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Abstract
Many fields of study in compilers give rise to the concept of a
join point—a place where different execution paths come together.
While they have often been treated by representing them as func-
tions or continuations, we believe it is time to study them in their
own right. We show that adding them to a direct-style functional
intermediate language allows new optimizations to be performed,
including a functional version of loop-invariant code motion. Fi-
nally, we report on recent work on the Glasgow Haskell Compiler
which added join points to the Core language.

1. Introduction
Consider this code, in a functional language:

if (if e1 then e2 else e3) then e4 else e5

Many compilers will perform a commuting conversion [13], which
naı̈vely would produce:

if e1 then (if e2 then e4 else e5)
else (if e3 then e4 else e5)

Commuting conversions are tremendously important in practice
(Sec. 2), but there is a problem: the conversion duplicates e4 and
e5. A natural countermeasure is to name the offending expressions
and duplicate the names instead:

let { j4 () = e4; j5 () = e5 }
in if e1 then (if e2 then j4 () else j5 ())

else (if e3 then j4 () else j5 ())

We describe j4 and j5 as join points, because they say where
execution of the two branches of the outer if joins up again. The
duplication is gone, but a new problem has surfaced: the compiler
may allocate closures for locally-defined functions like j4 and j5.
That is bad because allocation is expensive. And it is tantalizing
because all we are doing here is encoding control flow: it is plain as
a pikestaff that the “call” to j4 should be no more than a jump, with
no allocation anywhere. That’s what a C compiler would do! Some
code generators can cleverly eliminate the closures, but perhaps not
if further transformations intervene.

The reader of Appel’s inspirational book [1] may be thinking
“Just use continuation-passing style (CPS)!” When expressed over
CPS terms, many classic optimizations boil down to β-reduction
(i.e., function application), or arithmetic reductions, or variants
thereof. And indeed it turns out that commuting conversions fall
out rather naturally as well. But using CPS comes at a fairly heavy
price: the intermediate language becomes more complicated, some
transformations are harder or out of reach, and (unlike direct style)
CPS commits to a particular evaluation order (Sec. 8).

Inspired by Flanagan et al. [10], the reader may now be thinking
“OK, just use administrative normal form (ANF)!” That paper
shows that many transformations achievable in CPS are equally

accessible in direct style. ANF allows an optimizer to exploit CPS
technology without needing to implement it. The motto is: Think in
CPS; work in direct style.

But alas, a subsequent paper by Kennedy shows that there re-
main transformations that are inaccessible in ANF but fall out nat-
urally in CPS [16]. So the obvious question is this: could we extend
ANF in some way, to get all the goodness of direct style and the
benefits of CPS? In this paper we say “yes!”, making the following
contributions:
• We describe a modest extension to a direct-style λ-calculus in-

termediate language, namely adding join points (Sec. 3). We
give the syntax, type system, and operational semantics, to-
gether with optimising transformations.
• We describe how to infer which ordinary bindings are in fact

join points (Sec. 4). In a CPS setting this analysis is called
contification [16], but it looks rather different in our setting.
• We show that join points can be recursive, and that recursive

join points open up a new and entirely unexpected (to us) opti-
mization opportunity for fusion (Sec. 5). In particular, this in-
sight fully resolves a long-standing tension between two com-
peting approaches to fusion, namely stream fusion [6] and un-
fold/destroy fusion [27].
• We give some metatheory in Sec. 6, including type soundness

and correctness of the optimizing transformations. We show the
safety of adding jumps as a control effect by establishing an
equivalence with System F.
• We demonstrate that our approach works at scale, in a state-

of-the-art optimizing compiler for Haskell, GHC (Sec. 7).
As hoped, adding join points turned out to be a very modest
change, despite GHC’s scale and complexity. Like any opti-
mization, it does not make every program go faster, but it has a
dramatic effect on some.

Overall, adding join points to ANF has an extremely good power-
to-weight ratio, and we strongly recommend it to any direct-style
compiler. Our title is somewhat tongue-in-cheek, but we now know
of no optimizing transformation that is accessible to a CPS com-
piler but not to a direct-style one.

2. Motivation and key ideas
We review compilation techniques for commuting conversions, to
expose the challenge that we tackle in this paper. For the sake of
concreteness we describe the way things work in GHC. However,
we believe that the whole paper is equally applicable to a call-by-
value language.

Case-of-case transformation Consider these function defini-
tions:

isNothing :: Maybe a -> Bool
isNothing x = case x of Nothing -> True

Just _ -> False
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mHead :: [a] -> Maybe a
mHead ps = case ps of [] -> Nothing

(p:_) -> Just p

null :: [a] -> Bool
null as = isNothing (mHead as)

Here null is a simple composition of the library functions isNothing
and mHead. When the optimizer works on null, it will inline both
isNothing and mHead to yield:

null as = case (case as of [] -> Nothing
(p:_) -> Just p) of

{ Nothing -> True; Just _ -> False }

Executed directly, this would be terribly inefficient; if the argument
list is non-empty we would allocate a result Just p only to im-
mediately decompose it. We want to move the outer case into the
branches of the inner one, like this:

null as = case as of
[] -> case Nothing of Nothing -> True

Just z -> False
p:_ -> case Just p of Nothing -> True

Just _ -> False

This is a commuting conversion, specifically the case-of-case
transformation. In this example, it now happens that both inner
case expressions scrutinize a data constructor, so they can be sim-
plified, yielding

null as = case as of { [] -> True; _:_ -> False }

which is exactly the code we would have written for null from
scratch.

GHC does a tremendous amount of inlining, including across
modules or even packages, so commuting conversions like this are
very important in practice: they are the key that unlocks a cascade
of further optimizations.

Join point Commuting conversions have a problem, though: they
often duplicate the outer case. In our example that was OK, but
what about

case (case v of { p1 -> e1; p2 -> e2 }) of
{ Nothing -> BIG1; Just x -> BIG2 }

where BIG1 and BIG2 are big expressions? We do not want to du-
plicate these large expressions, or we would risk bloating the size of
the compiled code, perhaps exponentially when case expressions
are deeply nested [17]. It is easy to avoid this duplication by first
introducing an auxiliary let binding:

let { j1 () = BIG1; j2 x = BIG2 } in
case (case v of { p1 -> e1; p2 -> e2 }) of

{ Nothing -> j1 (); Just x -> j2 x }

Now we can move the outer case expression into the arms of the
inner case, without duplicating BIG1 or BIG2, thus:

let { j1 () = BIG1; j2 x = BIG2 } in
case v of

p1 -> case e1 of Nothing -> j1 ()
Just x -> j2 x

p2 -> case e2 of Nothing -> j1 ()
Just x -> j2 x

Notice that j2 takes as its parameter the variable bound by the
pattern Just x, whereas j1 has no parameters1.

