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Abstract— Control software in routers have gotten in-
creasingly complex today. Further, since the control software
runs in every router, managing a large network of routers
is complex and expensive. In this paper, we propose that
the control software be hosted in a few control element
servers remotely from the forwarding elements (routers).
This reduces the software complexity in numerous forward-
ing elements, thus increasing the overall reliability of the
network. In order to achieve this, we describe the design and
implementation of two protocols: 1) Dyna-BIND that allows
the forwarding elements to dynamically bind to control
elements and 2) ForCES that allows the control elements
to control the forwarding elements. Furthermore, we argue
through several examples that the separation and logical
centralization of control plane software in this architecture
enables easier deployment of new services.

I. INTRODUCTION

Network operators worldwide are currently contemplat-
ing a move towards a converged IP network in which they
expect to carry voice, video, and data traffic. For example,
British Telecom is launching a major initiative to move
towards a converged 21st century IP network by 2010.
IP routers comprise the basic network element in these
converged IP networks. Thus, a closer examination of the
architecture and functions of IP routers and networks is
critical. Re-examining the distribution of router functions
has been a topic of much recent research interest [2],
[3], [18] (see Section VIII on related work for a detailed
discussion).

In this paper, we focus on one critical aspect of IP
routers: the control software executing on each of the
routers. Despite the end-to-end architecture design prin-
ciple that aims at a simple core network, routers have
gotten increasingly complex today. As new features are
being defined and standardized in RFCs, more and more
control plane complexity is being added at the routers.
These features include routing (e.g., BGP-based MPLS-
VPNs), traffic engineering (e.g., OSPF-TE), security, etc.
In fact, the code complexity of an IP router now rivals that
of a 5ESS telephony switch1. In contrast, the forwarding
path implementation has progressively become easier with

1Approximately 5-10 million lines of code.

rapid advances in large-scale hardware integration (e.g.,
ASIC) and ready availability of off-the-shelf chips.

To make matters worse, the extremely complex control
software executes on every router in the network. Given
that a typical operator’s network consists of hundred or
more routers, managing the router control software (e.g.
configuration, upgrades, maintenance etc.) is very expen-
sive. Thus, this results in very high operational expenses
for network operators2.

The crux of the complexity issue in current routers is
because implementations of the control and forwarding
functions are intertwined deeply in many ways. The con-
trol processors implementing control plane functions are
colocated with the line cards that implement forwarding
functions and often share the same router backplane.
Communication between the control processors and the
forwarding line cards is not based on any standards-
based mechanism, making it impossible to interchange
control processors and forwarding elements from different
suppliers. This also leads to a static binding between
forwarding elements and line cards. A router typically
has at most two controllers (live and stand-by) running
control plane software. The two controllers, the line-cards
to which they are statically bound, and the switch fabric
together constitute the router.

In this paper, we argue that separating the software
from the routers can significantly reduce the complexity
in routers. To this end, we describe a control plane ar-
chitecture called the SoftRouter architecture that separates
the implementation of control plane functions from packet
forwarding functions. In this architecture, all control plane
functions are implemented on general purpose servers
called the control elements (CEs) that could be multiple
hops away from the line cards or forwarding elements
(FEs). Each FE, when it boots up, discovers a set of CEs
that can control it. The FE dynamically binds itself to a
“best” CE from the discovered set of CEs. We envisage
a standardized interface between the CEs and the FEs
similar to that being standardized in the IETF ForCES
working group [18].

One of the key benefits of separation of the control

2Total operational expenses may be anywhere between two to five
times the capital expenses.
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software from the numerous routers (forwarding elements)
into a few centralized servers (control elements) is in-
creased reliability. Given that software failures and con-
figuration errors are the most common causes of failures,
the dramatic reduction of software in majority of the
elements in the network (the FEs) increases the reliability
of the network significantly (see Section II). We argue
that the forwarding element, apart from an IP protocol
stack, needs only two key protocols: Dynamic binding
protocol called Dyna-BIND that maintains the association
between FEs and CEs and a FE-CE protocol called the
ForCES protocol that allows the CEs to control the FEs.
This dramatically reduces the amount of software in each
FE while allowing the FEs to serve as fully functional
routers that are controlled by the remote control elements.
Another key advantage of moving the software away from
routers is the ability to introduce new services easily and
efficiently as discussed in Section VII. Apart from these
advantages, this architecture also has higher scalability,
lower cost, and increased security as argued in [12].

