
1

Using Destination-Passing Style to Compile a Functional Language
into Efficient Low-Level Code
In submission

AMIR SHAIKHHA∗, EPFL
ANDREW FITZGIBBON, Microsoft Research
SIMON PEYTON-JONES, Microsoft Research
DIMITRIOS VYTINIOTIS, Microsoft Research

We show how to compile high-level functional array-processing programs, drawn from image processing and
machine learning, into C code that runs as fast as hand-written C. The key idea is to transform the program to
destination passing style, which in turn enables a highly-efficient stack-like memory allocation discipline.

ACM Reference format:
Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton-Jones, and Dimitrios Vytiniotis. 2017. Using Destination-
Passing Style to Compile a Functional Language into Efficient Low-Level Code. PACM Progr. Lang. 1, 1, Article 1
(January 2017), 21 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Applications in computer vision, robotics, and machine learning [32, 35? ] may need to run in memory-
constrained environments with strict latency requirements, and have high turnover of small-to-medium-
sized arrays. For these applications the overhead of most general-purpose memory management, for
example malloc/free, or of a garbage collector, is unacceptable, so programmers often implement custom
memory management directly in C.

In this paper we propose a technique that automates a common custom memory-management technique,
which we call destination passing style (DPS), as used in efficient C and Fortran libraries such as BLAS [?
]. We allow the programmer to code in a high-level functional style, while guaranteeing efficient stack
allocation of all intermediate arrays. Fusion techniques for such languages are absolutely essential to
eliminate intermediate arrays, and are well established. But fusion leaves behind an irreducible core of
intermediate arrays that must exist to accommodate multiple or random-access consumers.

That is where DPS takes over. The key idea is that every function is given the storage in which to store
its result. The caller of the function is responsible for allocating the destination storage, and deallocating
it as soon as it is not longer needed. Of course this incurs a burden at the call site of computing the size
of the callee result, but we will show how a surprisingly rich input language can nevertheless allow these
computations to be done in negligible time. Our contributions are:

• We propose a new destination-passing style intermediate representation that captures a stack-like
memory management discipline and ensures there are no leaks (Section 3). This is a good
compiler intermediate language because we can perform transformations on it and be able to

∗This work was done while the author was at Microsoft Research, Cambridge.

© 2017 ACM. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in PACM Progr. Lang., http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn


1:2 • Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton-Jones, and Dimitrios Vytiniotis

e ::= e e – Application
| λx.e – Abstraction
| x – Variable Access
| n – Scalar Value
| i – Index Value
| N – Cardinality Value
| c – Constants
| let x = e in e – (Non-Rec.) Let Binding
| if e then e else e – Conditional

c ::= build | reduce | length | get
| [More on Figure 2]

T ::= M – Matrix Type
| T⇒ M – Function Types (No Currying)
| Card – Cardinality Type
| Bool – Boolean Type

M ::= Num – Numeric Type
| Array<M> – Vector, Matrix, ... Type

Num ::= Double – Scalar Type
| Index – Index Type

Fig. 1. The core F̃ syntax.

reason about how much memory a program will take. It also allows efficient C code generation
with bump-allocation. Although it is folklore to compile functions in this style when the result
size is known, we have not seen DPS used as an actual compiler intermediate language, despite
the fact that DPS has been used for other purposes (c.f. Section 6).
• DPS requires to know at the call site how much memory a function will need. We design a
carefully-restricted higher-order functional language, F̃ (Section 2), and a compositional shape
translation (Section 3.3) that guarantee to compute the result size of any F̃ expression, either
statically or at runtime, with no allocation, and a run-time cost independent of the data or its
size (Section 3.6). We do not know any other language stack with these properties.
• We evaluate the runtime and memory performance of both micro-benchmarks and real-life

computer vision and machine-learning workloads written in our high-level language and compiled
to C via DPS (as shown in Section 5). We show that our approach gives performance comparable
to, and sometimes better than, idiomatic C++.1

2 F̃
F̃ is a subset of F#, an ML-like functional programming language (the syntax is slightly different from F#
for presentation reasons). It is designed to be expressive enough to make it easy to write array-processing
workloads, while simultaneously being restricted enough to allow it to be compiled to code that is as
efficient as hand-written C, with very simple and efficient memory management. We are willing to
sacrifice some expressiveness to achieve higher performance.
1Keen C++ programmers may wonder what advantage we anticipate over C++. Primarily this is the future possibility of
program transformations such as automatic differentiation, which are easily expressed in F̃, but remain slow in C++ [28],
and would be expected to generate code as efficient as our benchmarks indicate.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



Using Destination-Passing Style to Compile a Functional Language into Efficient Low-Level Code • 1:3

Typing Rules:

(T-If)
e1 : Bool e2 : M e3 : M
if e1 then e2 else e3 : M

(T-App)
e0 : T⇒ M e : T

e0 e : M

(T-Abs)
Γ ∪ x : T ` e : M
Γ ` λx.e : T⇒ M

(T-Var)
x : T ∈ Γ

Γ ` x : T

(T-Let)
Γ ` e1 : T1 Γ, x : T1 ` e2 : T2

Γ ` let x = e1 in e2: T2
Scalar Function Constants:
+ | - | * | / : Num, Num ⇒ Num
% : Index, Index ⇒ Index
> | < | == : Num, Num ⇒ Bool
&& | || : Bool, Bool ⇒ Bool
! : Bool ⇒ Bool
+c | −c | ∗c |
/c | %c : Card, Card ⇒ Card