Compiling join points efficiently We call j1 and j2 join points
because you can think of them as places where control joins up

1 The dummy unit parameter is not necessary in a lazy language, but it is in
a call-by-value language.

again, but so far they are perfectly ordinary let-bound functions,
and as such they will be allocated as closures in the heap. But that’s
ridiculous: all that is happening here is control flow splitting and
joining up again. A C compiler would generate a jump to a label,
not a call to a heap-allocated function closure!

So, right before code generation, GHC performs a simple anal-
ysis to identify bindings that can be compiled as join points. This
identifies let-bound functions that will never be captured in a clo-
sure or thunk, and will only be tail-called with exactly the right
number of arguments. (We leave the exact criteria for Sec. 4.) These
join-point bindings do not allocate anything; instead a tail call to a
join point simply adjusts the stack and jumps to the code for the
join point.

The case-of-case transformation, including the idea of using
let bindings to avoid duplication, is very old; for example, both
are features of Steele’s Rabbit compiler for Scheme [24]. In Rabbit
the transformation is limited to booleans, but the discussion above
shows that it generalizes very naturally to arbitrary data types. In
this more general form, it has been part of GHC for decades [19].
Likewise, the idea of generating different (and much more efficient)
code for non-escaping let bindings is well established in many
other compilers [15, 23, 28] as well as GHC.

Preserving and exploiting join points So far so good, but there
is a serious problem with recognizing join points only in the back
end of the compiler. Consider this expression:

case (let j x = BIG in
case v of { A -> j 1; B -> j 2; C -> True } of

{ True -> False; False -> True }

Here j is a join point. Now suppose we do case-of-case on this
expression. Treating the binding for j as an ordinary let binding
(as GHC does today), we move the outer case past the let, and
duplicate it into the branches of the inner case, yielding

let j x = BIG in
case v of

A -> case (j 1) of { True -> False; False -> True }
B -> case (j 2) of { True -> False; False -> True }
C -> case True of { True -> False; False -> True }

The third branch simplifies nicely, but the first two do not. There
are two distinct problems:
1. The binding for j is no longer a join point (it is not tail-called),

so the super-efficient code generation strategy does not apply,
and the compiler will allocate a closure for j at runtime. This
happens in practice: we have cases in which GHC’s optimizer
actually increases allocation because it inadvertently destroys a
join point.

2. Even worse, the two copies of the outer case now scrutinize
an uninformative call like (j 1). So the extra code bloat from
duplicating the outer case is entirely wasted. And it’s a huge
lost opportunity, as we shall see.

So it is not enough to generate efficient code for join points; we
must identify, preserve, and exploit them. In our example, if the
optimizer knew that the binding for j is a join point, it could exploit
that knowledge to transform our original expression like this:

let j x = case BIG of True -> False
False -> True

in case v of
A -> j 1
B -> j 2
C -> case True of { True -> False; False -> True }

This is much, much better than our previous attempt:
• The outer case has moved into the right-hand side of the join

point, so it now scrutinizes BIG. That’s good, because BIG
might be a data constructor or a case expression (which would
expose another case-of-case opportunity). So the outer case
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now scrutinizes the actual result of the expression, rather than
an uninformative join-point call. That solves problem (2).
• The A and B branches do not mention the outer case, because it

has moved into the join point itself. So j is still tail-called and
remains an efficiently-compiled join point. That solves problem
(1).
• The outer case still scrutinizes the branches that do not finish

with a join point call, e.g. the C branch.

The key idea Thus motivated, in the rest of this paper we explore
the following very simple idea:
• Distinguish certain let bindings as join-point bindings, and

their (tail-)call sites as jumps.
• Adjust the case-of-case transformation to take account of join-

point bindings and jumps.
• In all the other transformations carried out by the compiler,

ensure that join points remain join points.
Our key innovation is that, by recognising join points as a language
construct, we both preserve join poins through subsequent transfor-
mations, and exploit join points to make other tansformations more
effective. Next, we formalize this approach; subsequent sections
develop the consequences.

3. System FJ : join points and jumps
We now formalize the intuitions developed so far by describing
System FJ , a small intermediate language with join points. FJ is
an extension of GHC’s Core intermediate language [19]. We omit
existentials, GADTs, and coercions [25], since they are largely
orthogonal to join points.

Syntax System FJ is a simple λ-calculus language in the style of
System F, with let expressions, data type constructors, and case
expressions; its syntax is given in Fig. 1. System FJ is an explicitly-
typed language, so all binders are typed, but in our presentation we
will often drop the type annotations.

The join-point extension is highlighted in the figure and consists
of two new syntactic constructs:
• A join binding that declares a join point. Each join point has a

name, a list of type parameters, a list of value parameters, and
a body.
• A jump expression that invokes a join point, passing all in-

dicated arguments as well as an additional type argument (as
discussed below).
Although we use curried syntax for jumps, join points are

polyadic; partial application is not allowed.

Static semantics The type system for System FJ is given in
Fig. 2, where typeof gives the type of a constructor and ctors gives
the set of constructors for a datatype.

The typing judgement carries two environments, Γ and ∆, with
∆ binding join points. The environment ∆ is extended by a join
(rules JBIND and RJBIND) and consulted at a jump. Note that we
rely on scoping conventions in some places: if Γ; ∆ ` e : τ , then
every variable (type or term) free in e or τ appears in Γ, and the
symbols in Γ are unique. Similarly, every label free in e appears in
∆.

To enforce that jumps are not used as side effects, ∆ is reset in
every premise for a subterm whose runtime context is not statically
known. For example, consider join j x = RHS in f (jump j True Int).
Here the context in which the jump is invoked is not stati-
cally known—in a lazy language it depends on how f uses its
argument—so it cannot be compiled to “adjust the stack and jump.”
So j is not a valid join point. We exclude such terms by resetting
∆ to ε when typechecking the argument in rule APP.

Terms
x ∈ Term variables
j ∈ Label variables
e, u, v ::= x | l | λx:σ.e | e u

| Λa.e | eϕ Type polymorphism
| K #»ϕ #»e Data construction
| case eof

#  »
alt Case analysis

| let vb in v Let binding
| join jb inu Join-point binding
| jump j #»ϕ #»e τ Jump

alt ::= K #   »x:σ → u Case alternative

Value bindings and join-point bindings
vb ::= x:τ = e Non-recursive value

| rec #              »x:τ = e Recursive values
jb ::= j #»a #   »x:σ = e Non-recursive join point

| rec
#                          »
j #»a #   »x:σ = e Recursive join points

Answers
A ::= λx:σ.e | Λa.e | K #»ϕ #»v

Types
a, b ∈ Type variables
τ, σ, ϕ ::= a Variable

| T Datatype
| σ → τ Function type
| τ ϕ Application
| ∀a. τ Polymorphic type

Frames, evaluation contexts, and stacks
F ::= � v Applied function

| � τ Instantiated polymorphism
| case�of #          »p→ u Case scrutinee
| join jb in� Join point

E ::= � | F [E] Evaluation contexts
s ::= ε | F : s Stacks

Tail contexts
L ::= � Empty unary context

| case eof
#           »
p→ L Case branches

| let vb inL Body of let
| join j #»a #   »x:σ = L inL′ Join point, body
| join rec

#                           »
j #»a #   »x:σ = L inL′ Rec join points, body

Miscellaneous
C ∈ General single-hole term contexts
Σ ::= · | Σ, x:σ = v Heap
c ::= 〈e; s; Σ〉 Configuration

Figure 1: Syntax of System FJ .