The rest of the paper is organized as follows. We
provide motivation for separating software from routers
in Section II. We present an overview of the SoftRouter
architecture in Section III. We then discuss the design
and implementation of the dynamic binding protocol that
facilitates dynamic binding between FEs and CEs in
Section IV. In Section V, we discuss design and imple-
mentation of the Forces protocol that is used for commu-
nication between the FEs and the CEs. In Section VI, we
present our testbed. In Section VII, we illustrate how it
is easier to deploy new services in this architecture. We
present related ork in Section VIII. We finally present our
conclusions in Section IX.

II. M OTIVATION

The desire to split the control and forwarding planes
in routers arises from multiple factors. These factors arise
out of various technological, engineering and economic
issues. Apart from the factors identified in Section I, the
improved reliability of the network is a key enabler for
the proposed separation.

The SoftRouter architecture has multiple forwarding
elements controlled by a single control server. The for-
warding elements are primarily hardware-based systems
with a control element of very minimal functionality and
an elementary software component. The control server
participates in the routing protocols on behalf of the
forwarding elements (FEs) and computes the routes for
all the FEs under its control. The software complexity
resides principally at the control servers (CEs). There areN FEs andK CEs to control them, in the network, whereK � N .

A. Component Reliability

We first consider the benefits of choosing the SoftRouter
approach over the traditional distributed router approach,
by looking at the probability of network disruption due to
failure of individual components in the network.

We will first assume that the only parts that can fail
in the network are theline blades, control cards, and
operating software. In a distributed router architecture,
let the probability of failure of each unit of line card,
control card and operating software bepL, pC , and pS,
respectively. We will relax this assumption later to include
more failure cases, including link failures. Let the total
number of line cards in a router (and an FE) beM .

In the SoftRouter architecture, each FE has multiple line
cards, a low- capacity control card, and simple software.
Let the failure probability of each of these units bepL,p0C , andp0S, respectively. At the CE, there is one control
card, a line card, and the bulk of the routing software,
with failure probabilities ofpL, pC , andpS, respectively.
Note thatp0C << pC , andp0S << pS, since the control
components (namely the control card and the software)
are more than an order of magnitude complex at the CE
than at the FE.

Ideally, we do want anything in the network to fail at all.
Thus, we first calculate the probability that no component
fails in the network. In the distributed model, this turns
out to bepDistNoFail = [(1� pL)M (1� pC)(1� PS)℄N . For
the SoftRouter model, the probability that no component
fails in the network is given bypSoftRNoFail = [(1�pL)M (1�p0C)(1� P 0S)℄N [(1� pL)(1� pC)(1 � PS)℄K .

Given thatp0C << pC , andp0S << pS, the no-failure
probability is always much higher for the SoftRouter than
for the traditional fully distributed router architecture, as
can be seen from the above equations, except whenK
is close toN . The difference becomes more pronounced
as the number of FEs (or routers, in the traditional
sense) increase. Given that 25%-33% of network outages
are caused by software failure in the control card, this
improvement in no-failure probability in the SoftRouter is
highly desirable.

Figure 1 compares the no-failure probability of the
network to various software failure probabilities, and eval-
uates both traditional and SoftRouter architectures in this
model. The line card and control card failure probabilities
are 0.00001 and 0.0001 respectively. It can be seen that for
current software reliability estimates (between 99.9% and
99.99%), the SoftRouter architecture performs much better
than the traditional model, with greater improvements as
software reliability decreases.

Figure 2 plots the failure probability of the control ele-
ment (CE) against the network no-failure probability. The
results are interesting: SoftRouter boxes can afford to be
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Fig. 1. Impact of software failure probability

Fig. 2. Impact of control element failure

less reliable individually than a traditional router, by upto
an order of magnitude, without compromising the network
no-failure probability. The only time when a traditional
router offers better performance is when the software
is close to completely reliable (better than 99.999%),
which requires that the software is more reliable than the
underlying hardware. Thus, the SoftRouter architecture
relaxes reliability requirements on the control element
(CE), while providing the same levels of performance as
traditional routers.

B. Link Failures and Reliability

We will now include link failures in the no-failure
model discussed above, and analyze the SoftRouter ar-
chitecture, since earlier studies have shown that nearly
25%-40% of network outages are caused by link failures.

