]. A good learning rate schedule can result in faster
convergence to a better local optima.

There are several methods for learning rate scheduling. Expo-
nential or power scheduling are the most widely used techniques,
where the learning rate decays by some decreasing functions such as
ηt = η0(1 + αt)−β ( [10], [11]) or ηt = η0 × exp−βt, where βt is
the learning rate at iteration t.

Some approaches monitor the gradient’s behavior and automat-
ically set the learning rate [12]. Others, such as the learning rate
auto-adjustment method [13], set the learning rate based on objec-
tive function performance, where learning rate is reducing by some
rate if objective function degrades on training or cross-validation set.

2.2. Local per-dimension learning rate scheduling methods

Researchers have proposed techniques that develop per-parameter
learning rates. Most of these methods try to approximate second
order information using 1st oder information such as gradients. Ap-
proaches based on the natural gradient [4] take the Riemannian met-
ric of parameter space into account to compute gradients [14]. They
use empirical Fisher information matrix, which is estimated using



the gradient covariance matrix or its diagonal approximation and ap-
ply it as a precondition to the updates.

The Natural Newton method algorithm [15] involves uncertainty
between the true and empirical gradient of the objective function. It
results in a direction similar to the natural gradient direction with
a slight difference. They showed that if the number of data-points
goes to infinity, the effect of gradient covariance matrix in comput-
ing optimum direction vanishes, which is the result of converging
empirical and true loss and reducing the uncertainty in the gradient
estimation. Another approach is Adagrad [3], where the learning
rate for parameter i is approximated as ηi(t) = η0√∑t

n=0(O
n
θi

)2
.

As shown all these methods involve some hyper-parameters,
which must be tuned to give the best performance. The main con-
tribution of our method is that it can combine with these methods in
order to decrease the sensitivity to hyper-parameters and reduce the
burden of hyper parameter tuning. By combining our method, there
is no need of learning rate annealing schedule, particularly in large
scale problems. In most of learning rate scheduling techniques, the
learning rate is monotonically decaying, but in this method, the in-
troduced scaling parameters as learning rate candidates can increase
as well as decrease, which is helpful for non-stationary problems,
as navigating the properties of optimization landscape changing
continuously [16].

3. SELF-STABILIZED DNN TRAINING

In this paper, we introduce an extra scalar parameter to each layer
of the DNN model. It is designed to stabilize the stochastic gradient
descent training, and is jointly trained with the original network pa-
rameters. We intrepret these new parameters as a per-layer stabilizer,
where the data determines when to decrease or increase their value
to progress on minimizing the objective function L. In its simplest
form, we augment the parameters of a DNN layer with a scalar β:

y = φ(β ×Wx+ b), (1)

where x is the input vector, W and b define an affine transformation,
and y is the output vector. We initialize β = 1, so the initial model
is identical with or without the new parameter.

During training, the stabilizer parameters β are simply another
parameter to learn with stochastic gradient descent. The update rule
for β is simple to derive. During the backward pass, the gradient
with respect to input vector x in layer i is computed as

∂L
∂x

= βWT ∂L
∂y

(2)

and the gradient with respect to parameter β is computed as

∂L
∂β

=
∂L
∂y
× ∂y

∂β
=
∂L
∂y

T

Wx (3)

So the gradient for parameter β can be written as

∂L
∂β

=
1

β
(
∂L
∂x

)Tx =
1

β
<
∂L
∂x

,x > (4)

so β is

βt+1 = βt −
η

β
<
∂L
∂x

,x > (5)

The change in β is directly related to how the layer input x re-
lates to the gradient of the objective function with respect to that
input. If the objective function would be improved by scaling x up,

β will increase. If the objective function would be improved with a
smaller x, then β will decrease. If the relative direction of the input
and its gradient is random, then β will stabilize. We expect this to
happen near convergence.

The step size for parameter wij is directly controlled by the cur-
rent value of β.

gij =
∂L
∂wij

= β
∂L
∂yi

xj (6)

In practice, we use exp(β) instead of β in our experiments, and
we initialize β = 0. This constrains the effective stabilizer to be
positive, and to decay more slowly as it approaches zero.

y = φ(exp(β)×Wx+ b), (7)

Our experiments show that this substitution produces similar models
without the danger of the stabilizer parameter changing sign, which
can be disruptive to the DNN training.

4. EXPERIMENTAL RESULTS

4.1. Evolution of self-stabilizer parameter during training

Figure 1 shows stabilizer changes per layer during training for self-
stabilized parameters with same DNN architecture using different
learning rate scheduling techniques. Layer i corresponds to param-
eter in ith hidden layer, and the model consists of six layers. These
graphs were generated using our AMI setup, which is described in
Section 4.3.