Nevertheless, the typing of join points is a little bit more flexible
than you might suspect. Consider this expression:

join j x = RHS
in case v of A → jump j True C2C

B → jump j False C2C

C → λc.c

 ’x’

where C2C = Char → Char . This is certainly well typed. A
valid transformation is to move the application to ’x’ into both the
body and the right hand side of the join, thus:

join j x = RHS ’x’

in

 case v of A → jump j True C2C

B → jump j False C2C

C → λc.c

 ’x’

Now we can move the application into the branches:
join j x = RHS ’x’
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Γ; ∆ ` e : τ

(x:τ) ∈ Γ

Γ; ∆ ` x : τ
VAR

typeof(K) = ∀ #»a . #»σ → T #»a
#                                        »

Γ; ε ` u : σ{ϕ/a}
Γ; ∆ ` K #»ϕ #»u : T #»ϕ

CON
Γ, (x:σ); ε ` e : τ

Γ; ∆ ` λ(x:σ).e : σ → τ
ABS

Γ, a; ε ` e : τ

Γ; ∆ ` Λa.e : ∀a. τ TABS

Γ; ∆ ` e : σ → τ Γ; ε ` u : σ

Γ; ∆ ` e u : τ
APP

Γ; ∆ ` e : ∀a. τ
Γ; ∆ ` e ϕ : τ{ϕ/a} TAPP

(j:∀ #»a . #»σ → ∀r. r) ∈ ∆
#                                        »

Γ; ε ` u : σ{
#     »

ϕ/a}
Γ; ∆ ` jump j #»ϕ #»u τ : τ

JUMP

Γ; ε ` u : σ Γ, x:σ; ∆ ` e : τ

Γ; ∆ ` letx:σ = u in e : τ
VBIND

#                                   »
Γ, #   »x:σ ; ε ` u : σ Γ, #   »x:σ ; ∆ ` e : τ

Γ; ∆ ` let rec #               »x:σ = u in e : τ
RVBIND

Γ, #»a , #   »x:σ ; ∆ ` u : τ Γ; ∆, (j:∀ #»a . #»σ → ∀r. r) ` e : τ

Γ; ∆ ` join j #»a #   »x:σ = u in e : τ
JBIND

#                                                                                          »

Γ, #»a , #   »x:σ ; ∆,
#                                    »
j:∀ #»a . #»σ → ∀r. r ` u : τ Γ; ∆,

#                                    »
j:∀ #»a . #»σ → ∀r. r ` e : τ

Γ; ∆ ` join rec
#                          »
j #»a #   »x:σ = u in e : τ

RJBIND

Γ; ∆ ` e : T #»ϕ
#                                                                 »

typeof(K) = ∀ #»a . #»σ → T #»a
#                              »
#»ν = #»σ {

#     »

ϕ/a} #                                     »
Γ, #   »x:ν ; ∆ ` u : τ ctors(T ) = { #»

K}

Γ; ∆ ` case eof
#                      »
K #   »x:ν → u : τ

CASE

Figure 2: Type system for System FJ .

in case v of A → (jump j True C2C) ’x’

B → (jump j False C2C) ’x’

C → (λc.c) ’x’

Should this be well typed? The jumps to j are not exactly tail
calls, but they can (and indeed must) discard their context—here
the application to ’x’—and resume execution at j. We will see
shortly how this program can be further transformed to remove
the redundant applications to ’x’, but the point here is that this
intermediate program is still well typed, as reflected by the fact that
∆ is not reset in the function part of an application (rule APP).

The types given to join points themselves deserve some atten-
tion. A join point that binds type variables #»a and value arguments
of types #»σ is given the type ∀ #»a . #»σ → ∀r. r (rule JBIND). The
return type indicated, namely ∀r. r, is often written ⊥, and it in-
dicates a non-returning function: a function which does not actu-
ally return can be safely given any return value. This is similar to
how Haskell’s error function has type ∀a.String → a. We have
merely moved the universal quantification to the end for consis-
tency with the join syntax, which does not (and must not2) bind
this “return-type parameter.”

So a join point’s type does not reflect the value of its body, and
a jump can have any type whatsoever. What then keeps a join point
from returning arbitrary values? It is the JBIND rule (or its recursive
variant) that checks the right hand side of the join point, making
sure it is the same as that of the entire join expression. Thus we
cannot have

join j = "Gotcha!" in if b then jump j Int else 4

because j returns a String but the body of the join returns an Int .
In short, the burden of typechecking has moved: whereas a function
can be declared to return any type but can only be invoked in certain
contexts, a join point can be invoked in any context but can only
return a certain type.

Finally, the reader may wonder why join points are polymorphic
(apart from the result type). In FJ as presented here, we could
manage with monomorphic join points, but they become absolutely
necessary when we add data constructors that bind existential type
variables. We omitted existentials from this paper for simplicity,

2 When we introduce the abort axiom (Sec. 3), it will need to change this
type argument arbitrarily, which it can only safely do if the type is never
actually used in the other parameters.

〈e; s; Σ〉 7→ 〈e′; s′; Σ′〉
〈F [e]; s; Σ〉 7→ 〈e; F : s; Σ〉 (push)

〈λx.e; � v : s; Σ〉 7→ 〈e; s; Σ, x = v〉 (β)
〈Λa.e; �ϕ : s; Σ〉 7→ 〈e{ϕ/a}; s; Σ〉 (βτ )
〈let vb in e; s; Σ〉 7→ 〈e; s; Σ, vb〉 (bind)
〈x; s; Σ[x = v]〉 7→ 〈v; s; Σ[x = v]〉 (look)〈 K #»ϕ #»v ;

case�of
#  »
alt : s;

Σ

〉
7→ 〈u; s; Σ, #         »x = v〉

if (K #»x → u) ∈ #  »
alt

(case)

〈
jump j #»ϕ #»v τ ;

s′ ++(join jb in� : s);
Σ

〉
7→
〈

u{
#     »

ϕ/a};
join jb in� : s;

Σ, #         »x = v

〉
(jump)

if (j #»a #»x = u) ∈ jb〈
A;

join jb in� : s;
Σ

〉
7→ 〈A; s; Σ〉 (ans)

Figure 3: Call-by-name operational semantics for System FJ .

but they are very important in practice and GHC certainly supports
them.

