
Robust Recovery of the Epipolar Geometry foran Uncalibrated Stereo RigR. Deriche and Z. Zhang and Q.-T. Luong and O. FaugerasINRIA, 2004 route des Lucioles, B.P. 93, F-06902 Sophia-Antipolis Cedex, FranceE-mail: fder,zzhang,luong,faugerasg@sophia.inria.frAbstract. This paper addresses the problem of accurately and auto-matically recovering the epipolar geometry from an uncalibrated stereorig and its application to the image matching problem. A robust correla-tion based approach that eliminates outliers is developped to produce areliable set of corresponding high curvature points. These points are usedto estimate the so-called Fundamental Matrix which is closely related tothe epipolar geometry of the uncalibrated stereo rig. We show that anaccurate determination of this matrix is a central problem. Using a lin-ear criterion in the estimation of this matrix is shown to yield erroneousresults. Di�erent parametrization and non-linear criteria are then devel-opped to take into account the speci�c constraints of the FundamentalMatrix providing more accurate results. Various experimental results onreal images illustates the approach.1 IntroductionRecovering the epipolar geometry of a stereo pair of images is an important andattractive problem. It is the only geometric constraint that could be used inimage matching to reduce the searching area of potential matches in the images.Until recently this step has been closely related to the calibration problem. Inthis paper, we are interested in recovering this information without the use of acalibration process. The proposed method consists of the following major steps:extracting points of interests, matching a set of at least 8 points, recoveringas accurately as poosible the so-called Fundamental Matrix and the epipolargeometry using a robust matching process that considers possible false matchesas outliers, run for a second time the correlation process while taking into accountthe recovered epipolar geometry and update the Fundamental matrix using non-linear criteria.The importance of the criterion to be minimized in order to correctly recoverthe Fundamental Matrix and the strong need to deal with a robust matching ap-proach that detect and discard possible false matches, are two important pointsto be considered in such problem. Our work is closely related to the work ofOlsen [8] and that of Shapiro and Brady [10]. Both use linear Olsen assumes thatthe epipolar lines are almost aligned horizontally and uses a linear method to es-timate the epipolar geometry. A robust method (the M-estimator, seeSect. 3.2)is used to detect possible false matches. Shapiro and Brady also use a linear



method. The camera model is however a simpli�ed one, namely an a�ne cameraand correspondences are established while rejecting possible outliers by the useof a regression diagnostic processus. These two approaches (M-estimators andRegression diagnostics) work well when the percentage of outliers is small andmore importantly their derivations from the valid matches are not too large, asin the above two works. In the case described in this paper, two images can bearbitrarily di�erent. There may be a large percentage of false matches (usuallyaround 20%, sometimes 40%) using heuristic matching techniques such as cor-relation, and a false match may completely be di�erent from the valid matches.The robust technique described in this paper (i.e Least-Median-of-Squares ) dealswith these issues and can theoretically detect as high as 50% outliers.2 Geometry of StereovisionThe camera model which is most widely used is the pinhole and in the generalcase, the camera performs a projective linear transformation, rather than a mereperspective transformation. The pixel coordinates u and v are the only informa-tion we have if the camera is not calibrated q = [su; sv; s]T = AGM, whereM = [X;Y; Z; 1]T is the point in 3D space, A is a 3 � 3 transformation matrixaccounting for camera sampling and optical characteristics and G is a 3� 4 dis-placement matrix accounting for camera position and orientation. If the camerais calibrated, then A is known and it is possible to use normalized coordinatesm = A�1q, which have a direct 3D interpretation.The epipolar geometry is the basic constraint which arises from the existenceof two viewpoints. It is well-known in stereovision: for each point m in the �rstretina, its corresponding point m0 lies on its epipolar line l0m.Let us now use retinal coordinates. For a given point q in the �rst image,the projective representation l0q of its the epipolar line in the second image isgiven by l0q = Fq. Since the point q0 corresponding to q belongs to the line l0qby de�nition, it follows that q0TFq = 0 (1)We call the 3 � 3 matrix F which describes this correspondence the funda-mental matrix. The importance of the fundamental matrix has been neglectedin the literature, as almost all the work on motion has been done under theassumption that intrinsic parameters are known. In that case, the fundamentalmatrix reduces to an essential matrix. But if one wants to proceed only fromimage measurements, the fundamental matrix is the key concept, as it containsall the geometrical information relating two di�erent images.It can be shown that the fundamental matrix F is related to the essentialmatrix [5] E = t�R by F = A�1TEA�1. Unlike the essential matrix, which ischaracterized by the two constraints described by Huang and Faugeras [3] whichare the nullity of the determinant and the equality of the two non-zero singularvalues, the only property of the fundamental matrix is that it is of rank two. Asit is also de�ned only up to a scale factor, the number of independent coe�cientsof F is seven.