Vector Function Constants:
build : Card , (Index ⇒ M ) ⇒ Array<M>
reduce : ( M , Index ⇒ M ) , M , Card ⇒ M
get : Array<M> , Index ⇒ M
length : Array<M> ⇒ Card
Syntactic Sugars:
e0[e1] = get e0 e1
for all binary operators bop: e1 bop e2 = bop e1 e2

Fig. 2. The type system and built-in constants of F̃

2.1 Syntax and types of F̃
In addition to the usual λ-calculus constructs (abstraction, application, and variable access), F̃ supports
let binding and conditionals. In support of array programming, the language has several built-in functions
defined: build for producing arrays; reduce for iteration for a particular number of times (from 0 to n-1)
while maintaining a state across iterations; length to get the size of an array; and get to index an array.

The syntax of F̃ is shown in Figure 1, while the type system and several other built-in functions are
shown in Figure 2. Note that Figure 1 shows an abstract syntax and parentheses can be used as necessary.
Also, x and e denote one or more variables and expressions, respectively, which are separated by spaces,
whereas, T represents one or more types which are separated by commas.

Although F̃ is a higher-order functional language, it is carefully restricted in order to make it efficiently
compilable:

• F̃ does not support arbitrary recursion, hence is not Turing Complete. Instead one can use build
and reduce for producing and iterating over arrays.
• The type system is monomorphic. The only polymorphic functions are the built-in functions of

the language, such as build and reduce, which are best thought of as language constructs rather
than first-class functions.
• An array, of type Array<M>, is one-dimensional but can be nested. If arrays are nested they are

expected to be rectangular, which is enforced by defining the specific Card type for dimension of
arrays, which is used as the type of the first parameter of the build function.
• No partial application is allowed as an expression in this language. Additionally, an abstraction
cannot return a function value. These two restrictions are enforced by (T-App) and (T-Abs)
typing rules, respectively (c.f. Figure 2).

As an example, Figure 3 shows a linear algebra library defined using F̃. First, there are vector mapping
operations (vectorMap and vectorMap2) which build vectors using the size of the input vectors. The
ith element (using a zero-based indexing system) of the output vector is the result of the application

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:4 • Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton-Jones, and Dimitrios Vytiniotis

let vectorRange = λn. build n (λi. i)
let vectorMap = λv f. build (length v) (λi. f v[i])
let vectorMap2 = λv1 v2 f.

build (length v1) (λi. f v1[i] v2[i])
let vectorAdd = λv1 v2. vectorMap2 v1 v2 (+)
let vectorEMul = λv1 v2. vectorMap2 v1 v2 (×)
let vectorSMul = λv s. vectorMap v (λa. a × s)
let vectorSum = λv.

reduce (λsum idx. sum + v[idx]) 0 (length v)
let vectorDot = λv1 v2.
vectorSum (vectorEMul v1 v2)

let vectorNorm = λv. sqrt (vectorDot v v)
let vectorSlice = λv s e.

build (e −c s +c 1) (λi. v[i + s])
let matrixRows = λm. lengthm
let matrixCols = λm. lengthm[0]
let matrixMap = λm f. build (lengthm) (λi. f m[i])
let matrixMap2 = λm1 m2 f.

build (lengthm1) (λi. f m1[i] m2[i])
let matrixAdd = λm1 m2.
matrixMap2 m1 m2 vectorAdd

let matrixTranspose = λm.
build (matrixCols m) (λi.

build (matrixRows m) (λj.
m[j][i]

) )
let matrixMul = λm1 m2.

let m2T = matrixTranspose m2
build (matrixRows m1) (λi.

build (matrixCols m2) (λj.
vectorDot (m1[i]) (m2T[j])

) )
let vectorOutProd = λv1 v2.

let m1 = build 1 (λi. v1)
let m2 = build 1 (λi. v2)
let m2T = matrixTranspose m2
matrixMul m1 m2T

Fig. 3. Several Linear Algebra and Matrix operations defined in F̃.

of the given function to the ith element of the input vectors. Using the vector mapping operations,
one can define vector addition, vector element-wise multiplication, and vector-scalar multiplication.
Then, there are several vector operations which consume a given vector by reducing them. For example,
vectorSum computes the sum of the elements of the given vector, which is used by the vectorDot and
vectorNorm operations. Similarly, several matrix operations are defined using these vector operations.
More specifically, matrix-matrix multiplication is defined in terms of vector dot product and matrix

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



Using Destination-Passing Style to Compile a Functional Language into Efficient Low-Level Code • 1:5

transpose. Finally, vector outer product is defined in terms of matrix multiplication of the matrix form
of the two input vectors.

2.2 Fusion
Consider this function, which accepts two vectors and returns the norm of the vector resulting from the
addition of these two vectors.

f = λvec1 vec2. vectorNorm (vectorAdd vec1 vec2)

Executing this program, as is, involves constructing two vectors in total: one intermediate vector which
is the result of adding the two vectors vec1 and vec2 , and another intermediate vector which is used
in the implementation of vectorNorm (vectorNorm invokes vectorDot, which invokes vectorEMul in order
to perform the element-wise multiplication between two vectors). In this example one can remove the
intermediate vectors by fusion (or deforestation) [5, 10, 30, 39]. After fusion the function might look like
this:

f = λvec1 vec2.
reduce (λsum idx. sum + (vec1[idx]+vec2[idx]) * (vec1[idx]+vec2[idx])) 0 (length vec1)

This is much better because it does not construct the intermediate vectors. Instead, the elements of the
intermediate vectors are consumed as they are produced.
Fusion is well studied, and we take it for granted in this paper. However, there are plenty of cases in

which the intermediate array cannot be removed. For example: the intermediate array is passed to a
foreign library function; it is passed to a library function that is too big to inline; or it is consumed by
multiple consumers, or by a consumer with a random (non-sequential) access pattern.