Operational semantics We give System FJ an operational se-
mantics (Fig. 3) in the style of an abstract machine. A configura-
tion of the machine is a triple 〈e; s; Σ〉 consisting of an expression
e which is the current focus of execution; a stack s representing
the current evaluation context (including join-point bindings); and
a heap Σ of value bindings. The stack is a list of frames, each of
which is an argument to apply, a case analysis to perform, or a
bound join point (or recursive group). Each frame is moved to the
stack via the push rule. Most of the rules are quite conventional.
We describe only call-by-name evaluation here, as rule look shows;
switching to call-by-need by pushing an update frame is absolutely
standard.

Note that only value bindings are put in the heap. Join points
are stack-allocated in a frame: they represent mere code blocks, not
first-class function closures. As expected, a jump throws away its
context (the jump rule); it does so by popping all the frames from
the stack to the binding (as usual, ++ stands for the concatenation
of two stacks):〈

join j x = x
in case (jump j 2 (Int → Bool)) 3of . . .; ε; ε

〉
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7→?
〈

jump j 2 (Int → Bool);
� 3 : case�of . . . : join j x = x in� : ε;

ε

〉
7→ 〈x; join j x = x in� : ε; x = 2〉

Here three frames are pushed onto the stack: the join-point binding,
the case analysis, and finally the application of 3 to the jump. Then
the jump is evaluated, popping the latter two frames, replacing the
term with the one from the join point, and binding the argument.

The ans rule removes a join-point binding from the context
once an answer A (see Fig. 1) is computed; note that a well-typed
answer cannot contain a jump, so at that point the binding must be
dead code. Continuing our example:

〈x; join j x = x in� : ε; x = 2〉 7→? 〈2; ε; x = 2〉

Optimizing transformations The operational semantics operates
on closed configurations. An optimizing compiler, by contrast,
must transform open terms. To describe possible optimizations,
then, we separately develop a sound equational theory (Fig. 4),
which lays down the “rules of the game” by which the optimizer
is allowed to work. It is up to the optimizer to determine how
to apply the rules to rewrite code. All the axioms carry implicit
scoping restrictions to avoid free-variable capture. (For example,
drop requires that nothing bound by vb occurs free in e.)

The β, βτ , and case axioms are analogues of the similarly-
named rules in the operational semantics. Since there is no heap, β
and case create let expressions instead. Compile-time substitution,
or inlining, is performed for values by inline and for join points
by jinline . If a binding is inlined exhaustively, it becomes dead
code and can be eliminated by the drop or jdrop axiom. Values
may be substituted anywhere3, which we indicate using a general
single-hole context C in inline . Inlining of join points is a bit more
delicate. A jump indicates both that we should execute the join
point and that we should throw out the evaluation context up to
the join point’s declaration. Simply copying the body accomplishes
the former but not the latter. For example:

join j (x : Int) = x+ 1 in (jump j 2 (Int → Int)) 3

If we naı̈vely inline j here, we end up with the ill-typed term:
join j (x : Int) = x+ 1 in (2 + 1) 3

Inlining is safe, however, if the jump is a tail call, since then there is
no extra evaluation context to throw away. To specify the allowable
places to inline a join point, then, we use a syntactic notion called a
tail context. A tail context L (see Fig. 1) is a multi-hole context
describing the places where a term may return to its evaluation
context. Since � 3 is not a tail context, the jinline axiom fails for
the above term.

The casefloat , float , and jfloat axioms perform commuting
conversions. Of the three, jfloat is novel. It does the transformation
we wanted to perform in Sec. 2 to avoid destroying a join point. It
relies on a simple meta-syntactic function E[·] to push E into a
join-point binding:

E[j #»a #»x = u] , (j #»a #»x = E[u])

E[rec
#                       »
j #»a #»x = u] , (rec

#                               »

j #»a #»x = E[u])

Consider again the example at the beginning of Sec. 2. With our
new syntax, we can write it as:

case


join j x = BIG
in case v of A → jump j 1 Bool

B → jump j 2 Bool

C → True

 of

{True → False; False → True}
We can use jfloat to move the outer case into both the right hand
side of the join binding and into its body; use casefloat to move
the outer case into the branches of the inner case; use abort to

3 For brevity, we have omitted rules allowing inlining a recursive definition
into the definition itself (or another definition in the same recursive group).

discard the outer case where it scrutinizes a jump; and use case
to simplify the C alternative. The result is just what we want:

join j x = caseBIGof {True → False; False → True}
in case v of A → jump j 1 Bool

B → jump j 2 Bool

C → False

The commute axiom The left-hand sides of axioms float , jfloat ,
and casefloat enumerate the forms of a tail context. That suggests
that the three axioms are all instances of a single more general (yet
equivalent) form:

E[L[ #»e ]] = L[
#     »

E[e]] (commute)

To apply commute (forward) is to move the evaluation context
into each hole of the tail context. Since the tail context describes
the places where something is returned to the evaluation context,
commute “substitutes” the context into the places where it is in-
voked.4

We can also derive new axioms succinctly using tail contexts.
For example, our commuting conversions as written do quite a
bit of code duplication by copying E arbitrarily many times (into
each branch of a case and each join point). Of course, in a real
implementation, we would prefer not to do this, so instead we might
use a different axiom:

E[L[ #»e ] : τ ] = join j x = E[x] inL[
#                        »
jump j e τ ]

This can be derived from commute by first applying jdrop and
jinline backward.

4. Contification: inferring join points
Not all join points originate from commuting conversions. Though
the source language doesn’t have join points or jumps, many let-
bound functions can be converted to join points without changing
the meaning of the program. In particular, if every call to a given
function is a tail call, and we turn the calls into jumps, then when-
ever one of the jumps is executed, there will be nothing to drop
from the evaluation context (the s′ in the jump rule will be empty).

The process is a form of contification [16] (or continuation
demotion), which we describe in Fig. 5, where fv(e) means the
set of free variables of e (and similarly fv(L) for tail contexts), and
dom(ρ) means the domain of the environment ρ (to be described
shortly).

The non-recursive version, contify , attempts to decompose the
body of the let (i.e., the scope of f ) into a tail context L and
its arguments, where the arguments contain all the occurrences of
f , then attempts to run the special partial function tail on each
argument to the tail context. This function will only succeed if there
are no non-tail calls to f .

The tail function takes an environment ρ mapping applications
of contifiable variables f to jumps to corresponding join points j.
For each expression that matches the form of a saturated call to
such an f , then, tail turns the call into a jump to its j, provided that
none of the arguments to the function contains a free occurrence
of a variable being contified—an occurrence in argument position
is disallowed by the typing rules. For any other expression, tail
changes nothing but does check that no variable being contified
appears; otherwise, tail fails, causing the contify axiom not to
match.