3 Matching Without the Epipolar GeometryA slightly improved correlation based approach is used to match a set of highcurvature points extracted from each image. The corner detector developped in[2], is used with a value of k equal to 0.04 for providing discrimination againsthigh contrast pixel step edges. After that, the operator output is thresholdedfor the corner detection. It should be pointed out that this method allows us torecover a corner position up to a pixel precision. In order to recover the cornerposition up to a sub-pixel position, one use the model based approach we havealready developed and presented in [1], where corners are extracted directlyfrom the image by searching the parameters of the parametric model that bestapproximate the observed grey level image intensities around the corner positiondetected. This step of re�nement at a sub-pixel position of the high curvaturepoints has been found important specially in the case where a small number ofpoints are used in the minimization process performed to recover the so-calledFundamental Matrix.3.1 Matching by correlationThe matching process developped to put into correspondences the set of ex-tracted points of interest is then the following one : Given a high curvaturepoint m1 in image 1, we use a correlation window of size (2n + 1) � (2m + 1)centered around this point. We then select a rectangular search area of size(2d + 1) � (2d + 1) around this point in the second image, and perform a cor-relation operation on a given window between point m1 in the �rst image andall high curvature points m2 lying within the search area in the second image.The following constraints are then applied in order to select the most consistentmatches :{ Constraint on the correlation score : For a given couple of points tobe considered as a possible set of corresponding points, the correlation scoremust be higher than a given threshold.{ Constraint of the gradient direction : The cosines of the angle betweenthe vectors gradients of m1 and m2 is evaluated. This direction consistencymeasure must be greater than a given threshold for the matching to beconsidered consistent.{ Constraint of curvature This constraint is based on the magnitude ofthe curvature di�erence. The curvature sign is also used. It di�erentiates aconvex angle from a concave one. Two points are said to be consistent incurvature if and only if the absolute value of the di�erence of their curvatureis less than a �xed threshold.{ Constraint of disparity : This constraint reects some a priori knowledgeabout the disparities between the matches points. All the feature points aresupposed to have a a maximum disparity.



If the above four constraints are ful�lled, we say that the potential points con-sidered are mutually consistent. A similarity function is computed for each con-sistent correspondences. This similarity function is a function of the measuresde�ned above, weighted by the di�erence between the gradient norm of bothpoints considered.Finally before validating the match with the highest similarity value, we per-form the correlation twice by reversing the roles of the two images and consideras valid only those matches for which the reverse correlation has fallen on the ini-tial point in the �rst image. The two images play a symmetric role. This validitytest allows us to greatly reduce the probability of error.3.2 Taking into Account Possible Outliers in the InitialCorrespondencesIn all matches established so far, we may �nd two types of outliers due tobad locations. Error in localization can be large (greater that three pixels)for some extracted points of interest. This will degrade the accuracy of theestimation.false matches. False matches occuring in the correspondence process spoil the�nal estimate of the fundamental matrix and can render it de�nitely useless.Many the so-called robust regression methods have been proposed that are notso easily a�ected by outliers [4, 9]. The reader is referred to [9, Chap. 1] for areview of di�erent robust methods. The two most popular robust methods arethe M-estimators and the least-median-of-squares (LMedS) method.Let ri be the residual of the i-th datum, i.e., the di�erence between thei-th observation and its �tted value. The standard least-squares method triesto minimizePi r2i , which is unstable if there are outliers present in the data.The M-estimators replace the squared residuals r2i by another functions of theresiduals, yielding minXi �(ri) ;where � is a symmetric, positive-de�nite function with a unique minimumat zero.The M-estimators can be implemented as a weighted least-squares problem. Thismethod [8, 6] reveals to be robust to outliers due to bad locations. It is, however,not robust to false matches.The LMedS method estimates the parameters by solving the nonlinear min-imization problem: min medi r2i :That is, the estimates must yield the smallest value for the median of squaredresiduals computed for the entire data set. It turns out that this method isvery robust to false matches as well as outliers due to bad locations. Unlike theM-estimators, however, the LMedS problem cannot be reduced to a weightedleast-squares problem. It is probably impossible to write down a straightforward