In these cases there are good reasons to build an intermediate array, but we want to allocate, fill, use,
and de-allocate it extremely efficiently. In particular, we do not want to rely on a garbage collector.

3 DESTINATION-PASSING STYLE
Thus motivated, we define a new intermediate language, DPS-F̃, in which memory allocation and
deallocation is explicit. DPS-F̃ uses destination-passing style: every array-returning function receives
as its first parameter a pointer to memory in which to store the result array. No function allocates the
storage needed for its result; instead the responsibility of allocating and deallocating the output storage
of a function is given to the caller of that function. Similarly, all the storage allocated inside a function
can be deallocated as soon as the function returns its result.

Destination passing style is a standard programming idiom in C. For example, the C standard library
procedures that return a string (e.g. strcpy) expect the caller to provide storage for the result. This
gives the programmer full control over memory management for string values. Other languages have
exploited destination-passing style during compilation [15, 16].

3.1 The DPS-F̃ language
The syntax of DPS-F̃ is shown in Figure 4, while its type system is in Figure 5. The main additional
construct in this language is the one for allocating a particular amount of storage space alloc t1 (λr. t2).
In this construct t1 is an expression that evaluates to the size (in bytes) that is required for storing the
result of evaluating t2. This storage is available in the lexical scope of the lambda parameter, and is
deallocated outside this scope. The previous example can be written in the following way in DPS-F̃:

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:6 • Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton-Jones, and Dimitrios Vytiniotis

t ::= t t – Application
| λx. t – Abstraction
| • – Empty Memory Location
| n – Scalar Value
| i – Index Value
| P – Shape Value
| x – Variable Access
| r – Reference Access
| c – Constants
| let x = t in t – (Non-Rec.) Let Binding
| if t then t else t – Conditional
| alloc t (λr. t) – Memory Allocation

P ::= ◦ – Zero Cardinality
| N – Cardinality Value
| (N,P) – Vector Shape Value

c ::= [See Figure 5]
D ::= M | D⇒ M | Bool

| Shp – Shape Type
| Ref – Machine Address

M ::= Num | Array<M>
Num ::= Double | Index
Shp ::= Card – Cardinality Type

| (Card * Shp) – Vector Shape Type

Fig. 4. The core DPS-F̃ syntax.

f = λr1 vec1 vec2. alloc (vecBytes vec1) (λr2.
vectorNorm_dps • (vectorAdd_dps r2 vec1 vec2)

)

Each lambda abstraction typically takes an additional parameter which specifies the storage space that
is used for its result. Furthermore, every application should be applied to an additional parameter which
specifies the memory location of the return value in the case of an array-returning function. However, a
scalar-returning function is applied to a dummy empty memory location, specified by •. In this example,
the number of bytes allocated for the memory location r2 is specified by the expression (vecBytes vec1)
which computes the number of bytes of the array vec1.

3.2 Translation from F̃ to DPS-F̃
We now turn our attention to the translation from F̃ to DPS-F̃. Before translating F̃ expressions to their
DPS form, the expressions should be transformed into a normal form similar to Administrative-Normal
Form [7] (ANF). In this representation, each subexpression of an application is either a constant value or
a variable. This greatly simplifies the translation rules, specially the (D-App) rule.2 The representation
of our working example in ANF is as follows:
2 In a true ANF representation, every subexpression is a constant value or a variable, whereas in our case, we only care
about the subexpressions of an application. Hence, our reprsentation is almost ANF.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



Using Destination-Passing Style to Compile a Functional Language into Efficient Low-Level Code • 1:7

Typing Rules:

(T-Alloc)
Γ ` t0 : Card Γ, r : Ref ` t1 : M

alloc t0 (λr. t1): M

Vector Function Constants:
build : Ref, Card, (Ref, Index ⇒ M ),

Card, (Card ⇒ Shp )
⇒ Array<M>

reduce : Ref, (Ref, M, Index ⇒ M ), M, Card,
(Shp, Card ⇒ Shp ), Shp, Card

⇒ M
get : Ref, Array<M>, Index,

Shp, Card ⇒ M
length : Ref, Array<M>, Shp ⇒ Card
copy : Ref, Array<M> ⇒ Array<M>

Scalar Function Constants:
DPS version of F̃ Scalar Constants (See Figure 2).
stgOff : Ref, Shp ⇒ Ref
vecShp : Card, Shp ⇒ (Card * Shp)
fst : (Card * Shp) ⇒ Card
snd : (Card * Shp) ⇒ Shp
bytes : Shp ⇒ Card
Syntactic Sugars:
t0.[t1]{r} = get r t0 t1 length t = length • t
(t0, t1) = vecShp t0 t1
for all binary ops bop: e1 bop e2 = bop • e1 e2

