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Abstract

We propose a novel motion model, SteadyFlow, to repre-
sent the motion between neighboring video frames for sta-
bilization. A SteadyFlow is a specific optical flow by en-
forcing strong spatial coherence, such that smoothing fea-
ture trajectories can be replaced by smoothing pixel pro-
files, which are motion vectors collected at the same pixel
location in the SteadyFlow over time. In this way, we can
avoid brittle feature tracking in a video stabilization sys-
tem. Besides, SteadyFlow is a more general 2D motion
model which can deal with spatially-variant motion. We
initialize the SteadyFlow by optical flow and then discard
discontinuous motions by a spatial-temporal analysis and
fill in missing regions by motion completion. Our experi-
ments demonstrate the effectiveness of our stabilization on
real-world challenging videos.

1. Introduction

Video stabilization results heavily rely on the adopted
motion model. Some methods assume a parametric 2D
motion model (such as homography [20] or a mixture of
homography [8, 18]) between consecutive frames. These
methods are robust but have limited power to deal with spa-
tially variant motion. Feature trajectories provide more flex-
ible non-parametric 2D motion representation. Some recent
methods (such as [12, 15, 7, 25]) achieve good stabilization
results by smoothing feature trajectories. However, dealing
with feature trajectories is complicated. Feature trajectories
are often spatially sparse and unevenly distributed. They
might end or start at any frame of the video. Furthermore,
obtaining long trajectories is hard in consumer videos (e.g.,
due to rapid camera panning or motion blur).

Dense 2D motion field (such as optical flow) is a more
flexible and powerful motion model. When the optical flow
is spatially smooth, we find that smoothing feature trajecto-
ries can be well approximated by smoothing pixel profiles,
which are motion vectors collected at the same pixel loca-
tion over time. In other words, we can smooth pixel profiles
instead of smoothing feature trajectories. No feature track-
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ing is required. All the pixel profiles begin at the first frame
and end at the last frame. This is a much desired property
for robust stabilization of consumer videos.

The optical flow of a general video could be rather dis-
continuous, especially on moving objects and strong depth
edges. Therefore, we require to modify the raw optical flow
to get a SteadyFlow. The SteadyFlow is a close approxima-
tion of the optical flow, by enforcing strong spatial smooth-
ness, so that we can simply smooth the pixel profiles ex-
tracted from the SteadyFlow to stabilize the original video.
We initialize the SteadyFlow by traditional optical flow and
identify discontinuous motion vectors by a spatial-temporal
analysis. These discontinuous flows are removed and miss-
ing regions are filled in by motion completion. We evaluate
our method on different types of challenging videos. The
experiment results demonstrate the robustness of our tech-
nique.

2. Related Work

Video stabilization techniques can be roughly divided as
2D and 3D methods. 2D stabilization methods use a series
of 2D transformations (such as homography or affine mod-
els) to represent the camera motion, and smooth these trans-
formations to stabilize the video. Early 2D methods mainly
focus on the design of appropriate motion smoothing tech-
niques. Some methods [21, 20, 10] used simple Gaussian
smoothing. Chen et al. [3] fit polynomial curves to rep-
resent camera motion. Gleicher and Liu [0] broke camera
trajectories into segments for individual smoothing. Grund-
mann et al.[9] applied an elegant L1-norm optimization for
camera path smoothing. More recently, Liu et al. [18]
adopted the ‘as-similar-as-possible’ warping to estimate a
mixture-of-homography motion model, and designed an al-
gorithm to smooth the bundled camera paths. 2D methods
are often robust, but their motion models have limited power
to describe complicated scenes (e.g. scenes with discontinu-
ous depth variations or moving objects). We employ a more
general 2D motion model with per-pixel flow to deal with
non-linear motion like 3D stabilization methods.