formula for the LMedS estimator. It must be solved by a search in the space ofpossible estimates generated from the data. Since this space is too large, onlya randomly chosen subset of data can be analyzed. The algorithm which wehave implemented for robustly estimating the fundamental matrix follows thatstructured in [9, Chap. 5], as outlined below.Given n point correspondences and their retinal image coordinates ~m1i =[u1i; v1i]T ; ~m2i = [u2i; v2i]T and denoting the homogeneous coordinates of ~x =[x; y; � � �]T by x, i.e., x = [x; y; � � � ; 1]T , a Monte Carlo type technique is used todraw m random subsamples of p = 8 di�erent point correspondences. For eachsubsample, indexed by J , we determine the fundamental matrix FJ . For eachFJ , we can determine the median of the squared residuals, denoted by MJ , withrespect to the whole set of point correspondences, i.e.,MJ = medi=1;:::;n[d2(m2i;FJm1i) + d2(m1i;FTJm2i)] :We retain the estimate FJ for which MJ is minimal among all m MJ 's. Thequestion now is: How to determine m ? A subsample is \good" if it consists ofp good correspondences. Assuming that the whole set of correspondences maycontain up to a fraction " of outliers, the probability that at least one of them subsamples is good is given by P = 1 � [1 � (1 � ")p]m : By requiring thatP must be near 1, one can determine m for given values of p and ". In ourimplementation, we assume " = 40% and require P = 0:99, thus m = 272.As noted in [9], the LMedS e�ciency is poor in the presence of Gaussiannoise. The e�ciency of a method is de�ned as the ratio between the lowestachievable variance for the estimated parameters and the actual variance pro-vided by the given method. To compensate for this de�ciency, we further carryout a weighted least-squares procedure. The robust standard deviation estimateis given by �̂ = 1:4826[1+5=(n�p)]pMJ ; where MJ is the minimalmedian. Thereader is referred to [9, page 202] for the explanation of these magic numbers.Based on �̂, we can assign a weight for each correspondence:wi = (1 if r2i � (2:5�̂)20 otherwise ;where r2i = d2(m2i;Fm1i)+d2(m1i;FTm2i) : The correspondences having wi =0 are outliers and should not be further taken into account. The fundamentalmatrix F is �nally estimated by solving the weighted least-squares problem:min Xi wir2i :We have thus robustly estimated the fundamental matrix because outliers havebeen detected and discarded by the LMedS method.