The figure demonstrates the interaction between the learning
rate, the self stabilizer values, and the auto adjustment algorithm.
In the figure, learning rates are specified with two numbers. The
value 0.1:0.6 indicates the trainer applied a learning rate of 0.1 per
mini-batch with a mini-batch size of 256 for the first epoch, and then
switched to a learning rate of 0.6 per mini-batch with a mini-batch
size of 1024. The auto-adjustment algorithm we used multiplied the
learning rate by 0.618 at the end of every epoch that didn’t improve
the model’s performance on our development set.

As can be seen in Figure 1a and 1b, the self-stabilizer parame-
ters are larger when the initial learning rate is smaller. This inverse
scaling with learning rate is an indication that the self-stabilizer pa-
rameters are compensating for any sub-optimal choice of learning
rate.

Figures 1a and 1c illustrate the same system with and without
the auto-adjustment algorithm active. When the auto-adjustment al-
gorithm is active, the global learning rate decreases over epoch, and
the self-stabilizer parameters approach constant values. Without the
auto-adjustment algorithm, the self-stabilizer parameters clearly de-
cay over epochs. The new parameters adjust the effective global
learning rate down as the model converges, compensating for the
non-ideal fixed learning rate schedule.
4.2. Effects of self-stabilizer on Activation

We found that self-stabilized DNN models converge much faster
than our baseline DNNs, and the effect is more pronounced when
using the Sigmoid nonlinearity. Suspecting that the technique al-
lows all layers to train at the same rate, we did some experiments on
the LVCSR Switchboard task to investigate evolution of activations
during training. The Switchboard setup is described in more detail
in Section 4.4.

The theoretical reason for slow convergence when using a sig-
moid nonlinearity is its non-zero mean, which results in important
singular value in the Hessian [16].
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Fig. 1: (a) Initial learning rate 0.1:0.6 with auto-adjustment
(b) Initial learning rate 0.8:3.2 with auto-adjustment (c) Ini-
tial learning rate 0.1:0.6 with No learning rate adjustment.

Figure 2 shows the mean of the activation values after nonlin-
earity in each layer with and without self-stabilizer during training.
Layer 1 refers to the output of first hidden layer, and the graph shows
the mean of activations averaged averaged over 44000 fixed exam-
ples and these values are computed at different time during training.

Figure 2a shows the evolution of activation mean for different
layers in conventional DNN. As shown, the activation values of some
layers pushed to average values near 0.5 and this type of saturation
lasts very long during training. The same behavior has been shown
in [17] for sigmoid nonlinearity. Figure 2b shows different behav-
ior of activations in in self-stabilized network and the activations
at different layers have closer mean and similar distribution in the
new structure that results in better flow of back-propagated gradi-
ents through network and faster training. The reason for this be-
havior in the new structure is that the self-stabilizers scale down the
parameters in each layer that can be useful to overcome activation
saturation and improves the flow of gradient through all layers. The
self-stabilizer helps the network to scale the parameters in the begin-
ning of training to be in a region of parameter space that is closer to
the local optima of cost function.

If the activation variations on a layer is going to be small, we can
substitute xi by E[x] in equation 5, so the update for parameter β is

E[x]
∑

∂L
∂x

. The second term in the update approximates the sum
of back-propagated error over activations. If the sum of gradients or
activation mean at each layer are getting larger, β-update is going
to be large and β changes to scale up or down the parameters and
when these values are small, the β is going to be almost constant.
Small gradient-sum over activations in each layers shows that the
parameters in this layer are close to the local optima and they no
longer need to be scaled. Also if the mean of activation are above
0.5 in sigmoid, this means the activations are saturated and β-update
is going to be large and the parameter β changes to scale down the
parameter to overcome saturation.
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Fig. 2: standard deviation of activation values with sigmoid
activation during training for different hidden layers with
standard DNN (top) vs. Self-stabilized DNN.

4.3. Results on AMI

In Table 1, we report the results on AMI-IHM database using dif-
ferent optimization techniques. The DNN configuration in all ex-
periments contain 1080 dim input layer, with 15 spliced frames (7
frames on each side of current frames) of 72 dimensional features.
These features contain 24 dim MFCC features and their velocity and
acceleration. The network uses sigmoind nonlinearity in its 6 hidden
layers, each of which is 1024 neurons wide. The network parameters
are initialized randomly and each epoch contains about 24 out of 84
hours of training data. We trained each system for 50 epochs.

4.4. Results on Switchboard

The CNTK auto-adjust learning rate algorithm “adjust after epoch”
is used in some of experiments. It is a global learning rate schedul-
ing technique, where the global learning rate is reduced by some
factor, if the cross entropy degrades on a validation set. Momentum
is also another technique that can improve training by considering
the curvature information specially in later steps [18]. In all exper-
iments without AdaGrad in Table 1, the momentum with factor 0.9
is applied to gradients during training.