3D methods estimate 3D camera motion for stabiliza-
tion. Beuhler et al.[2] designed stabilization algorithms



a feature trajectory a pixel profile
Figure 1. Feature trajectory vs. pixel profile. A feature trajectory
tracks a scene point while a pixel profile collects motion vectors at

the same pixel location.

from a projective 3D reconstruction with an uncalibrated
camera. Liu et al.[14] developed a 3D stabilization system
with ‘content-preserving’ warping. Zhou et al. [26] fur-
ther introduced plane constraints to the system. Liu et al.
[17] used a depth camera for robust stabilization. Generally
speaking, these 3D methods produce superior results, espe-
cially on scenes with non-trivial depth changes. However,
the requirement of 3D reconstruction (or a depth sensor) is
demanding. Some recent methods relax this requirement by
exploiting partial 3D information embedded in long feature
tracks. Liu et al.[15] smoothed basis of feature trajectories
in some subspaces for stabilization. Wang et al.[25] repre-
sented each trajectory as a Bezier curve and smoothed with
a spatial-temporal optimization. Goldstein and Fattal[7]
used ‘epipolar transfer’ to alleviate the strain on long fea-
ture tracks. Smoothing feature track is also used to sta-
bilize a light-field camera [24]. Recently, Liu et al. [16]
extended the subspace method to deal with stereoscopic
videos. Nearly all 3D methods rely on robust feature track-
ing for stabilization. Long feature trajectories are difficult to
obtain. We demonstrate that the effect of smoothing feature
trajectories can be well approximated by smoothing pixel
profiles, which do not require brittle tracking.

3. SteadyFlow Model

In this section, we introduce the concept of pixel profiles.
We will further explain why a shaky video can be stabilized
by directly smoothing the pixel profiles of the SteadyFlow.
Then we demonstrate the SteadyFlow model and the advan-
tages over feature trajectories.

3.1. Pixel Profiles vs. Feature Trajectories

A pixel profile consists of motion vectors collected at the
same pixel location. In comparison, a feature trajectory fol-
lows the motion of a scene point. Figure 1 shows a feature
trajectory and a pixel profile starting at the pixel A in frame
t — 1. The feature trajectory follows the movement from
pixel A in frame ¢ — 1 to pixel B in frame ¢, and then to
pixel C in frame ¢ + 1. In comparison, the pixel profile
collects motions at a fixed pixel location A over time.

Figure 2. A simple static scene (from [7]) with gradual depth vari-
ations and its optical flow. This video can be stabilized by smooth-
ing all the pixel profiles extracted from its optical flow.
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Figure 3. Histogram of the difference between feature trajectories
and pixel profiles on static backgrounds and dynamic objects.

3.2. Stabilization by Smoothing Pixel Profiles

We begin with a simple example. Figure 2 shows an
video of static scene with gradual depth changes. Its opti-
cal flow is spatially smooth as shown on the right side. We
simply smooth all the pixel profiles extracted at every pixel
location (the technique of smoothing will be presented in
Section 5). In this way, we can obtain a well stabled out-
put video. This suggests that a video can be stabilized by
smoothing pixel profiles.

To understand that, we examine 108 videos in a publicly
available dataset'. We compute optical flows between all
consecutive frames on these videos. We also run a KLT
tracker[19] to all videos to get feature trajectories. We fur-
ther manually mark out moving objects in all video frames
assisted by Adobe After Effect CS6 Roto brush. In this
way, we collect 14,662 trajectories on static backgrounds
and 5,595 trajectories on dynamic objects with the length
no less than 60 frames. We compare the difference between
a feature trajectory and the pixel profile which begins from
the starting point of the trajectory. The difference is evalu-
ated as the average of all motion vector differences between
the feature trajectory and the pixel profile at corresponding
frames. The histogram of this difference for all trajectories
is shown in Figure 3. In Figure 3(a), we can see over 90%
of feature trajectories on static backgrounds are very simi-
lar to their corresponding pixel profiles (less than 0.1-pixel
motion difference). This suggests that smoothing the fea-
ture trajectories can be well approximated by smoothing the
pixel profiles. In comparison, as shown in Figure 3 (b), the
difference between a feature trajectory and its correspond-
ing pixel profile is large on moving objects.