Fig. 5. The type system and built-in constants of DPS-F̃

DJeKr = t

(D-App) DJe0 x1 ... xkKr = (DJe0K•) r x1 ... xk x1
shp ... xk

shp

(D-Abs) DJλx1 ... xk. e1K• = λr2 x1 ... xk x1
shp ... xk

shp. DJe1Kr2
(D-VarScalar) DJxK• = x
(D-VarVector) DJxKr = copy r x
(D-Let) DJlet x = e1 in e2Kr = let xshp = SJe1K in

alloc (bytes xshp) (λr2.
let x = DJe1Kr2 in DJe2Kr)

(D-If) DJif e1 then e2 else e3Kr = if DJe1K• then DJe2Kr else DJe3Kr

DT JTK = D

(DT-Fun) DT JT1, ..., Tk ⇒ M K = Ref, DT JT1K, ..., DT JTkK, ST JT1K, ..., ST JTkK ⇒ DT JMK
(DT-Mat) DT JMK = M
(DT-Bool) DT JBoolK = Bool
(DT-Card) DT JCardK = Card

Fig. 6. Translation from F̃ to DPS-F̃

f = λvec1 vec2.
let tmp = vectorAdd vec1 vec2 in
vectorNorm tmp

Figure 6 shows the translation from F̃ to DPS-F̃, where DJeKr is the translation of a F̃ expression e
into a DPS-F̃ expression that stores e’s value in memory r. Rule (D-Let) is a good place to start. It uses
alloc to allocate enough space for the value of e1, the right hand side of the let — but how much space

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:8 • Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton-Jones, and Dimitrios Vytiniotis

is that? We use an auxiliary translation SJe1K to translate e1 to an expression that computes e1’s shape
rather than its value. The shape of an array expression specifies the cardinality of each dimension. We
will discuss why we need shape (what goes wrong with just using bytes) and the shape translation in
Section 3.3. This shape is bound to xshp, and used in the argument to alloc. The freshly-allocated
storage r2 is used as the destination for translating the right hand side e1, while the original destination r
is used as the destination for the body e2.

In general, every variable x in F̃ becomes a pair of variables x (for x’s value) and xshp (for x’s shape)
in DPS-F̃. You can see this same phenomenon in rules (D-App) and (D-Abs), which deal with lambdas
and application: we turn each lambda-bound argument x into two arguments x and xshp.
Finally, in rule (D-App) the destination memory r for the context is passed on to the function being

called, as its additional first argument; and in (D-Abs) each lambda gets an additional first argument,
which is used as the destination when translating the body of the lambda. Figure 6 also gives a translation
of an F̃ type T to the corresponding DPS-F̃ type D.

For variables there are two cases. In rule (D-VarScalar) a scalar variable is translated to itself, while in
rule (D-VarVector) we must copy the array into the designated result storage using the copy function.
The copy function copies the array elements as well as the header information into the given storage.

3.3 Shape translation
As we have seen, rule (D-Let) relies on the shape translation of the right hand side. This translation is
given in Figure 7. If e has type T, then SJeK is an expression of type ST JTK that gives the shape of e.
This expression can always be evaluated without allocation.

A shape is an expression of type Shp (Figure 4), whose values are given by P in that Figure. There are
three cases to consider
First, a scalar value has shape ◦ (rules (S-ExpNum), (S-ExpBool)).
Second, when e is an array, SJeK gives the shape of the array as a nested tuple, such as (3, (4, ◦)) for a

3-vector of 4-vectors. So the “shape” of an array specifies the cardinality of each dimension.
Finally, when e is a function, SJeK is a function that takes the shapes of its arguments and returns the

shape of its result. You can see this directly in rule (S-App): to compute the shape of (the result of) a
call, apply the shape-translation of the function to the shapes of the arguments. This is possible because
F̃ programs do not allow the programmer to write a function whose result size depends on the contents
of its input array.

What is the shape-translation of a function f? Remembering that every in-scope variable f has become
a pair of variables one for the value and one for the shape, we can simply use the latter, fshp, as we see in
rule (S-Var).

For arrays, could the shape be simply the number of bytes required for the array, rather than a nested
tuple? No. Consider the following function, which returns the first row of its argument matrix:
firstRow = λm: Array<Array<Double>>. m[0]
The shape translation of firstRow, namely firstRowshp, is given the shape of m, and must produce the

shape of m’s first row. It cannot do that given only the number of bytes in m; it must know how many
rows and columns it has. But by defining shapes as a nested tuple, it becomes easy: see rule (S-Get).
The shape of the result of the iteration construct (reduce) requires the shape of the state expression

to remain the same across iterations. Otherwise the compiler produce an error, as it is shown in rule
(S-Reduce).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



Using Destination-Passing Style to Compile a Functional Language into Efficient Low-Level Code • 1:9

SJeK = s

(S-App) SJe0 e1 ... ek K = SJe0K SJe1K ... SJekK
(S-Abs) SJλx1: T1, ..., xk: Tk. e K = λx1

shp: ST JT1K, ..., xk
shp: ST JTkK. SJeK

(S-Var) SJxK = xshp

(S-Let) SJlet x = e1 in e2K = let xshp = SJe1K in SJe2K

(S-If) SJif e1 then e2 else e3K =
{
SJe2K SJe2K�SJe3K
Compilation Error! SJe2K�SJe3K

(S-ExpNum) e: Num ` SJeK = ◦
(S-ExpBool) e: Bool ` SJeK = ◦
(S-ValCard) SJNK = N
(S-AddCard) SJe0 +

c e1K = SJe0K +c SJe1K
(S-MulCard) SJe0 ∗c e1K = SJe0K ∗c SJe1K
(S-Build) SJbuild e0 e1K = (SJe0K, (SJe1K ◦))
(S-Get) SJe0[e1]K = snd SJe0K
(S-Length) SJlength e0K = fst SJe0K