Fig. 3. Impact of link failure probability

In the SoftRouter architecture, the number of links in
the network is slightly higher than the number of links
in a traditional router network. The additional links are
the ones that connect the CEs to the network. Given a
port density ofD per line card, we can assume that there
are at mostD links in each SoftRouter, with a total ofK:D additional links in the network. Define the failure
probability of a link to bepE . Let the total number of
links in a traditional network beE. Let us assume that
the number of links connecting the SoftRouter CEs to
the network,K:D, is smaller thanN , i.e. K << N .
Therefore, the above no-failure equations can be modified
as follows.pDistNoFail = [(1� pL)M (1� pC)(1� PS)℄N (1� pE)EpSoftRNoFail = [(1 � pL)M (1� p0C)(1� P 0S)℄N[(1 � pL)(1� pC)(1� PS)℄K(1� pE)E+KD

Thus, the improvement in the no-failure probabilities of
the SoftRouter architecture vis-a-vis the fully distributed
router architecture is reduced by only a small factor of(1� pE)KD when compared to the case that ignores link
failure probabilities.

In Figure 3, we plot the network no-failure probability
against various values of link failure probabilities in the
network. We assume a network of 100 nodes with 400
links. We assume that each SoftRouter has two links
connecting it to the network (D=2). We fix the various
hardware failure probabilities as in the previous figures,
and assume that the software is 99.9% reliable. The results
shown below indicate that when links fail frequently, they
tend to be the biggest factor that influence network no-
failure probability. However, the SoftRouter model consis-
tently has better no- failure probability than a traditional
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router model, regardless of the link failure probabilities.
When the software is 99.99% reliable, the difference
becomes smaller but is still in favor of the SoftRouter
model. Only when the software is 99.999% reliable does
the performance of the two architectures become equal.
Taking this fact in consideration along with the lower
reliability requirements of the SoftRouter, we have a clear
case in favor of employing the SoftRouter architecture in
current networks.

III. A RCHITECTURE

While the focus of this paper is on the software proto-
cols that are essential in the forwarding elements, it is
necessary to understand these protocols in the context
of the overall architecture. Thus, in this section, we
present an overview of the SoftRouter architecture that
was originally introduced in [12].

A. Network Entities

As mentioned earlier, there are two main types of
network entities in the SoftRouter architecture, the FEs
and the CEs, that together constitute an NE (router).

Forwarding Element (FE): FE is a network element that
performs the actual forwarding and switching of traffic.
In construction, an FE is very similar to a traditional
router; it may have multiple line cards, each in turn
terminating multiple ports, and a switch fabric for shut-
tling data traffic from one line card to another. The key
difference from a traditional router is the absence of any
sophisticated control logic (e.g., a routing process like
OSPF or BGP) running locally. Instead, the control logic is
hosted remotely. The exact nature of forwarding function
can be (1) Packet forwarding: this includes both layer 2
(MAC-based switching) and layer 3 (longest-prefix match)
forwarding. (2) Label switching: an example of this is
MPLS forwarding. (3) Optical switching: the traffic in
this case can be time-switched, wavelength-switched, or
space-switched among the links. In each of these cases, the
switching function is driven by a simple local table which
is “computed” and “installed” by a CE in the network.
Control Element (CE): A CE is essentially a general
purpose computing element, such as a server. It connects
to the network like an end host, except that it is typically
multi-homed to the network via multiple FEs, so that
it is not disconnected from the network when a single
link fails. A CE runs the control logic on behalf of FEs,
and hence “controls” them. In principle, any control logic
typically found on a traditional router can be migrated to
the CEs; these include routing protocols like OSPF and
BGP as well as protocols such as RSVP, LDP, Mobile IP,
etc.

Routing Server Farm
(Controlled access Private Network)

Routers/Switches:
Switch controllers, forwarding elements, switch fabric

(Inert to L-3 traffic addressed to routers)

Proxy

Proxy
Proxy

ProxyProxy

Secure Control
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Controller Controller Controller
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Routing Protocol
Monitoring and 
Logging Device
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Fig. 4. Logically separate control and data planes

Network Element (NE): At a high level, an NE is a
logical grouping of FEs and the respective CEs that control
those FEs. Given this wide spectrum of possibilities of
FE/CE combinations, we focus on a restricted but practical
case where the FEs making up an NE are part of a
contiguous “cloud.” Physically, this represents the clus-
tering of neighboring physical forwarding elements into
a single NE. A typical scenario is that of several routers
being connected back-to-back in a central office. From a
routing perspective, this clustering-based definition of the
NE results in a natural hierarchy, thus reducing the inter-
NE routing complexity.