Thttp://137.132.165.105/SIGGRAPH2013/database.html



(d) émoothing pixel profiles collected from our SteadyFlow

Figure 4. Comparisons between optical flow and our SteadyFlow.
(a) and (c): On the left side, we show the videos stabilized by
smoothing the pixel profiles according to the raw optical flow.
Please see the distortions highlighted in close-up views. The op-
tical flow field is visualized on the right side. (b) and (d): Corre-
sponding results according to our SteadyFlow.

3.3. SteadyFlow

The analysis in Figure 3 (b) suggests that pixel profiles
can be very different from feature trajectories sometimes. In
Figure 4 (a) and (c), we show two videos with more com-
plicated optical flow fields to study this problem further. As
we can see, the flow vectors are discontinuous on the walk-
ing person and strong depth edges. If we smooth the pixel
profiles of the raw optical flow, we observe severe image
distortions, as illustrated in the close-up views. This indi-
cates that smoothing pixel profile generates poor results on
discontinuous flows.

We seek to modify the raw optical flow to get a
SteadyFlow. The SteadyFlow should satisfy two properties.
First, it should be close to the raw optical flow. Second, it
should be spatially smooth to avoid distortions. With these
properties, a video can be stabilized by smoothing all its
pixel profiles collected from the SteadyFlow. In Figure 4 (b)
and (d), we show the results by smoothing the pixel profiles
generated from the SteadyFlow (shown on the right side).
The results are free from artifacts.

Note that a simple Gaussian smoothing of the raw optical
flow is insufficient, as the smoothing will propagate the mo-
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Figure 5. Pipeline of SteadyFlow stabilization.

tions on the moving objects to the background, which de-
creases the frame registration accuracy and generates tem-
poral wobbles nearby the moving object. Instead, we iden-
tify, discard discontinuous flow vectors, and fill in missing
flows to satisfy the two desired properties of SteadyFlow.
The details will be presented in Section 4.2 and Section 4.3.

3.4. Advantages over Feature Trajectories

In video stabilization, the pixel profiles are superior to
the feature trajectories for several reasons. First, the pixel
profiles are spatially and temporally dense. In compari-
son, feature trajectories are sparse, unevenly distributed,
and would reach out of the video frame. So it is much harder
to design a good filter to smooth feature trajectories. Sec-
ond, accurate long feature trajectories are difficult to obtain.
Though we might get dense feature trajectories by frame-
by-frame tracing optical flow, these feature trajectories suf-
fer from significant drifting errors [4]. Third, smoothing
feature trajectories independently would introduce severe
distortions. Some extra constraints (e.g., subspace projec-
tion [15]) are required before smoothing. In comparison, as
we will see later, pixel profiles can be smoothed individu-
ally as long as the flow field is spatially smooth.

Pixel profiles rely on the quality of optical flows. Opti-
cal flow estimation is often imprecise at textureless regions
and object boundaries. In most of the time, textureless re-
gions have few structure, so that they introduce little visible
distortions. The inaccuracy of flows at object boundaries is
largely alleviated by our discontinuity abolition and motion
completion.

4. SteadyFlow Estimation

Our stabilization system pipeline is illustrated in Figure
5. We first initialize the SteadyFlow by a robust optical
flow estimation. To enforce spatial smoothness, we then
identify discontinuous motion vectors and overwrite them
by interpolating the motion vectors from neighboring pix-
els. Then, pixel profiles based stabilization is applied on
the SteadyFlow. We adopt an iterative approach to increase



the accuracy of SteadyFlow estimation. The final result is
rendered according to the stabilized SteadyFlow.

4.1. Initialization

We initialize the SteadyFlow with a robust optical flow
estimation. We first estimate a global homography transfor-
mation from the matched KLT features [19] between two
video frames. We align them accordingly, and then apply
the optical flow algorithm described in [13] to compute the
residual motion field. The SteadyFlow is initialized as the
summation of the residual optical flow and the motion dis-
placements introduced by the global homography.