(S-Reduce) SJ reduce e1 e2 e3 K =
{
SJe2K ∀n.SJe1 e2 nK�SJe2K
Compilation Error! otherwise

ST JTK = S

(ST-Fun) ST JT1, T2, ..., Tk ⇒ M K = ST JT1K, ST JT2K, ..., ST JTkK ⇒ ST JMK
(ST-Num) ST JNumK = Card
(ST-Bool) ST JBoolK = Card
(ST-Card) ST JCardK = Card
(ST-Vector) ST JArray<M>K = (Card,ST JMK)

Fig. 7. Shape Translation of F̃

The other rules are straightforward. The key point is this: by translating every in-scope variable,
including functions, into a pair of variables, we can give a compositional account of shape translation,
even in a higher order language.

3.4 An example
Using this translation, the running example at the beginning of Section 3.2 is translated as follows:

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:10 • Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton-Jones, and Dimitrios Vytiniotis

alloc ◦ (λr. t1) { t1[r 7→ •] Empty Allocation
alloc t1 (λr1. { alloc (t1 +

c t2) (λr1.
alloc t2 (λr2. let r2 = stgOff r1 t1 in Allocation Merging
t3 )) t3 )

alloc t1 (λr. t2) { t2 if r < FV (t2) Dead Allocation
λx. alloc t1 (λr. t2) { alloc t1 (λr. λx. t2) if x < FV (t1) Allocation Hoisting
bytes ◦ { ◦
bytes (◦, ◦) { ◦
bytes (N, ◦) { NUM_BYTES ∗c N +c HDR_BYTES
bytes (N, s) { (bytes s) ∗c N +c HDR_BYTES

Fig. 8. Simplification rules of DPS-F̃

f = λr0 vec1 vec2 vec1shp vec2shp.
let tmpshp = vectorAddshp vec1shp vec2shp in
alloc (bytes tmpshp) (λr1.

let tmp =
vectorAdd r1 vec1 vec2

vec1shp vec2shp in
vectorNorm r0 tmp tmpshp

)

The shape translations of some F̃ functions from Figure 3 are as follows:

let vectorRangeshp = λnshp. (nshp, (λishp. ◦) ◦)
let vectorMap2shp = λv1shp v2shp fshp.

(fst v1shp, (λishp. ◦) ◦)
let vectorAddshp = λv1shp v2shp.
vectorMap2shp v1shp v2shp (λashp bshp. ◦)

let vectorNormshp = λvshp. ◦

3.5 Simplification
As is apparent from the examples in the previous section, code generated by the translation has many
optimisation opportunities. This optimisation, or simplification, is applied in three stages: 1) F̃ expressions,
2) translated Shape-F̃ expressions, and 3) translated DPS-F̃ expressions. In the first stage, F̃ expressions
are simplified to exploit fusion opportunities that remove intermediate arrays entirely. Furthermore, other
compiler transformations such as constant folding, dead-code elimination, and common-subexpression
elimination are also applied at this stage.
In the second stage, the Shape-F̃ expressions are simplified. The simplification process for these

expressions mainly involves partial evaluation. By inlining all shape functions, and performing β-
reduction and constant folding, shapes can often be computed at compile time, or at least can be greatly
simplified. For example, the shape translations presented in Section 3.3 after performing simplification
are as follows:

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



Using Destination-Passing Style to Compile a Functional Language into Efficient Low-Level Code • 1:11

let vectorRangeshp = λnshp. (nshp, ◦)
let vectorMap2shp = λv1shp v2shp fshp. v1shp

let vectorAddshp = λv1shp v2shp. v1shp

let vectorNormshp = λvshp. ◦

The final stage involves both partially evaluating the shape expressions in DPS-F̃ and simplifying
the storage accesses in the DPS-F̃ expressions. Figure 8 demonstrates simplification rules for storage
accesses. The first two rules remove empty allocations and merge consecutive allocations, respectively.
The third rule removes a dead allocation, i.e. an allocation for which its storage is never used. The fourth
rule hoists an allocation outside an abstraction whenever possible. The benefit of this rule is amplified
more in the case that the storage is allocated inside a loop (build or reduce). Note that none of these
transformation rules are available in F̃, due to the lack of explicit storage facilities.

After applying the presented simplification process, out working example is translated to the following
program:

f = λr0 vec1 vec2 vec1shp vec2shp.
alloc (bytes vec1shp) (λr1.

let tmp =
vectorAdd r1 vec1 vec2

vec1shp vec2shp in
vectorNorm r0 tmp vec1shp

)

In this program, there is no shape computation at runtime.

3.6 Properties of shape translation
The target language of shape translation is a subset of DPS-F̃ called Shape-F̃. The syntax of the subset
is given in Figure 9. It includes nested pairs, of statically-known depth, to represent shapes, but it does
not include vectors. That provides an important property for Shape-F̃ as follows:

Theorem 1. All expressions resulting from shape translation, do not require any heap memory
allocation.