There is one last proviso in the contify and contifyrec axioms,
which is that the body of each function to be contified must have
the same type as the body of the let. This can fail to occur if some
function f is polymorphic in its return type [8].

Finding bindings to which contify or contifyrec will apply
is not difficult. Our implementation is essentially a free-variable

4 In fact, from a CPS standpoint, commute is precisely a substitution
operation.
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e = e′

(λx:σ.e) v = letx:σ = v in e (β)

(Λa.e)ϕ = e{ϕ/a} (βτ )

let vb inC[x] = let vb inC[v] if (x:σ = v) ∈ vb (inline)

let vb in e = e (drop)

join jb inL[ #»e , jump j #»ϕ #»v τ,
#»

e′ ] = join jb inL[ #»e , let #              »x:σ = v inu{
#     »

ϕ/a},
#»

e′ ] if (j #»a #   »x:σ = u) ∈ jb (jinline)

join jb in e = e (jdrop)

caseK #»ϕ #»v of
#  »
alt = let #              »x:σ = v in e if (K #   »x:σ → e) ∈ #  »

alt (case)

E[case eof
#                   »
K #»x → u] = case eof

#                           »

K #»x → E[u] (casefloat)

E[let vb in e] = let vb inE[e] (float)

E[join jb in e] = joinE[jb] inE[e] (jfloat)

E[jump j #»ϕ #»e τ ] : τ ′ = jump j #»ϕ #»e τ ′ (abort)

Figure 4: Common optimizations for System FJ .

e = e′

let f = Λ #»a .λ #»x .u inL[ #»e ] : τ = join j #»a #»x = u inL[
#             »

tailρ(e)] (contify)
if ρ(f #»a #»x ) = jump j #»a #»x τ
and f /∈ fv(L), u : τ

let rec
#                                        »

f = Λ #»a .λ #»x .L[ #»u ] inL′[ #»e ] : τ = join rec
#                                              »

j #»a #»x = L[
#              »

tailρ(u)] inL′[
#             »

tailρ(e)] (contifyrec)

if
#                                                                  »

ρ(f #»a #»x ) = jump j #»a #»x τ

and
#                                                  »

f /∈ fv(
#»
L ), f /∈ fv(L′),

#                »

L[ #»u ] : τ

tailρ(f #»σ #»u ) , e{
#    »

σ/a}{
#    »

u/x} if ρ(f #»a #»x ) = e and dom(ρ) ∩ fv( #»u ) = ∅
tailρ(e) , e if dom(ρ) ∩ fv(e) = ∅
tailρ(e) , undefined otherwise

Figure 5: Contification as a source-to-source transformation.

analysis that also tracks whether each free variable has appeared
only in the holes of tail contexts. This is much simpler than previous
contification algorithms because we only look for tail calls. We
invite the reader to compare to [11] or to Sec. 5 of [16], which both
allow for more general calls to be dealt with. Yet we claim that,
in concert with the simplifier and the Float In pass, our algorithm
covers most of the same ground. To demonstrate, a convenient
point of comparison is the local CPS transformation in Moby [23],
which produces mutually tail-recursive functions to improve code
generation in much the same way GHC does. Note that Moby uses
a direct-style intermediate representation, though its contification
pass is expressed in terms of a CPS transform.

In essence, the final effect of Moby’s local CPS transform is to
turn

let f x = ...
in E[... f y ... f z ...]

(where the calls to f are tail calls within E) into

let { j x = E[x]; f x = j <rhs> }
in ...f y...f z...

where the tail calls to f are now compiled as efficient jumps. Note
that f now matches the contify axiom, but it did not before because
of the E in the way. Nonetheless, our extended GHC achieves the
same effect as Moby, only in stages. Starting with:

let f x = rhs inE[. . . f y . . . f z . . .]

First, applying float from right to left floats f inward:

E[let f x = rhs in . . . f y . . . f z . . .]

Next, contify applies, since the calls to f are now tail calls:

E[join f x = rhs in . . . jump f y τ . . . jump f z τ . . .]

And now jfloat pushes E into the join point f and the body:

join f x = E[rhs] in . . . E[jump f y τ ] . . . E[jump f z τ ] . . .]

From here, abort removes E from the jumps, and we can abstract
E by running jdrop and jinline backward:

join {j x = E[x]; f x = jump j rhs τ} in . . . f y . . . f z . . .

Thus we achieve the same result without any extra effort5.
Naturally, contification is more routine and convenient in CPS-

based compilers [11, 16]. The ability to handle an intervening
context comes nearly “for free” since contexts already have names.
Notably, it is still possible to name contexts in direct style (the
Moby paper [23] does so using labelled expressions), so it is only a
matter of convenience, not feasibility.

5. Recursive join points and fusion
We have mentioned, without stressing the point, that join points
can be recursive. We have also shown that it is rather easy to
identify let-bindings that can be re-expressed (more efficiently)
as join points. To our complete surprise, we discovered that the
combination of these two features allowed us to solve a long-
standing problem with stream fusion.

5 The parts of this sequence not specifically to do with join points were
already implemented before in GHC: The Float In pass applies float in
reverse, and the Simplifier regularly creates join points to share evaluation
contexts (except that previously they were ordinary let bindings).
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Recursive join points Consider this program, which finds the first
element of a list that satisfies a predicate p:

find = Λa.λ(p : a→Bool)(xs : [a]).

let go xs = case xs of

x : xs′ → if p x then Just x

else go xs′

[] → Nothing

in go xs0

Programmers quite often write loops like this, with a local defini-
tion for go, perhaps to allow find to be inlined at a call site. Our
first observation is this: go is a (recursive) join point! The contif-
ication transformation of will identify go as a join point, and will
transform the let to a join, and each call to go into a jump. More-
over, the transformed function is much more efficient because there
is no longer a heap-allocated closure for go.

But it gets better! Because go is a join point, it can participate in
a commuting conversion. Suppose, for example, that find is called
from any like this:

any = Λa.λ(p : a→Bool)(xs : [a]).

casefind p xs of Just → True

Nothing → False

The call to find can be inlined:
any = Λa.λ(p : a→Bool)(xs : [a]).

case


join go xs = case xs of

x : xs′ → if p x then Just x

else jump go xs′ (Maybe a)

[] → Nothing

in jump go xs (Maybe a)

of

{Just → True; Nothing → False}
Now, we have a case scrutinizing a join so we can apply axiom
jfloat from Figure 4. After some easy further transformations, we
get

any = Λa.λ(p : a→Bool)(xs : [a]).

join go xs = case xs of

x : xs′ → if p x thenTrue

else jump go xs′ Bool

[] → Nothing

in jump go xs Bool

Look carefully at what has happened here: the consumer (any) of
a recursive loop (go) has moved all the way to the return point of
the loop, so that we were able to cancel the case in the consumer
with the data constructor returned at the conclusion of the loop.