B. Network Architecture

There are two possible ways of separating the CEs
(control plane) from the FEs (data plane). In a logical
separation, as shown in Figure 4, a SoftRouter network
is not significantly different from a traditional routed net-
work, except for the addition of a few multi-homed servers
(CEs). The control plane protocol messages continue to
traverse the data plane for communication between adja-
cent routing peers. This results in an architecture that very
closely resembles the current architecture except for the
decoupling of the control plane and the resultant benefits
of improved scalability and reliability. Since it mimics
the current network architecture, minimal routing protocol
changes are needed for proper functioning. In a physical
separation (see Figure 5), the control plane is physically
separated from the data plane, similar to the way the SS7
signaling network is separate from the telephony network.
Thus, all controllers in the routing server farm form their
own private network topology that is independent of the
underlying forwarding plane topology. This provides for
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a very high security environment for the network, in
addition to the improved scalability and reliability advan-
tages mentioned above. However, the downside of this
architecture is that changes to existing routing protocols
are needed - e.g. the protocols need to keep track of two
network topologies, one for the data network and other
for the control network.

C. Protocols

The focus of this paper is on the building blocks,
common to both of the above architectures, that allow
the data plane to be decoupled from the control plane.
Specifically, two protocols serve as these building blocks.
First, each FE must discover and bind with its controlling
CE - this is achieved using the Dyna-BIND protocol
described in Section IV. Second, once an FE is bound to
its controlling CE, we need that a protocol that will help
in exchanging state (link up/down etc.) and allowing CE
to perform control over the FE (e.g. enable/disable a link,
change forwarding information base, etc.). This function
is achieved using a standards-based ForCES protocol [18]
that is described in Section V.

IV. DYNAMIC BINDING PROTOCOL

The Dynamic Binding Protocol (Dyna-BIND) provides
binding service for FEs and routing services for FE-
CE messages. Dyna-BIND runs continuously on all the
elements (FEs and CEs) for the lifetime of the network as
a separate protocol, independent of other protocols that op-
erate in the network. We assume that at the minimum, each
FE and CE has a pre-configured octet string (FEID/CEID)
that acts as a unique identifier. In a bridged network

of FEs and CEs (for e.g., connected over Ethernet), a
rapid spanning tree protocol can provide the connectivity
for FE-CE communication. Ethernet networks are only a
small fraction of possible networks. Dyna-BIND includes
a separate component for supporting protocol independent
routing services between the CEs and FEs. Dyna-BIND
may run on layer2 or layer3.

Dyna-BIND has four components:� Discovery� Association� Failure Detection with Repair� Transport Tunnels.
We now discuss each of these components. For simplicity,
we will assume that the entire network consisting of CEs
and FEs forms a continuous domain. Additionally we
assume that Dyna-BIND is running over IP.

A. Discovery

The discovery component in Dyna-BIND enables an
FE to discover a CE, which can manage it. This CE is
called the managing-CE for that FE. It is highly desirable
for the discovery component to provide rapid convergence
for the configuration process. The goal is to distribute CE
information all over the network, thereby enabling FEs
to dynamically bind to the best CE using bindings either
pre-configured by the network administrator or obtained
using distributed clustering algorithms.

We define a source-routed routing layer to help in the
discovery process. At the time of boot-up, each FE uses
a set of randomly chosen temporary IP addresses for its
interfaces, along with the FEID, in order to perform pre-
discovery routing. This address is chosen from a controlled
address space; for example, it could be a private subnet
address (such as 10.*.*.*). The addresses have to be
unique only on a per-link and per-node basis. The CEs
are pre-configured and hence have valid IP addresses.
FEs and CEs discover their neighbors by advertising their
presence to their immediate neighbors by periodically
multicasting HELLO messages. Each node (FE/CE) thus
will maintain a list of neighbors in a local table, which
maps FEIDs/CEIDs to IP addresses and interfaces.

A source route is a recorded sequence of FEIDs and
CEID, and is part of the Dyna-BIND packet header. At
each hop, the next hop FEID or CEID is translated into a
next hop IP address taken from the neighbor table. This IP
address can be a unicast or multicast IP address. Whenever
possible messages are sent as unicast messages to limit the
performance impact of multicast messages. Only HELLO
messages are sent as multicast at all times. If a neighboring
node shares the same IP network, messages are sent as
unicast messages. If the neighboring node belongs to a
different IP network, messages are sent as multicast. A
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node determines the IP network by comparing the source
address of a received HELLO message with its interface
address. (Note that the scenario of neighboring nodes
belonging to different IP networks can occur when an un-
configured FE peers with configured FEs or CEs.)