Proof. All the non-shape expressions have either scalar or function type. As it is shown in Figure 7 all
scalar type expressions are translated into zero cardinality (◦), which can be stack-allocated. On the
other hand, the function type expressions can also be stack allocated. This is because we avoid partial
application. Hence, the captured environment in a closure does not escape its scope. Hence, the closure
environment can be stack allocated. Finally, the last case consists of expressions which are the result of
shape translation for vector expressions. As we know the number of dimensions of the original vector
expressions, the translated expressions are tuples with a known-depth, which can be easily allocated on
stack.

Next, we show the properties of our translation algorithm. First, let us investigate the impact of shape
translation on F̃ types. For array types, we need to represent the shape in terms of the shape of each
element of the array, and the cardinality of the array. We encode this information as a tuple. For scalar
type and cardinality type expressions, the shape is a cardinality expression. This is captured in the
following theorem:

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:12 • Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton-Jones, and Dimitrios Vytiniotis

s ::= s s | λx. s | x | P | c | let x = s in s
P ::= ◦ | N | (N,P)
c ::= vecShp | fst | snd | +c | ∗c
S ::= S⇒ Shp | Shp

Shp ::= Card | (Card * Shp)

Fig. 9. Shape-F̃ syntax, which is a subset of the syntax of DPS-F̃ presented in Figure 4.

Theorem 2. If the expression e in F̃ has the type T, then SJeK has type ST JTK.

Proof. Can be proved by induction on the translation rules from F̃ to Shape-F̃.
In order to have a simpler shape translation algorithm as well as better guarantees about the expressions

resulting from shape translation, two important restrictions are applied on F̃ programs.
(1) The accumulating function which is used in the reduce operator should preserve the shape of

the initial value. Otherwise, converting the result shape into a closed-form polynomial expression
requires solving a recurrence relation.

(2) The shape of both branches of a conditional should be the same.
These two restrictions simplify the shape translation as is shown in Figure 7.

Theorem 3. All expressions resulting from shape translation require linear computation time with
respect to the size of terms in the original F̃ program.

Proof. This can be proved in two steps. First, translating a F̃ expression into its shape expression, leads
to an expression with smaller size. This can be proved by induction on translation rules. Second, the
run time of a shape expression is linear in terms of its size. An important case is the reduce construct,
which by applying the mentioned restrictions, we ensured their shape can be computed without any need
for recursion.

Finally, we believe that our translation is correct based on our successful implementation. However, we
leave a formal semantics definition and the proof of correctness of the transformation as future work.

4 IMPLEMENTATION
4.1 F̃ Language
We implemented F̃ as a subset of F#. Hence F̃ programs are normal F# programs. Furthermore,
the built-in constants (presented in Figure 2) are defined as a library in F# and all library functions
(presented in Figure 3) are implemented using these built-in constants. If a given expression is in the
subset supported by F̃, the compiler accepts it.

For implementing the transformations presented in the previous sections, instead of modifying the F#
compiler, we use F# quotations [31]. Note that there is no need for the user to use F# quotations in
order to implement a F̃ program. The F# quotations are only used by the compiler developer in order to
implement transformation passes.

Although F̃ expressions are F# expressions, it is not possible to express memory management constructs
used by DPS-F̃ expressions using the F# runtime. Hence, after translating F̃ expressions to DPS-F̃, we
compile down the result program into a programming language which provides memory management
facilities, such as C. The generated C code can either be used as kernels by other C programs, or invoked
in F# as a native function using inter-operatorability facilities provided by Common Language Runtime
(CLR).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



Using Destination-Passing Style to Compile a Functional Language into Efficient Low-Level Code • 1:13

Next, we discuss why we choose C and how the C code generation works.

4.2 C Code Generation
There are many programming languages which provide manual memory management. Among them we
are interested in the ones which give us full control on the runtime environment, while still being easy to
debug. Hence, low-level imperative languages such as C and C++ are better candidates than LLVM
mainly because of debugging purposes.
One of the main advantages of DPS-F̃ is that we can generate idiomatic C from it. More specifically,

the generated C code is similar to a handwritten C program. This is because, we can manage the memory
in a stack fashion. The translation from DPS-F̃ programs into C code is quite straightforward.

As our DPS encoded programs are using the memory in a stack fashion, the memory could be managed
more efficiently. More specifically, we first allocate a specific amount of buffer in the beginning. Then,
instead of using the standard malloc function, we bump-allocate from our already allocated buffer.
Hence, in most cases allocating memory is only a pointer arithmetic operation to advance the pointer to
the last allocated element of the buffer. In the cases that the user needs more than the amount which is
allocated in the buffer, we need to double the size of the buffer. Furthermore, memory deallocation is
also very efficient in this scheme. Instead of invoking the free function, we need to only decrement the
pointer to the last allocated storage.

We compile lambdas by performing closure conversion. Because DPS-F̃ does not allow partial applica-
tion, the environment captured by a closure can be stack allocated.
As mentioned in Section 2, polymorphism is not allowed except for some built-in constructs in the

language (e.g. build and reduce). Hence, all the usages of these constructs are monomorphic, and the C
code generator knows exactly which code to generate for them. Furthermore, the C code generator does
not need to perform the closure conversion for the lambdas passed to the built-in constructs. Instead,
it can generate an efficient for-loop in place. As an example, the generated C code for a running sum
function of F̃ is:

double vector_sum(vector v) {
double sum = 0;
for (index idx = 0; idx < v->length; idx++) {

sum = sum + v->elements[idx];
}
return sum;