Training Validation
Optimization Method Auto-Adjust Initial Learning Rate CE % Frame Err CE % Frame Err %WER
SGD X 0.1:0.6 2.3 53.1 2.5 57.3 40.2
SGD X 0.8:3.2 1.7 43.5 2.2 51.0 32.4
SGD+Self-Stabilizer X 0.1:0.6 1.5 38.7 2.13 49.8 32.5
SGD+Self-Stabilizer X 0.8:3.2 1.6 39.8 2.1 49.7 32.0
SGD+Adagrad x 0.8:3.2 1.8 44.6 2.3 52.0 33.5
SGD+AdaGrad+Self-Stabilizer x 0.8:3.2 1.49 39.2 2.2 51.3 32.2
SGD+ Self-Stabilizer x 0.1:0.6 1.3 36.3 2.3 51.0 32.1
SGD+ Self-Stabilizer+l2reg x 0.1:0.6 1.4 37.3 2.2 50.7 31.8

Table 1: Results on AMI using different optimization methods.

The first 2 experiments in Table 1 show that SGD method is
sensitive to initial learning rate and the cross entropy degrades with
small learning rate. It may need to more training time to compensate
small learning rate, or it could be stuck in a local minimum.

In the next 2 experiments, the self-stabilizer parameters are
added to conventional DNN model and the result shows that self-
stabilized DNN is less sensitive to the learning rate initialization and
final cross entropy is very similar using different initial learning rate.

In the experiments 5 and 6, the learning rate is fixed during train-
ing and the effect of combining self-stabilizer with AdaGrad is in-
vestigated. AdaGrad [3] uses 1st order information to estimate some
properties of second order methods, where the gradient per dimen-
sion in each step is normalized with l2 norm of all previous gradients.
These experiments used a modified version of AdaGrad [13]. This
implementation has two modifications with respect to the canonical
version of the algorithm. First, the squared gradient is not accumu-
lated over all time. A leaky integrator is used to turn the accumula-
tion into a running average with an exponential weighting function.
This eliminates the tendency for AdaGrad to prematurely limit the
learning rate. Second, the AdaGrad contribution is scaled so that the
average AdaGrad factor over all parameters is 1.0. This allows for a
more direct comparison of learning rates over experiments with and
without AdaGrad. As shown, the self-stabilizer helps to improve the
results using AdaGrad with fixed learning rate during training.

The last two experiments use self-stabilized DNN model with
no use of global or local learning rate scheduling techniques and
the initial learning rate is small remains fixed during training. The
self-stabilized network gives good improvement in terms of training
cross entropy and some degradation can be seen on validation set
compared to 3rd experiments. The reason could be related to over-
training. In the last experiment, l2 regularization technique is used
during training to overcome overtraining. This regularization is ap-
plied to all parameters, including the self-stabilizer parameters. As
can be seen, this model with fixed learning rate and no learning rate
scheduling gives the best WER results.

Figure 3 shows results from training on 2000 hrs of Switchboard
and Fisher conversational telephone speech. The DNN configuration
contains six 2048 neuron wide hidden layers with sigmoid nonlin-
earity. As with the AMI experiments, simple SGD is used in training
and the parameters are randomly initialized. The input layer con-
tains 920 units, which is +/− 11 frames of 40 dimensional MFCCs
spliced together. The output layer size is 9000. The learning rate
per mini-batch for stabilized DNN is 0.1 for the 1st epoch and 1 for
next epochs. The baseline DNN system uses learning rate 0.1 for 1st

epoch and 1 for next 100 epochs and then uses an auto-adjustment
algorithm for the next 100 epochs in second half of training. The
auto-adjustment method does not need development data, but instead
chooses the learning rate based on the projected cross entropy over

the next 500 mini batches [13].
Results comparing baseline and self-stabilized DNN are pre-

sented in Figure 3. During training, the self-stabilized DNN con-
verged more quickly to a better optimum than the Baseline DNN,
which used the auto-adjustment technique. The figure shows the
evolution of word error rate during training. The self-stabilized DNN
is has a consistent 1.5% absolute WER improvement over the base-
line.
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Fig. 3: (a) Training Cross Entropy (b) WER results during
training on Switchboard.

5. CONCLUSION

We proposed a new type of network architecture to speed up DNN
training. This network is less sensitive to parameter initialization
and choice of learning rates. The effectiveness of this method comes
from training a self-stabilizer parameter for each layer during train-
ing, which can scale parameters in each layer w.r.t the gradient back-
propagated to this layer to stabilize activation distribution through-
out training. Results using Self-stablized DNN method shows less
sensitivity to global learning rate and faster convergence to better lo-
cal optimum. The future work is to add a diagonal self-stablizer per
layer, which enables the model to scale each dimension of activa-
tions separately.
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