4 Accurately Recovering the Fundamental MatrixUsing the set of matched points established in the previous step, one may thenrecover the so-called fundamental matrix. This is one of the most crucial step.We have considered di�erent linear and non-linear criteria and also considereddi�erent approaches to parametrize this matrix.4.1 The linear criterionEquation (1) can be written down as a linear and homogeneous equation in the9 unknown elements of matrix F. Given 8 or more matches we will be able, ingeneral, to determine a unique solution for F, de�ned up to a scale factor. Forexample, a singular value decomposition technique can be used.The advantage of the linear criterion is that it leads to a non-iterative com-putation method, however, we have found that it is quite sensitive to noise, evenwith numerous data points. The two main reasons for this are : The constraintdet(F) = 0 is not satis�ed, which causes inconsistencies of the epipolar geometrynear the epipoles, and the criterion is not normalized, which causes a bias in thelocalization of the epipoles. A detailed study of these points has been made inthe technical report [7].As it has been said, one of the drawbacks of the linear criterion method isthat we do not take into account the fact that the rank of F is only two, and thatF thus depends on only 7 parameters. This could be taken into account by doinga minimization under the constraint det(F) = 0, which is a cubic polynomial inthe coe�cients of F. However, the numerical implementations were not e�cientand accurate at all. Thanks to a suggestion by Luc Robert, we can express thesame constraint with an unconstrained minimization: the idea is to write oneline of matrix F as a linear combination of the two others, which ensures that Fis singular. Choosing such a representation allows us to represent F by the rightnumber of parameters, once the normalization is done.It can be shown that F can also be expressed as function of the a�ne coor-dinates (x; y) and (x0; y0) of the two epipoles, and the coe�cients, of the homog-raphy between the two pencils of epipolar lines [7]4.2 Minimizing the distance to epipolar linesWe now introduce a �rst non-linear approach. The idea is to use a non-linearcriterion, minimizingPi d2(q0i;Fqi). However, unlike the case of the linear cri-terion, the two images do not play a symmetric role, as the criterion determinesonly the epipolar lines in the second image, and should not be used to obtainthe epipole in the �rst image. We would have to exchange the role of qi and q0ito do so. The problem with this approach is the inconsistency of the epipolargeometry between the two images. To make this more precise, if F is computedby minimizingPi d2(q0i;Fqi) and F0 by minimizingPi d2(qi;F0q0i), there is nowarranty that the points of the epipolar line Fq di�erent from q0 correspond tothe points of the epipolar line F0q0. To obtain a consistent epipolar geometry,



it is necessary and su�cient that by exchanging the two images, the funda-mental matrix is changed to its transpose. This yields the following criterion:Pi (d2(q0i;Fqi) + d2(qi;FTq0i)), which operates simultaneously in the two im-ages and can be written using the expression that gives the Euclidean distanceof a given point q in an image to a its epipolar line l in the other image, and thefact that q0Ti Fqi = qTi FTq0i:Xi � 1(Fqi)21 + (Fqi)22 + 1(FTq0i)21 + (FTq0i)22� (q0Ti Fqi)2 (2)This criterion is also clearly normalized in the sense that it does not depend onthe scale factor used to compute F.4.3 Taking into account uncertaintyPixels are measured with some uncertainty. When using the linear criterion, weminimize a sum of terms which have di�erent variances. It is natural to weightthem so that the contribution of each of these terms to the total criterion willbe inversely proportional to its variance.Estmating the variance of each term as a function of the variance of thepoints qi et q0i, developping and simplifyng, we obtain the following criterion :Xi (q0Ti Fqi)2(Fqi)21 + (Fqi)22 + (FTq0i)21 + (FTq0i)22 (3)Note the great similarity between this criterion and the distance criterion (2).5 Establishing Correspondences Using the Epipolar LineConstraint and Re�nement of the Fundamental MatrixOnce the fundamental matrix is robustly determined, we use it to recover theepipolar geometry and establish a new set of correspondences using a correlationbased approach that takes into account the recovered epipolar geometry (i.e.,epipolar constraint).The last step of the approach is then related to the re�nement of the fun-damental matrix and its estimation using the larger number of correspondencesproduced by this matching process.6 Experimental resultsFor the purposes of experimentation, the di�erent types of criteria were consid-ered and the robustness of the approach to the outliers has also been considered.A large number of real images were selected and an intensive experimental workhas been carried out in order to test the robustness and the accuracy of the



Fig. 1. Indoor scene: Matched points and the epipolar geometry using the linearcriterion
Fig. 2. Indoor scene: Matched points and the epipolar geometry recovered usingthe non-linear criterionrecovered epipolar geometry as well as the e�ciency in detecting and rejectingoutliers.Figures 1 and 2 illustrate on an indoor scene the performances of the match-ing approach that have been proposed while using just the correlation part andwithout taking into account the outliers detector module. The displacement be-tween the two images is mainly a horizontal translation toward to the left side,and we can expect that the epipoles will lie on a horizontal line passing aroundthe middle of the image. The window size used for the correlation is 20*20 andthe parameters related to the constraints on the correlation and gradient direc-