CEs flood their identity periodically and in response to
network events throughout the network with advertisement
messages. The identities are propagated reliably on a hop-
by-hop basis. FEs maintain a CE-reachability table that
records CEIDs along with a source route to the CE, a
sequence number and a time-to-live value. When an FE
receives an advertisement it updates the corresponding
entry in its reachability table. An entry is updated if the
sequence number of the message is newer than the one
in the table. The advertisement is then transmitted on
all interfaces except the one it was received on. If the
sequence number is older, then the message is ignored
and not propagated further. If the sequence number is the
same, the hop count of the advertised source route will
be analyzed. If the new source route is shorter, then the
table will be updated and the message passed on. If the
source route has the same length, then the message will
be ignored, thereby bounding the flood.

Sequence numbers are reset with a special sequence
number reset message when the linear sequence space is
used up or when a CE reboots.

If an FE detects that a link to a neighbor is down,
it then sends an acknowledged link-failure notification
message to those CEs that are upstream from the FE with
respect to the broken link. On reception of a link failure
notification, a CE will flood its identity immediately to
re-establish source routes. Floods in response to link
failure notifications are rate-limited in order to prevent
network overload. Advertisement messages are flooded
individually and are not aggregated. The underlying as-
sumption is that a SoftRouter network has only very
few CEs compared to a large number of FEs. When a
link is restored, the corresponding upstream FE sends an
acknowledged link restoration notification to the CEs in its
reachability table, thus triggering an advertisement flood.

CEs also maintain a reachability table. FEs send peri-
odic heartbeat messages (described below) besides other
Dyna-BIND messages. A CE extracts the source route
from these messages, reverses it and then stores it along
with a time-to-live value in its reachability table.

B. Association

Each FE is assigned one primary-CE and at least one
backup CE by the network administrator during network
planning. This information is configured in the CEs, and
optionally, in the FEs. Typically, this assignment is made
a-priori by taking into account factors such as the load on

the CE, the distance between the CE and the FE, and the
reliability of the links between the CE and the FE. Thus,
when a CE is contacted by an FE, it lets the FE know the
identity of its primary and backup CEs, if this information
is available, or accepts the FE if it can manage it. If not
accepted, the FE then proceeds to find and contact its
primary/backup CEs. The association process strives to
establish and maintain an active association between an
FE and its primary-CE and backup-CEs. The CE currently
controlling an FE is the managing-CE and is chosen by
the FE from the list of actively associated CEs, with the
primary-CE preferred at all times to other CEs.

C. Failure Detection and Repair

The Dyna-BIND protocol has mechanisms to detect and
repair association failures. Once an association is made
between the FE and a CE, the liveness of the association is
probed periodically through heartbeat messages initiated
by the FE. When heartbeat messages do not elicit any
responses from the CE, it implies that either the path to
the CE is no longer valid, or that the CE node is no longer
alive.

Link failures in the immediate neighborhood are de-
tected via exchange of HELLO messages between neigh-
bors. If alternate paths are available, then the Dyna-BIND
protocol uses them to probe association-liveness of the
CE. If the CE in question was the managing-CE for the
FE, and no alternate path is found, then the FE activates
another associated CE from its associated CE list to
become its managing-CE. It is critical for this failover to
occur as soon as possible with minimal delay. Hence, it is
imperative to decide which CEs are designated as backup
CEs for a given FE. Note that an FE can have more than
one backup CE with an order of preference among them.
In the SoftRouter architecture, the criteria for selecting
backup-CEs are that (a) the failover time be minimal,
which is achieved by means of active associations in the
Dyna-BIND protocol, and (b) there exists a path to reach
a backup-CE inspite of link failures. The backup-CEs are
chosen such that each backup CE has the least amount
of path overlap with the previous backup-CEs and the
primary CE. For example, the second backup-CE is chosen
such that its path to the FE has the least overlap with
the shortest paths from the FE to both the primary-CE
and the first backup-CE. The goal is thus to ensure that
connectivity is maintained even in the presence of multiple
link or CE/FE failures. A FE that is using a backup-CE
will always try to re-associate with its primary-CE and
switch to it when conditions permit. This is to ensure that
the load on all CEs remains equal, as decided by a load-
balancing algorithm.
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D. Transport Tunnels

The last component of the Dyna-BIND protocol sets
up a rudimentary transport tunnel between an FE and its
associated CEs, using the slow-path (i.e., the source-routed
layer provided by the discovery component) and allows
for CE-FE communication when all other communica-
tion means fail. These tunnels are unreliable and do not
guarantee in-sequence delivery. They only provide some
path between CE and FE but which is not necessarily the
best path. It is important to understand that these sub-
optimal tunnels are used only rarely, when there are no
valid routing tables installed on the FEs, for e.g., when
the FE is being initialized or when the FE is switching to
a different managing-CE.