4.2. Discontinuity Identification

A possible solution to detect different motions is to adopt
the motion segmentation techniques [23]. However, motion
segmentation itself is a difficult problem. Many methods re-
quire long feature trajectories. Though there are two-frame-
based motion segmentation techniques[5, 22], typically it is
still challenging to deal with large foreground objects due
to insufficient motion contrast between neighboring frames.

We introduce a novel spatial-temporal analysis to iden-
tify pixels with discontinuous flow vectors. These pixels are
viewed as ‘outlier’ pixels. We use an outliers mask M, (p)
to record if pixel p at frame ¢ is "outlier’ (i.e., M;(p) = 0)
or not (ie, M;(p) = 1). In the spatial domain, we thresh-
old the gradient magnitude of raw optical flow to identify
discontinuous regions. Once the magnitude at p is larger
than the threshold (0.1 in our experiment), p is considered
as “outlier’. The spatial analysis can only detect boundary
pixels on moving objects, because the motion vectors within
a moving object is often coherent, though they are different
from the motions on the background. Therefore, we will
further adopt a temporal analysis to identify them.

The temporal analysis examines the accumulated motion
vectors ¢¢(p) = >, u¢(p), where u; (p) is the motion vector
on pixel p at frame ¢, to decide if p is ‘outlier’. It is based
on the observation that, in a stable video, the accumulated
motion vectors ¢;(p) should be smooth over time, except
on moving objects and strong depth edges. Figure 6 shows
a stabilized video and the accumulated motion vectors at
two pixel positions. The pixel (marked by a white star) al-
ways lies on the static background. Its accumulated motion
vectors generate a smooth trajectory over time (shown in
Figure 6 (b)). In comparison, as shown in Figure 6 (a), the
trajectory of accumulated motion vectors at the other pixel
(marked by a white dot) has significant amount of high fre-
quencies at the beginning, because a moving person passes
through that pixel in the first few frames. Its trajectory be-
comes smooth when the person moves away. We compute
the outlier mask M (p) as:

M, (p) = { 0, (lee(p) — G @ culp)l| > ¢) 0

1, otherwise.
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Figure 6. We identify discontinuous motion vectors by analyzing
if the trajectory of accumulated motion vectors on a pixel profile is
temporally smooth. We show four frames from a stabilized video.
(a) and (b) are the trajectories of the accumulated motion vectors
evaluated at the pixels marked by white dot and white star. (c) and
(d) are the trajectories at the corresponding positions on the input
video. The temporal locations of these 4 frames are denoted in the
trajectories by dots with the same color as the frame border.

where G is a Gaussian filter (with default standard deviation
3) and ¢ uses adaptive threshold (described in Section 4.4).

4.3. Motion Completion

We collect all the pixels with discontinuous motions to
form a outlier mask. Motion vectors within the mask are
discarded. We then complete it in a similar way as [17] by
the ‘as-similar-as-possible’ warping [14, 15]. Basically, we
take the pixels on the mask boundary as control points, and
fill in the motion field by warping 2D meshes grids with
the grid size 40 x 40 pixels. Mathematically, it amounts to
minimizing the energy E(V) = E4(V) + E,(V). We take
the same smoothness E as described in [14] to maintain
the rigidity of the grid. The data term Ej is defined as:

Ea(V) =2 M@)- IV =+ w)ll. @

Here,the grids vertices are indicated by V. The vector u,, is
the initial optical flow at the pixel p, such that (p,p + up)
form a pair of control points. The parameter 7, is the bi-
linear coordinate, i.e., p = V,m,, where V,, is the 4 grid
vertices enclosing p. For more detailed explanation and jus-
tification, please refer to [17, 14]. This energy is minimized
by solving a sparse linear equations system. We use bilinear
interpolation to compute the motion vector of every pixel
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Figure 7. Example of motion completion. (a) A frame from input
video. (b) The raw optical flow. (c) Warped mesh estimated from
background samples. The white region shows the outlier mask.
(d) SteadyFlow after rewrite the discontinuous motion vectors.

according to the motion of the grid vertices.