Fig. 3. Outdoor scene: Matched points by correlation and the epipolar geometryrecovered using the nonlinear criterion
Fig. 4. Outdoor scene: Remaining matches after eliminating outliers and the cor-responding epipolar geometry recovered using the nonlinear criteriontion have been both set to .9Figure 1 shows the set of 96 matched points using just the correlation andthe associated constraints and illustrates the epipolar geometry recovered usingthe linear criterion. Note that the two epipolar lines that do not intersect thepencil of epipolar lines are those corresponding to the two epipoles.Figure 2 shows the set of 96 matched points and the epipolar geometryrecovered using the non-linear criterion. The positions of the epipoles are whatwe expected. This example illustrates the good performances of the correlationbased approach provided that the deformation between the stereo pair of images



is not too large. One can also remark the robustness of the non-linear criterioncompared to the linear one.Figures 3 and 4 illustrate the necessity to take into account the possibility ofhaving some outliers in the initial set of matched points. The two images havebeen taken by a camera mounted on a moving vehicle. It moves forward in themiddle of the right lane, and the epipolar lines are thus expected to intersectto each other at a point near the middle of the right lane. Figure 3 shows thematched points recovered just by the use of the correlation technique. 55 matcheshave been found. One can remark that there are some points that have not beencorrectly matched on this image pair and one can notice that the recoveredepipolar geometry is not good at all. For example, match 11 pairs two pointsfrom two di�erent branches of the tree. Match 0 is not false visually. It describesthe intersection of a tree with the roof of the house on the left side of the image.However, this point is only virtual, and it changes with the point of view. Figure4 illustrates the performances of the outliers rejection module. 6 outliers havebeen detected, namely matches number 11, 0, 51, 54, 2 and 47. This fact changessigni�cantly the recovered epipolar geometry and in particular the positions ofthe epipoles.References[1] R. Deriche and T. Blaszka. Recovering and Characterizing Image FeaturesUsing An E�cient Model Based Approach. In Proceedings IEEE ConferenceOn Computer Vision and Pattern Recognition, New-York, June 14-17 1993.[2] C. Harris and M. Stephens. A combined corner and edge detector. In Pro-ceedings Alvey Conference, pages 189{192, 1988.[3] T.S. Huang and O.D. Faugeras. Some properties of the E-matrix in twoview motion estimation. IEEE Trans. PAMI, 11:1310{1312, 1989.[4] P.J. Huber. Robust Statistics. John Wiley & Sons, New York, 1981.[5] H.C. Longuet-Higgins. A Computer Algorithm for Reconstructing a Scenefrom Two Projections. Nature, 293:133{135, 1981.[6] Q.-T. Luong. Matrice fondamentale et calibration visuelle surl'environnement: Vers une plus grande autonomie des syst�emes robotiques.Dissertation, University of Paris XI, Orsay, Paris, France, December 1992.[7] Q.-T. Luong, R. Deriche, O. Faugeras, and T. Papadopoulo. On determin-ing the fundamental matrix: Analysis of di�erent methods and experimentalresults. Rapport de Recherche 1894, INRIA Sophia-Antipolis, France, 1993.[8] S.I. Olsen. Epipolar line estimation. In Proc. Second European Conf. Com-put. Vision, pages 307{311, Santa Margherita Ligure, Italy, May 1992.[9] P.J. Rousseeuw and A.M. Leroy. Robust Regression and Outlier Detection.John Wiley & Sons, New York, 1987.[10] L. Shapiro and M. Brady. Rejecting outliers and estimating errors in anorthogonal regression framework. Tech.Report OUEL 1974/93, Dept. En-gineering Science, University of Oxford, February 1993.This article was processed using the LaTEX macro package with LLNCS style
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