In summary, the combination of these four components
helps the Dyna-BIND protocol to actively discover and
maintain dynamic bindings between FEs and CEs in
the network. We next discuss the ForCES protocol and
then describe our implementation of these protocols in a
testbed.

V. FORCES OVERVIEW

The ForCES working group at the IETF is chartered
to define a framework and associated mechanisms for
standardizing the protocol information exchange between
the control plane and the forwarding plane. Some of the
main results of this working group is to produce:� A set of requirements for mechanisms to logically

separate the control and data planes of the IP network
element� An architectural framework defining the entities com-
prising a ForCES network element and identifying
the interactions between them� A description of the functional model of a forwarding
element and the formal definition of the controlled
objects in the model.� Specification of a set of communication protocols
within the framework architecture. It includes the
ForCES protocol to communicate between the CE
and FE and an IP-based transport protocol that will
be used to carry the messages between the elements.

In this section we will primarily focus on the ForCES
protocol.

A. ForCES Protocol

The ForCES protocol works across the Fp reference
point in the ForCES framework architecture [18]. Since
the SoftRouter architecture is a realization of the ForCES
framework, we use the ForCES protocol exactly for com-
munication between the SoftRouter control and forward-
ing elements. Figure 6 provides an example of various

Fig. 6. ForCES Protocol and example modules on CE and FE

modules executing on the control and forwarding ele-
ments and using the ForCES protocol for communication
between them. Note that control plane packets arriving
from other nodes in the network are depicted as ”data
packets” within the ForCES protocol - since these packets
represent the payload, while the protocol has it’s own
control messages purely operating between the CE and
the FE. The ForCES protocol operates in a master-slave
mode in which the FEs are slaves and CEs are masters.

The ForCES interface is broken down into two parts:
the Protocol Layer (PL) and the Transport Mapping Layer
(TML). The PL layer is in fact the ForCES protocol that
defines all the semantics and the message formats, while
the TML layer is used to connect two ForCES PL layers
on the CE and FE respectively.

1) The PL Layer: The PL layer [1] is responsible for
the setup and teardown of association between the FEs and
CEs of an NE. It defines the ForCES protocol messages,
the protocol state transfer scheme, as well as the ForCES
protocol architecture itself. A CE uses the PL layer to
activate, de-activate, subscribe to specific events, configure
etc. an FE. An FE uses the PL layer to provide information
on various status requests issued from a CE or generate
event notifications based on subscribed-to events by the
CE. A number of messages are defined at the PL layer
for protocol operation. The PL delivers the messages to
the TML layer, which in-turn delivers it to the destination
TML/PL layer. The messages defined are given below:� Association setup message� Association setup response message� Association teardown message� Config message� Config response message� Query message� Query response message� Event notification message� Event notification response message



8� Packet redirect message� Heartbeat message
2) The TML Layer: The TML layer [11] is responsible

for transporting the PL layer protocol messages. It is
in the responsbility of the TML layer to handle issues
such as message reliability, ordering, congestion control,
multicast etc. In the SoftRouter architecture we adopted
the use of a TCP/IP based TML layer since most of the
transport issues mentioned above are handled well by TCP
- except multicast. Multicasting can be achieved by setting
up multiple TCP connections between the CE and the FEs.
Using TCP also enables the TML and the protocol to work
seamlessly in single-hop and multi-hop environments.

VI. I MPLEMENTATION

Dyna-BIND runs on the CEs and FEs as a single task
around an event driven state machine. A main event loop
is triggered by message reception and timer events. Dyna-
BIND messages are exchanged over UDP/IP over a well-
known port. The CE structure is a bit more complex since
a task may host multiple CEs, which share the well-known
port. The receive function has to partially parse the packets
to determine the CEID and lookup the corresponding CE
context. On the FE side it is assumed that there is only
a single logical FE instance per FE (i.e. one FE task
per chassis blade or pizza box). Although a single task
approach provides the highest performance, it comes with
the cost of less reliability. A crash in one of the CEs will
inherently bring down all other CEs. However, in general
it is believed that performance is the more important
property and stability can be achieved through thorough
testing and capabilities for a fast restart.