}

Finally, for the alloc construct in DPS-F̃, the generated C code consists of the following three parts.
First, a memory allocation statement is generated which allocates the given amount of storage. Second, the
corresponding body of code which uses the allocated storage is generated. Finally, a memory deallocation
statement is generated which frees the allocated storage. The generated C code for our working example is:

double f(storage r0, vector vec1_dps, vector vec2_dps,
vec_shape vec1_shp, vec_shape vec2_shp) {

storage r1 = malloc(vector_bytes(vec1_shp));
vector tmp_dps =

vector_add_dps(r1, vec1_dps, vec2_dps, vec1_shp, vec2_shp);
double result = vector_norm_dps(r0, tmp_dps, vec1_shp);
free(r1);
return result;

}

We use our own implementation of malloc and free for bump allocation.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:14 • Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton-Jones, and Dimitrios Vytiniotis

(a) Runtime performance comparison of dif-
ferent approaches on adding three vectors of
100 elements for one million times.

(b) Memory consumption comparison of different approaches on
adding three vectors of 100 elements by varying the number of
iterations. All the invisible lines are hidden under the bottom line.

(c) Runtime performance comparison of dif-
ferent approaches on cross product of two
vectors of three elements for one million times.

(d) Memory consumption comparison of different approaches on cross
product of two vectors of three elements by varying the number of
iterations.

Fig. 10. Experimental Results for Micro Benchmarks

5 EXPERIMENTAL RESULTS
For the experimental evaluation, we use an iMac machine equipped with an Intel Core i5 CPU running at
2.7GHz, 32GB of DDR3 RAM at 1333Mhz. The operating system is OS X 10.10.5. We use Mono 4.6.1 as
the runtime system for F# programs and CLang 700.1.81 for compiling the C++ code and generated C.
Throughout this section, we compare the performance and memory consumption of the following

alternatives:

• F#: Using the array operations (e.g. map) provided in the standard library of F# to implement
vector operations.
• CL: Leaky C code, which is the generated C code from F̃, using malloc to allocate vectors, never
calling free.
• CG: C code using Boehm GC, which is the generated C code from F̃, using GC_malloc of Boehm
GC to allocate vectors.
• CLF: CL + Fused Loops, performs deforestation and loop fusion before CL.
• D: DPS C code using system-provided malloc/free, translates F̃ programs into DPS-F̃ before
generating C code. Hence, the generated C code frees all allocated vectors. In this variant, the
malloc and free functions are used for memory management.
• DF: D + Fused Loops, which is similar to the previous one, but performs deforestation before
translating to DPS-F̃.
• DFB: DF + Buffer Optimizations, which performs the buffer optimizations described in Section 3.5
(such as allocation hoisting and merging) on DPS-F̃ expressions.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



Using Destination-Passing Style to Compile a Functional Language into Efficient Low-Level Code • 1:15

• DFBS: DFB using stack allocator, same as DFB, but using bump allocation for memory man-
agement, as previously discussed in Section 4.2. This is the best C code we generate from
F̃.
• C++: Idiomatic C++, which uses an handwritten C++ vector library, depending on C++14
move construction and copy elision for performance, with explict programmer indication of
fixed-size (known at compile time) vectors, permitting stack allocation.
• E++: Eigen C++, which uses the Eigen [13] library which is implemented using C++ expression
templates to effect loop fusion and copy elision. Also uses explicit sizing for fixed-size vectors.

First, we investigate the behavior of several variants of generated C code for two micro benchmarks.
More specifically we see how DPS improves both performance and memory consumption in comparison
with an F# version. The behavior of the generated DPS code is very similar to manually handwritten
C++ code and the Eigen library.

Then, we demonstrate the benefit of using DPS for some real-life computer vision and machine learning
workloads motivated in [28]. Based on the results for these workloads, we argue that using DPS is a great
choice for generating C code for numerical workloads, such as computer vision algorithms, running on
embedded devices with a limited amount of memory available.

5.1 Micro Benchmarks
Figure 10 shows the experimental results for micro benchmarks, one adding three vectors, the second
using vector cross product.

add3. : vectorAdd(vectorAdd(vec1, vec2), vec3)
in which all the vectors contain 100 elements. This program is run one million times in a loop, and
timing results are shown in Figure 10a. In order to highlight the performance differences, the figure uses
a logarithmic scale on its Y-axis. Based on these results we make the following observations. First, we
see that all C and C++ programs are outperforming the F# program, except the one which uses the
Boehm GC. This shows the overhead of garbage collection in the F# runtime environment and Boehm
GC. Second, loop fusion has a positive impact on performance. This is because this program involves
creating an intermediate vector (the one resulting from addition of vec1 and vec2). Third, the generated
DPS C code which uses buffer optimizations (DFB) is faster than the one without this optimization (DF).
This is mainly because the result vector is allocated only once for DFB whereas it is allocated once per
iteration in DF. Finally, there is no clear advantage for C++ versions. This is mainly due to the fact that
the vectors have sizes not known at compile time, hence the elements are not stack allocated. The Eigen
version partially compensates this limitation by using vectorized operations, making the performance
comparable to our best generated DPS C code.