Figure 7 shows the estimated SteadyFlow. The missing
regions in the flow field (white regions in Figure 7 (c)) cor-
responds to dynamic objects,depth edges (e.g., flows on tree
branches) and image boundary pixels with inaccurate raw
optical flows. The motion vectors in the missing regions are
interpolated from their neighboring pixels. In this way, we
generate the SteadyFlow as shown in Figure 7 (d).

The raw optical flow field might also be smoothed by
strong Gaussian smooth. However, Gaussian smooth prop-
agates the foreground motion to background pixels. This
makes the frame registration fail at background and causes
strong temporal wobble artifacts in the stabilized video.

4.4. Iterative Refinement

Note that our temporal analysis for the estimation of out-
liers mask requires a stable video. As shown in Figure 6
(c) and (d), the trajectories generated on the original shaky
video is discontinuous everywhere. In practice, we obtain
an initial outlier mask M; estimated from the shaky video
only by spatial analysis of discontinuous flow vectors. Then
we apply an iterative scheme to alternatively refine the out-
lier mask M;. At each iteration, the first step is to ex-
clude outliers and fill in the missing regions of the input
SteadyFlow according to the mask M;. The motion com-
pletion is described in Section 4.3. The second step is to
stabilize the SteadyFlow, which will be described in Sec-
tion 5. In the third step, the stabilized SteadyFlow is then
used to further refine M; by temporal analysis of discon-
tinuous flow vectors as described in Section 4.2. Since our
temporal analysis is more suitable for stable videos, we may
consider adaptive threshold (1 4+ a'/™)e used in Equation 1
to assign a conservative threshold in the beginning. Here,
n is the iteration index and a = 20,e = 0.2 is used in
our experiment. We iterate the whole three steps to finally
generate the stabilized result. We use 5 iterations in our

experiments empirically.

5. Pixel Profiles based Stabilization

We here derive the stabilization algorithm that smoothes
the pixel profiles extracted from the SteadyFlow. Let U, ,
S; be the SteadyFlow estimated from frame ¢ to frame ¢ — 1
in the input video and stabilized video respectively. The
smoothing is achieved by minimizing the following objec-
tive function similar to [18]:

O(P}H =) <|Pt —ClllP A D wi Py - Pr||2>

t refd
3
where C; = Zt U, is the field of accumulated motion vec-
tors of the input video. Similarly, we have P, = >, S; of
the stabilized video. The first term requires the stabilized
video staying close to its original to avoid excessive crop-
ping, while the second term enforces temporal smoothness.
There are three differences from path optimization
in [18]. First, since SteadyFlow itself enforces strong spa-
tial smoothness, we do not require any spatial smoothness
constraint in Equation 3. Second, the weight w; , only in-
volves the spatial Gaussian function w;, = exp(—||r —
t||?/(€24/3)?) rather than a bilateral weight. To adaptively
handle different motion magnitudes, we adopt an adaptive
temporal window (2; in our smoothing (to be discussed in
Section 5.1). Third, the P and C here are non-parametric
accumulated motion vectors instead of parametric models
(i.e., homographies).
Likewise, we can further obtain iterative solution by:

1
PV = —(Corr Y w, PO, @
v reQ,r#L

where the scalar v = 1 + )\ZT wy » and £ is an iteration
index (by default, ¢ = 10). After optimization, we will
warp the original input video frame to the stabilized frame
by a dense flow field B; = P; — C;. We can further derive
the relationship between B; and Uy, S; as:

Ut+Bt_1:Bt+st:>St:Ut+Bt_1*Bt. (5)