We encountered an unexpected problem due to the
source route filtering functionality present in today’s oper-
ating systems such as Linux. This filter drops all received
packets with a source address and receive interface pair
that is not recognized by the routing table. The intention
is to protect against denial of service attacks that uses
spoofed source addresses. In the SoftRouter architecture,
it is a common case during bootup (the FE configuration
phase) that neighboring FEs belong to different IP net-
works for a transitional period until their configuration
information is obtained from the CEs. Disabling source
route filtering solved this problem.

Another challenge was to determine the right heartbeat
timeout value for a CE fail-over. If we are too aggressive
with the timeout value, due to variations in the flooding of
CE advertisements, some FEs in the test network started
to fail-over to their backup CEs before the source routes
converged. On the other hand, a high enough timeout
value of several seconds solves this problem but results in
slower failure detection and recovery. A timeout value of
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Fig. 7. Testbed implementation

several hundred milliseconds is a reasonable compromise.
However, note that this timeout values is dependent on the
time to flood the complete network, which in turn depends
on the network span.

We implemented the two protocols, Dyna-BIND and
ForCES, in a testbed of FEs and CEs as shown in Figure 7.
The testbed consists of 6 NEs labelled Routers 1 through
6 (each NE consisting of 1, 2, or 3 FEs) managed by three
CEs labelled control Server 1 through 3, one Cisco 7200
router, one Juniper M-20 router, a network monitor, and
one video server that is continously transmitting video to
a video client.

In current routers with at most 1:1 redundancy of
controller cards, if both controller cards are down, the
entire router is declared down even though all the line-
cards may be functioning properly. One of the advantages
of decoupling the data plane and control plane in the Soft-
Router architecture is the unique ability of performing a
network-wide control plane failover, i.e., a totally different
CE can takeover the control plane functions of an FE
when the FEs primary CE fails. In this testbed, we were
able to demonstrate a network-wide control plane failover:
when the node labelled Control Server 1 is brought down,
the control functions of node labelled Router 3 (such as
OSPF protocol processing etc.) are taken over by the node
Control Server 2, thus achieving higher network reliability.

VII. SERVICES

In this section, we illustrate the rich service support
that is possible in the SoftRouter architecture. We discuss
the support for the following three services: a) overlay
network support, b) Mobile IP support, and c) Virtual
Private Network support. A common theme in enabling
these new services is the centralized nature of control in
the SoftRouter architecture.
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A. Overlay network support

Overlays architectures and testbeds are becoming com-
monplace in the Internet today. For example, Planet-
Lab [13] provides an open testbed with planet-wide scal-
ability including over 200 nodes distributed in over 60
countries in the world. There has even been recent dis-
cussion in the research community as to whether overlay
should be part of a core IP service in next generation
Internet [14].

Today, however there is no coordination between IP
routing and overlay routing as these operate independently
in different protocol layers. This lack of coordination
can result in several issues [15] such as load balancing
and traffic engineering problems for the ISP and network
stability problems due to different interactions between
overlay and IP routing.

A SoftRouter network can provide a hosted overlay IP
service without resulting in any of the aforementioned
drawbacks by having the CE perform coordinated IP and
overlay routing. Recall that CE performs centralized rout-
ing in the SoftRouter architecture and can easily take the
current overlay demand into account while performing its
routing computations. Thus, the SoftRouter architecture,
by consolidating the control functions in a few places
in the network, is better positioned to deliver overlay as
a core IP service than today’s distributed Internet router
architecture.

B. Mobile IP support

We now highlight the scalability advantage of the Soft-
Router architecture in achieving a highly scalable Mobile
IP home agent [16] service. Mobile IP home agent service
will require increasing scalability as cellular carriers such
as Verizon and Sprint introduce wireless data. Currently
Nextel (iDEN) and SK Telecom (Korea/cdma2000) sup-
port Mobile IP in their networks. Verizon, Sprint, and
others are expected to enable Mobile IP in order to support
ubiquitous wireless data as they introduce CDMA EV-DO
networks nationwide. There are two approaches to home
agent scalability in the industry today: one approach is the
use of routers and another approach is the use of general
purpose processors. However, both of these approaches
have limitations as discussed below.

Routers from major router vendors support several
hundred thousand home agents but signaling scalability is
limited to about hundred bindings/sec due to limitations of
the control processor. In other words, signaling scalability
is limited to less than two updates per hour per user. This
is a significant limitation as updates generated through
both mobility as well as the standard refresh mechanism
built into Mobile IP can easily exceed two per hour per
user. Mobile IP could also be implemented on a cluster of

general purpose processors. Signaling scalability will not
be an issue here. However, scaling the number of home
agents becomes difficult since IPSec processing (for each
tunnel - one per agent) is CPU intensive and will not be
able to scale efficiently to several hundred thousand home
agents without specialized hardware.