Stream fusion It turns out that this new ability to move a con-
sumer all the way to the return points of a tail-recursive loop has
direct implications for a very widely used transformation: stream
fusion. The key idea of stream fusion is to represent a list (or array,
or other sequence) by a pair of a state and a stepper function, thus:6

data Stream a where
MkStream :: s -> (s -> Step s a) -> Stream a

There are two competing approaches to the Step type. In un-
fold/destroy fusion, first described by Svenningsson [26], we have:

data Step s a = Done | Yield s a

Hence a stepper function takes an incoming state and either yields
an element and a new state or signals the end.

Now a pipeline of list processors can be rewritten as a pipeline
of stepper functions, each of which produces and consumes ele-
ments one by one. A typical stepper function for a stream trans-
former looks like:

6 Note that Stream is an existential type, so as to abstract the internal state
type s as an implementation detail of the stream.

next s = case <incoming step> of
Yield s’ a -> <process element>
Done -> <process end of stream>

When composed together and inlined, the stepper functions become
a nest of cases, each scrutinizing the output of the previous stepper.
It is crucial for performance that each Yield or Done expression be
matched to a case, much as we did with Just and Nothing in the
example that began Sec. 2. Fortunately, case-of-case and the other
commuting conversions that GHC performs are usually up to the
task.

Alas, this approach requires a recursive stepper function when
implementing filter, which must loop over incoming elements
until it finds a match. This breaks up the chain of cases by putting
a loop in the way, much as our any above becomes a case on a
loop. Hence until now, recursive stepper functions have been un-
fusible. Coutts et al. [6] suggested adding a Skip construtor to
Step, thus:

data Step s a = Done | Yield s a | Skip s

Now the stepper function can say to update the state and call again,
obviating the need for a loop of its own. This makes filter
fusible, but it complicates everything else! Everything gets three
cases instead of two, leading to more code and more runtime
tests; and functions like zip that consume two lists become more
complicated and less efficient.

But with join points, just as with any , Svenningsson’s original
Skip-less approach fuses just fine! Result: simpler code, less of it,
and faster to execute. It’s a straight win.

6. Metatheory of FJ
Correctness and type safety The way to “run” a program on our
abstract machine is to initialize the machine with an empty stack
and an empty store. Type safety, then, says that once we start the
machine, the program either runs forever or successfully returns an
answer.

Proposition 1 (Type safety). If ε; ε ` e : τ , then either:
1. The initial configuration 〈e; ε; ε〉 diverges, or
2. 〈e; ε; ε〉 7→? 〈A; ε; Σ〉, for some store Σ and answer A.

To establish the correctness of our rewriting axioms, we first
define a notion of observational equivalence.

Definition 2. Two terms e and e′ are observationally equivalent,
written e ∼= e′, if, given any stack s and store Σ, either
• both 〈e; s; Σ〉 and 〈e′; s; Σ〉 diverge, or
• for some Σ′

1, A1, Σ′
2, and A2, 〈e; s; Σ〉 7→? 〈A1; ε; Σ′

1〉 and
〈e′; s; Σ〉 7→? 〈A2; ε; Σ′

2〉.
The equational theory is sound with respect to observational

equivalence:

Proposition 3. If e = e′, then e ∼= e′.

Equivalence to System F The best way to be sure that FJ can
be implemented without any headaches is to show that it is equiva-
lent to GHC’s existing System F-based language. This would sug-
gest that the introduction of join points does not allow us to write
any new programs, only to implement existing programs more ef-
ficiently. To prove the equivalence, we establish an erasure pro-
cedure that removes all join points from an FJ term, leaving an
equivalent System F term.

To erase the join points, we want to apply the contify axiom
(or its recursive variant) from right to left. However, we cannot
necessarily do so immediately for each join point, since contify
only applies when all invocations are in tail position. For example,
we cannot de-contify j here:

join j x = x+ 1 in (jump j 1 (Int → Int)) 2
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Simply rewriting the join point as a function and the jump as a
function call would change the meaning of the program—in fact, it
would not even be well-typed:

let f = λx.x+ 1 in f 1 2

However, if we apply abort first:
join j x = x+ 1 in jump j 1 Int

Now the jump is a tail call, so contify applies.
The abort axiom is not enough on its own, since the jump may

be buried inside a tail context:

join j x = x+ 1 in

 case bof

True → jump j 1 (Int → Int)

False → jump j 3 (Int → Int)

 2

However, this can be handled by a commuting conversion:
join j x = x+ 1 in case bof

True → (jump j 1 (Int → Int)) 2

False → (jump j 3 (Int → Int)) 2

And now abort applies twice and j can be de-contified.

Lemma 4. For any well-typed term e, there is an e′ such that
e′ = e and every jump in e′ is in tail position.

By “tail position,” we mean one of the holes in a tail context
that starts with the binding for the join point being called. In other
words, given a term

join j #»a #»x = u inL[ #»e ],

the terms #»e are in tail position for j.
The proof of Lemma 4 relies on the observation that the places

in a term that may contain free occurrences of labels are precisely
those appearing in the hole of either an evaluation or a tail context.
For example, the CASE typing rule propagates ∆ into both the
scrutinee and the branches; note that case�of

#  »

alt is an evaluation
context and case eof

#           »
p→ � is a tail context. But e � is (in call-

by-name) neither an evaluation context nor a tail context, and APP
does not propagate ∆ into the argument.

Thus any expression can be written as:

L[

#                                                                           »

E[L′[
#                                                          »

E′[. . . [L(n)[
#             »

E(n)[e]]] . . .]]]], (1)

which is to say a tree of tail contexts alternating with evaluation
contexts, where all free occurrences of join points are at the leaves.
By iterating commute and abort , we can flatten the tree, rewriting
(1) to say that any expression can be written L[ #»e ], where each
ei is a leaf from the tree in (1). Hence no ei can be expressed
as E[L[. . .]] for nontrivial, non-binding7 E and nontrivial L, and
every jump to a free occurrence of a label is some ei. Let us
say a term in the above form is in commuting-normal form8. By
commute and abort , every term has a commuting-normal form,
and by construction, every jump in a commuting-normal form is a
tail call. Thus every label can be decontified, and we have:

Theorem 5 (Erasure). For any closed, well-typed FJ term e, there
is a System F term e′ such that e′ = e.

7. Join points in practice
Is is one thing to define a calculus, but quite another to use it in
a full-scale optimising compiler. In this section we report on our
experience of doing so in GHC.