5.1. Adaptive Window Selection

Our smoothing technique requires a feature trajectories
to be similar to its corresponding pixel profile within the
temple window €);. We adaptively adjust the size of §); to
deal with motion velocity changes in the video. Specifi-
cally, as shown in Figure 8, the SteadyFlow is assumed to
be spatially smooth within a window (denoted by the yel-
low box) of the size(27 4 1) x (27 + 1), centered at pixel A.
Within the window, smoothing the feature trajectory (de-
noted by the solid red line) can be well approximated by



Figure 8. Estimation of adaptive temporal window size {2; in
Equation 3. The window size €; is selected such that the feature
trajectory (denoted by the red line) is always within the predeter-
mined yellow box.

smoothing the pixel profile (denoted by the dish blue line).
Once the trajectory goes outside the window, i.e., d;_, > T
(7 = 20 in our implementation), it would introduce non-
negligible errors to the approximation. So we estimate ),
for each pixel in a pixel profile to ensure the feature trajec-
tory started at that pixel is within (274 1) x (27 4 1) for all
frames in €);. The feature trajectory here is approximated
by tracing the optical flows. For instance, in Figure 8, the
window for point A is Q:(A) = [t — 1,¢ 4+ r]. To avoid
spatial distortion, it is necessary to choose a global smooth
window €, for all pixels in the frame t. So we take the
intersection of the windows at all pixels to determine the fi-
nal temporal support for frame ¢. With the help of dynamic
window, we can handle videos with quick camera motion
e.g. quick rotation, fast zooming.

6. Results

We evaluated our method on some challenging examples
from publicly available videos in prior publications to facil-
itate comparisons. These example videos include large par-
allax, dynamic objects, large depth variations, and rolling
shutter effects. All comparisons and results are provided in
the project page’.

Our system takes 1.5 second to process a video frame
(640 x 360 pixels) on a laptop with 2.3GHz CPU and 4G
RAM. The computation bottleneck is the optical flow esti-
mation (1.1 second per frame), which could be significantly
speed up by GPU implementations. Our outliers mask esti-
mation takes 0.34 second on each frame. It is independent
per-pixel computation and can be parallelized easily.

Videos with Large Dynamic Objects This is a challeng-
ing case for previous 2D video stabilization methods. A
large portion of corresponding image features are on the
foreground moving objects. Previous methods often rely
on RANSAC to exclude these points to estimate the back-
ground 2D motion.

Figure 9 shows a synthetic example. We compared our
method with a simple 2D technique that adopts homogra-

Zhttp://137.132.165.105/CVPR2014/index.html
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Figure 9. Comparison with single homography based stabilization.
(a) Inliers after RANSAC based homography fitting. (b) Inlier
motion vectors after our outlier mask detection. (c) and (d) are
results from the single homography based method and our method
respectively.

phy fitting with RANSAC for motion estimation. In Fig-
ure 9 (a), we can see that RANSAC cannot exclude all the
outliers, which cause distortions in the results as shown in
(¢). In comparison, our SteadyFlow estimation can exclude
all the undesirable motion vectors on the foreground object
(see Figure 9 (b)) and produce better stabilization result in
(d). To further know how our SteadyFlow estimation ex-
tract outlier masks for this example, Figure 10 shows the
intermediate masks at each iteration.

In addition, we borrow four videos (shown in Figure 11)
with remarkable dynamic objects from [15], [7] and [18],
which are reported as failure cases. The large moving ob-
ject (a person) in the first video (shown in Figure 11 (a))
breaks feature trajectories, and makes feature-track-based
method (like [15]) fail. The examples in Figure 11 (b) and
(c) clearly consist of two motion layers. For both exam-
ples, our method can identify distracting foreground ob-
jects despite their large image size. This ensures a suc-
cessful SteadyFlow estimation and superior stabilization re-
sults. The recent ‘Bundled-Paths’ method [18] fits a 2D
grid of homographies to model more complicated 2D mo-
tion. This method enforces stronger spatial smoothness at
dynamic scenes, which reduces their model representation
capability. Thus, it produces artifacts on the example shown
in Figure 11 (d). In comparison, our SteadyFlow is power-
ful to exclude dynamic objects and can maintain the ability
of modelling complicated motion. As a result, we can pro-
duce better results.