SoftRouter architecture admits a complementary com-
bination of both of these approaches. It allows server
based signaling scalability while retaining hardware based
transport scalability. Thus, transport will still handledby
FEs with hardware support for IPsec using regular router
blades while signaling capacity can easily be scaled using
multiple server blades, enabling sixty updates per hour per
user or more.

C. Virtual Private Network support

There has been significant recent activity in defining
network-based VPN services using BGP/MPLS [17]. In
this application, a VPN server dynamically creates MPLS
or IPSEC tunnels among the provider edge routers. While
the VPN server would execute on the router control board
in today’s architecture, migrating the VPN server function-
ality into a control element in the SoftRouter architecture
has several benefits: 1) Configuring BGP policies for the
provider edge routers connected to the VPN customer
sites can be done in a central location at the VPN server
rather than at multiple routers (e.g. edge routers and route
reflectors involved in the VPN); 2) MPLS tunnels can
be engineered in a centralized manner to meet customer
requirements; 3) Scalability for support of large number of
VPNs can be easily handled using generic server scaling
techniques; 4) Network-wide failover of VPN control
servers can be performed without impacting existing or
new VPN sessions; 5) VPN server upgrades can now be
independently performed without impacting basic network
operations such as forwarding.

VIII. R ELATED WORK

The proposed network evolution has similarities to the
SoftSwitch based transformation of the voice network
architecture that is currently taking place. The SoftSwitch
architecture [5] was introduced to separate the voice
transport path from the call control software. The Soft-
Router architecture is aimed at providing an analogous
migration in routed packet networks by separating the
forwarding elements from the control elements. Similar
to the SoftSwitch, the SoftRouter architecture reduces the
complexity of adding new functionality into the network.

One of the key benefits of the SoftRouter architecture
is that it makes it easier to add new functionality into the
network as discussed in Section VII. Researchers have
proposed other techniques such as Active Routers [8] or
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open programmable routers [9] to increase flexibility in
deploying new protocols in the Internet. By separating the
forwarding and control elements and hosting the control
protocols on general purpose servers, more resources
are available for adding new software services in the
SoftRouter architecture.

The Open Signaling approach [6] advocated the sep-
aration of control plane from the forwarding plane in
ATM networks for increased network programmability.
This separation enabled the Tempest framework [7] to
create architectures where multiple control planes could
simultaneously control a single network of ATM switches.

The Internet Engineering Task Force (IETF) is working
on standardizing a protocol between the control element
and the forwarding element in the ForCES [18] working
group. Although the current focus of the working group
is limited to single-hop, direct connection between the
control element and the forwarding element, the set of
protocols developed has been enhanced and employed in
the SoftRouter architecture for communication between
CEs and FEs as discussed in Section V.

The case for separating some of the routing protocols
(specifically, BGP) multiple hops away from the routers
have been made by several researchers [2], [4]. While it
is possible to migrate a few selected protocols out of the
forwarding element, such an approach does not deliver the
full benefits of the SoftRouter architecture where apart
from the Dyna-BIND and ForCES protocols, all other
protocols are moved into control elements.

Authors in [3] propose a similar separation of func-
tionality from the routers. However, their motivation is
somewhat different - they would like to support cen-
tralized management of packet networks without being
encumbered by the current distributed control plane im-
plementation. Thus, they suggest that the current control
plane software running in the routers be made as “thin”
as possible and most of the control plane functionality be
moved into the management plane.

IX. CONCLUSIONS

In this paper we presented the SoftRouter architecture
where the forwarding elements were simple hardware
devices with minimal software and were controlled by
control elements that may be located remotely. We then
focused on the two basic protocols that are necessary
to enable this architecture: 1) Dyna-BIND that allows
the forwarding elements to dynamically bind to control
elements and 2) ForCES that allows the control elements
to control the forwarding elements. We implemented these
two protocols and demonstrated network-wide failover in a
testbed of forwarding and control elements. Furthermore,
we argued through several examples that the separation

and logical centralization of control plane software in the
SoftRouter architecture enables easier deployment of new
services. As data networks become integral to everyday
life and as new services become increasingly deployed
on data networks, reliability and new service deployment
become critical necessities. SoftRouter architecture is well
placed to meet these critical requirements.
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