Implementing join points in GHC We have implemented Sys-
tem FJ as an extension to the Core language in GHC. Rather than
adding two new data constructors for join and jump to the Core

7 A join can be treated as either an evaluation context or a tail context;
using commute to push a join inward is not necessarily helpful, however.
8 ANF is simply commuting-normal form with named intermediate values.

data type, we instead re-use ordinary let-bindings and function ap-
plications, distinguishing join points only by a flag on the identifier
itself.

Thus, with no code changes, GHC treats join-point identifiers
identically to other identifiers, and join-point bindings identically
to ordinary let bindings. This is extremely convenient in practice.
For example, all the code that deals with dropping dead bindings,
inlining a binding that occurs just once, inlining a binding whose
right-hand side is small, and so on, all works automatically for join
points too.

With the modified Core language in hand, we had three tasks.
First, GHC has an internal typechecker, called Core Lint, that (op-
tionally) checks the type-correctness of the intermediate program
after each pass. We augmented Core Lint for FJ according to the
rules of Fig. 2.

Second, we added a simple new contification analysis to identify
let-bindings that can be converted into join points (see Sec. 4).
Since the analysis is simple, we run it frequently, whenever the
so-called occurrence analyzer runs.

Finally, the new Core Lint forensically identified several ex-
isting Core-to-Core passes that were “destroying” join points (see
Sec. 2). Destroying a join point de-optimizes the program, so it is
wonderful now to have a way to nail such problems at their source.
Moreover, once Lint flagged a problem, it was never difficult to al-
ter the Core-to-Core transformation to make it preserve join points.
Here are some of the specifics about particular passes:
The Simplifier is a sort of partial evaluator responsible for many

local transformations, including commuting conversions and in-
lining [19]. The Simplifier is implemented as a tail-recursive
traversal that builds up a representation of the evaluation con-
text as it goes; as such, implementing the jfloat and abort ax-
ioms (Sec. 3) requires only two new behaviors:
• (jfloat) When traversing a join-point binding, copy the eval-

uation context into the right-hand side.
• (abort) When traversing a jump, throw away the evaluation

context.
The Float Out pass moves let bindings outwards [20]. Moving a

join binding outwards, however, risks destroying the join point,
so we modified Float Out to leave join bindings alone in most
cases.

The Float In pass moves let bindings inwards. It too can de-
stroy join points by un-saturating them. For example, given
let j x y = ... in j 1 2, the Float In pass wants to nar-
row j’s scope as much as possible: (let j x y = ... in j) 1 2.
We modified Float In so that it never un-saturates a join point.

Strictness analysis is as useful for join points as it is for ordinary
let bindings, so it is convenient that join bindings are, by
default, treated identically to ordinary let bindings. In GHC,
the results of strictness analysis are exploited by the so-called
worker/wrapper transform [12, 19]. We needed to modify this
transform so that the generated worker and wrapper are both
join points. We found that GHC’s constructed product result
(CPR) analysis [3] caused the wrapper to invoke the worker
inside a case expression, thus preventing the worker from
being a join point. We simply disable CPR analysis for join
points; it turns out that the commuting conversions for join
points do a better job anyway.

Benchmarks The reason for adding join points is to improve
performance; expressiveness is unchanged (Sec. 6). So does per-
formance improve? Table 1 presents benchmark data on alloca-
tions, collected from the standard spectral, real and shoootout
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spectral
Program Allocs
fibheaps -1.1%

ida -1.4%
nucleic2 +0.2%

para -4.3%
primetest -3.6%

simple -0.9%
solid -8.4%

sphere -3.3%
transform +1.1%

(45 others)
Min -8.4%
Max +1.1%

Geo. Mean -0.4%

real
Program Allocs

anna +0.5%
cacheprof -0.5%

fem +3.6%
gamteb -1.4%

hpg -2.1%
parser +1.2%

rsa -4.7%
(18 others)

Min -4.7%
Max +3.6%

Geo. Mean -0.2%

shootout
Program Allocs

k-nucleotide -85.9%
n-body -100.0%

spectral-norm -0.8%
(5 others)

Min -100.0%
Max +0.0%

Geo. Mean n/a

Table 1: Benchmarks from the spectral, real, and shootout
NoFib suites.

NoFib benchmark suites9. We ran the tests on our modified GHC
branch, and compared them to the GHC baseline to which our mod-
ifications were applied. Remember, the baseline compiler already
recognises join points in the back end and compiles them efficiently
(Sec. 2); the performance changes here come from preserving and
exploiting join points during optimization.

We report only heap allocations because they are a repeatable
proxy for runtime; the latter is much harder to measure reliably. All
tests omitted from the tables had an improvement in allocations,
but less than 0.3%.

There are some startling figures: using join points eliminated
all allocations in n-body and 85.9% in k-nucleotide. We cau-
tion that these are highly atypical programs, already hand-crafted
to run fast. Still, it seems that our work may make it eaiser for
performance-hungry authors to squeeze more performance out of
their inner loops.

The complex interaction between inlining and other transforma-
tions makes it impossible to give guaranteed improvements. For
example, improving a function f might make it small enough to
inline into g, but this may cause g to become too large to inline
elsewhere, and that in turn may lose the optimization opportuni-
ties previously exposed by inlining g. GHC’s approach is heuris-
tic, aiming to make losses unlikely, but they do occur, including a
1.1% increase in allocations in spectral/transform and a 3.6%
increase in real/fem.

Beyond benchmarks These benchmarks show modest but fairly
consistent improvements for existing, unmodified programs. But
we believe that the systematic addition of join points may have a
more significant effect on programming patterns. Our discussion
of fusion in Sec. 5 is a case in point: with join points we can use
skip-less unfoldr/destroy streams without sacrificing fusion. That
knowledge in turn affects the way in which libraries are written:
they can be smaller and faster.

9 The imaginary suite had no interesting cases. We believe this is be-
cause join points tend to show up only in fairly large functions, and the
imaginary tests are all micro-benchmarks.

Moreover, the transformation pipeline becomes more robust. In
GHC today, if a “join point” is inlined we get good fusion behavior,
but if its size grows to exceed the (arbitrary) inlining threshold,
suddenly behavior becomes much worse. An innocuous change in
the source program can lead to a big change in execution time. That
step-change problem disappears when we formally add join points.

8. Why not use continuation-passing style?
Our join points are, of course, nothing more than continuations, al-
beit second-class continuations that do not escape, and thus can be
implemented efficiently. So why not just use CPS? Kennedy’s work
makes a convincing argument for CPS as a compiler intermediate
language in which to perform optimization [16].