Videos with Large Depth Change We further evaluate
our method on two videos with large depth changes, one
video come from [14] and another captured by ourselves.
Our 2D method achieved results of similar visual quality
to 3D method. The video thumbnails are shown in Fig-
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Figure 10. Estimated masks during each iteration of optimization
on a synthetic example.

Figure 11. Failure examples reported in (a) and (b) Subspace sta-
bilization [15], (b) Epipolar [7], (d) Bundled-Paths [18].

Figure 12. Two videos with large depth change for the comparison
with traditional 2D stabilization.
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Figure 13. Two rolling shutter videos borrowed from [&].

ure 12. We compared our results with that of a traditional
2D method [20] (using our implementation). As can be seen
from the accompany video, the results from [20] contain jit-
ters at some image regions. We further compare with indoor
videos captured by Kinect[17]. Please refer to our project
page for more comparisons.

Videos with Rolling Shutter Effects Rolling shutter ef-
fects of CMOS sensors cause spatial variant motions in
videos. Our method can model rolling shutter effects as
spatially variant high frequency jitters. It can simultane-

(a) YouTube result (b) our result

Figure 14. Comparison with YouTube Stabilizer. The red arrow
indicates structure distortions in YouTube results.

(a) “Warp Stabilizer’ result

(b) our result

Figure 15. Comparison with Adobe After Effects CS6 ‘Warp Sta-
bilizer’. We can notice the global shearing/skewing in ‘Warp Sta-
bilizer’ results.

ously rectify rolling shutter effects when smoothing camera
shakes. Figure 13 shows two rolling shutter videos bor-
rowed from [8]. Our method produced similar quality as
other state-of-art techniques [, 11, &, 18].

Comparison with State-of-art System We further com-
pared our system with two well-known commercial systems
on our captured videos. One system is the YouTube Stabi-
lizer, which is built upon the L;-optimization method [9]
and the homography mixture method [8]. We uploaded our
videos to YouTube and downloaded the automatically sta-
bilized results. Another system is the Adobe After Effects
CS6 “Warp Stabilizer’, which is based on the subspace sta-
bilization method [15]. Since it is an interactive tool, we try
our best to generate results with the best perceptual quality.

Figure 14 shows the comparison with YouTube Stabi-
lizer. We can see remarkable structure distortions at the
pole, which has discontinuous depth changes. In com-
parison, our SteadyFlow estimation masks out these depth
changes and fill in by the neighboring motions. Thus our
result is stable and free from distortions.

Figure 15 shows the comparison with the “Warp Stabi-
lizer’ in After Effects CS6. In this example, the moving
train makes the feature-trajectory-based subspace analysis
fail. As a result, shearing/skewing distortions are visible in
their result. Our SteadyFlow estimation excludes motion
vectors on the train to obtain a spatially coherent motion
field for stabilization. Our result is free from distortions,
though it might not be physically correct.

7. Limitations

During the experiment, we noticed that the size of the
foreground is crucial to a successful result. Our spatial-
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Figure 16. Failure cases. Videos contain dominant foreground.

temporal analysis fails to distinguish foreground and back-
ground when videos contain dominant foreground objects.
These objects consistently occupy more than half area of a
frame and exsit for a long time. The stabilization will be
applied on the foreground instead of background, or keep
switching. Figure 16 shows two failure cases and some
more in the project page.

8. Conclusion

We propose a novel motion representation, SteadyFlow,
for video stabilization. Due to the strong spatial coherence
in the SteadyFlow, we can simply smooth each motion pro-
file independently without considering the spatial smooth-
ness [18] or subspace constraint [17]. Our method is more
robust than previous 2D or 3D methods. Its general mo-
tion model allows stabilizing challenging videos with large
parallax, dynamic objects, rolling-shutter effects, etc.
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