There are many similarities between Kennedy’s work and ours.
Notably, Kennedy distinguishes ordinary bindings (let) from con-
tinuation bindings (letcont), just as we distinguish ordinary bind-
ings from join points (join); similarly, he distinguishes continua-
tion invocations (i.e. jumps) from ordinary function calls, and we
follow suit. But there are a number of reasons to prefer direct style,
if possible:
• Direct style is, well, more direct. Programs are simply easier to

understand, and the compiler’s optimizations are easier to fol-
low. Although it sounds superficial, in practice it is a significant
advantage of direct style; for example Haskell programmers of-
ten pore over the GHC’s Core dumps of their programs.
• The translation into CPS encodes a particular order of evalua-

tion, whereas direct style does not. That dramatically inhibits
code-motion transformations. For example, GHC does a great
deal of “let floating” [20], in which a let binding is floated out-
wards or inwards, which is valid for pure (effect-free) bindings.
This becomes harder or impossible in CPS, where the order of
evaluation is prescribed.
Fixing the order of evaluation is a particular issue when compil-
ing a call-by-need language, since the known call-by-need CPS
transform [18] is quite involved.
• Some transformations are much harder in CPS. For exam-

ple, consider common sub-expression elimination (CSE). In
f (g x) (g x), the common sub-expression is easy to see.
But it is much harder to find in the CPS version:
letcont k1 xv = letcont k2 yv = f k xv yv

in g k2 x
in g k1 x

• GHC makes extensive use of user-written rewrite rules as opti-
mizing transformations [22]. For example, stream fusion relies
on the following rule, which states that turning a stream into a
list and back does nothing [6]:
{-# RULES "stream/unstream"

forall s. stream (unstream s) = s #-}

In CPS, these nested function applications are more difficult
to spot. Also, rule matching is simply easier to reason about
when the rules are written in more-or-less the same syntax as
the intermediate language; since the point is to write the rules
in the source language, this calls for an intermediate language
that doesn’t make the same radical changes that CPS makes.

9. Related work
Join points and commuting conversions Join points have been
around for a long time in practice [28], but they have lacked a
formal treatment until now. By introducing join points at the level
at which common optimizations are applied, we’re able to exploit
them more fully. For example, stream fusion as discussed in Sec. 5
depends on several algorithms working in concert, including com-
muting conversions, inlining, user-specified rewrite rules [22], and
call-pattern specialization [21].
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Fluet and Weeks [11] describe MLton’s intermediate language,
whose syntax is much like ours (only first-order). However, it
requires that nontail calls be written so as to pass the result to
a named continuation (what we would call a join point). As the
authors note, however, this is only a minor syntactic change from
passing the continuation as a parameter, and so the language has
more in common with CPS than with direct style.

Commuting conversions are also discussed by Benton et al. in a
call-by-value setting [4]. Consider:

let z = let y = case a of { A -> e1; B -> e2 }
in e3

in e4

They show how to apply commuting conversions from the inside
outward, creating functions as join points to share code, getting:

let z = let j2 y = e3
in case a of { A -> j2 e1; B -> j2 e2 }

in e4

and then:

let { j1 z = e4; j2 y = e3 }
in case a of { A -> j1 (j2 e1); B -> j1 (j2 e2) }

They call j1 a “useless function”: it is only applied to the result
of j2. It would be better to combine j1 with j2 to save a function
call. Their solution is to be careful about the order of commuting
conversions, since the problem does not occur if one goes from the
outside inward instead. However, with join points, the order does
not matter! If we make j2 a join point, then the second step is
instead

join j2 y = let z = e3 in e4
in case a of { A -> j2 e1; B -> j2 e2 }

which is the same result one gets starting from the outside. So our
approach is more robust to the order in which transformations are
applied.

SSA The majority of current commercial and open-source com-
pilers (including, for example, GCC, LLVM, Mozilla JavaScript)
and compiler frameworks use the Static Single Assignment (SSA)
form [7], which imposes on an assembly-like language the invari-
ant that variables are assigned only once. If a variable might have
different values, it is defined by a φ-node, which chooses a value
depending on control flow. This makes data flow explicit, which in
turn helps to simplify some optimizations.

As it happens, SSA is inter-derivable with CPS [2] or ANF [5].
Code blocks in SSA become mutually-recursive continuations in
CPS or functions in ANF, and φ-nodes indicate the parameters at
the different call sites. In fact, in ANF, the functions representing
blocks are always tail-called, so adding join points to ANF gives
a closer correspondence to SSA code—functions correspond to
functions and join points correspond to blocks. Indeed the Swift
Intermediate Language SIL appears to have adopted the idea of
“basic blocks with arguments” instead of φ-nodes [14].

Sequent calculus Previous work [8] has shown how to define
an intermediate language, called Sequent Core, which sits in be-
tween direct style and CPS. Sequent Core disentangles the concepts
of “context” and “evaluation order”—contexts are invaluable, but
Haskell has no fixed evaluation order, a fact which GHC exploits
ruthlessly. Interestingly, the inspiration for our language’s design
came from logic, namely the sequent calculus. The sequent calcu-
lus is the twin brother of natural deduction, which is the foundation
of all the other direct-style representations. In this paper, we use
Sequent Core as our inspiration much as Flanagan et al. [10] used
CPS, thus putting forward a new motto: Think in sequent calculus;
work in λ-calculus.

Relation to a language with control Since FJ has a notion of
control, it becomes natural to relate it to known control theo-
ries such as the one developed to reason about callcc in Scheme
[9]. In fact, our language can encode callcc v as join j x =
x in JvK (λy. jump j y). By design, this encoding does not type
in our system since the continuation variable j is free in a lambda-
abstraction. This has repercussions on the semantics: join points
can no longer be saved in the stack but need to be stored in the
heap, which is precisely what is needed to implement callcc.

10. Reflections
Based on our experience in a mature compiler for a statically-typed
functional language, the use of FJ as an intermediate language
seems very attractive. Compared to the baseline of System F, FJ
is a rather small change; other transformations are barely affected;
the new commuting conversions are valuable in practice; and they
make the transformation pipeline more robust.

Although we have presented FJ as a lazy language, everything
in this paper applies equally to a call-by-value language. All one
needs to do is to change the evaluation context, the notion of what
is substitutable, and a few typing rules (as described in Sec. 6).

References
[1] A. W. Appel. Compiling with Continuations. Cambridge University

Press, 1992. ISBN 0-521-41695-7.
[2] A. W. Appel. SSA is functional programming. SIGPLAN Notices, 33

(4):17–20, 1998. .
[3] C. A. Baker-Finch, K. Glynn, and S. L. Peyton Jones. Con-

structed product result analysis for haskell. J. Funct. Program.,
14(2):211–245, 2004. . URL http://dx.doi.org/10.1017/
S0956796803004751.

[4] N. Benton, A. Kennedy, S. Lindley, and C. V. Russo. Shrinking re-
ductions in SML.NET. In Implementation and Application of Func-
tional Languages, 16th International Workshop, IFL 2004, Lübeck,
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