The peak memory consumption of this program for different approaches is shown in Figure 10b. This
measurement is performed by running this program by varying number of iterations. Both axes use
logarithmic scales to better demonstrate the memory consumption difference. As expected, F# uses
almost the same amount of memory over the time, due to garbage collection. However, the runtime
system sets the initial amount to 15MB by default. Also unsurprisingly, leaky C uses memory linear in
the number of iterations, albeit from a lower base. The fused version of leaky C (CLF) decreases the
consumed memory by a constant factor. Finally, DPS C, and C++ use a constant amount of space which
is one order of magnitude less than the one used by the F# program, and half the amount used by the
generated C code using Boehm GC.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:16 • Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton-Jones, and Dimitrios Vytiniotis

(a) Runtimes: Bundle Adjustment (b) Memory consumption: Bundle Adjustment

(c) Runtimes: GMM (d) Memory consumption: GMM

(e) Runtimes: Hand Tracking (f) Memory consumption: Hand Tracking

Fig. 11. Experimental Results for Computer Vision and Machine Learning Workloads

cross. : vectorCross(vec1, vec2)
This micro-benchmark is 1 million runs in which the two vectors contain 3 elements. Timing results are
in Figure 10c. We see that the F# program is faster than the generated leaky C code, perhaps because
garbage collection is invoked less frequently than in add3. Overall, in both cases, the performance of
F# program and generated leaky C code is very similar. In this example, loop fusion does not have any
impact on performance, as the program contains only one operator. As in the previous benchmark, all
variants of generated DPS C code have a similar performance and outperform the generated leaky C code
and the one using Boehm GC, for the same reasons. Finally, both handwritten and Eigen C++ programs
have a similar performance to our generated C programs. For the case of this program, both C++
libraries provide fixed-sized vectors, which results in stack allocating the elements of the two vectors. This
has a positive impact on performance. Furthermore, as there is no SIMD version of the cross operator,
we do not observe a visible advantage for Eigen.

Finally, we discuss the memory consumption experiments of the second program, which is shown in
Figure 10d. This experiment leads to the same observation as the one for the first program. However, as
the second program does not involve creating any intermediate vector, loop fusion does not improve the
peak memory consumption.
The presented micro benchmarks show that our DPS generated C code improves both performance

and memory consumption by an order of magnitude in comparison with an equivalent F# program. Also,
the generated DPS C code promptly deallocates memory which makes the peak memory consumption

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



Using Destination-Passing Style to Compile a Functional Language into Efficient Low-Level Code • 1:17

constant over the time, as opposed to a linear increase of memory consumption of the generated leaky C
code. In addition, by using bump allocators the generated DPS C code can improve performance as well.
Finally, we see that the generated DPS C code behaves very similarly to both handwritten and Eigen
C++ programs.
Next, we investigate the performance and memory consumption of real-life workloads.

5.2 Computer Vision and Machine Learning Workloads
Bundle Adjustment. [35] is a computer vision problem which has many applications. In this problem,

the goal is to optimize several parameters in order to have an accurate estimate of the projection of a 3D
point by a camera. This is achieved by minimizing an objective function representing the reprojection
error. This objective function is passed to a nonlinear minimizer as a function handle, and is typically
called many times during the minimization.

One of the core parts of this objective function is the project function which is responsible for finding
the projected coordinates of a 3D point by a camera, including a model of the radial distortion of the
lens. The F̃ implementation of this method is given in Figure 12.

Figure 11a shows the runtime of different approaches after running project ten million times. First, the
F# program performs similarly to the leaky generated C code and the C code using Boehm GC. Second,
loop fusion improves speed fivefold. Third, the generated DPS C code is slower than the generated leaky
C code, mainly due to costs associated with intermediate deallocations. However, this overhead is reduced
by using bump allocation and performing loop fusion and buffer optimizations. Finally, we observe that
the best version of our generated DPS C code marginally outperforms both C++ versions.

The peak memory consumption of different approaches for Bundle Adjustment is shown in Figure 11b.
First, the F# program uses three orders of magnitude less memory in comparison with the generated leaky
C code, which remains linear in the number of calls. This improvement is four orders of magnitude in the
case of the generated C code using Boehm GC. Second, loop fusion improves the memory consumption
of the leaky C code by an order of magnitude, due to removing several intermediate vectors. Finally,
all generated DPS C variants as well as C++ versions consume the same amount of memory. The peak
memory consumption of is an order of magnitude better than the F# baseline.

The Gaussian Mixture Model. is a workhorse machine learning tool, used for computer vision applications
such as image background modelling and image denoising, as well as semi-supervised learning.
In GMM, loop fusion can successfully remove all intermediate vectors. Hence, there is no difference

between CL and CLF, or between DS and DSF, in terms of both performance and peak memory
consumption as can be observed in Figure 11c and Figure 11d. Both C++ libraries do not support the
loop fusion needed for GMM. Hence, they behave three orders of magnitude worse than our fused and
DPS generated C code.

Due to the cost for performing memory allocation (and deallocation for DPS) at each iteration, the F#
program, the leaky C code, and the generated DPS C code exhibit a worse performance than the fused
and stack allocated versions. Furthermore, as the leaky C code does not deallocate the intermediate
vectors, it monotonically increases the consumed memory.

Hand tracking. is a computer vision/computer graphics workload [32] that includes matrix-matrix
multiplies, and numerous combinations of fixed- and variable-sized vectors and matrices. Figure 11e
shows performance results of running one of the main functions of hand-tracking for 1 million times. As in
the cross micro-benchmark we see no advantage for loop fusion, because in this function the intermediate
vectors have multiple consumers. Similar to previous cases generating DPS C code improves runtime
performance, which is improved even more by using bump allocation and performing loop fusion and

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:18 • Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton-Jones, and Dimitrios Vytiniotis

let radialDistort = λ(radical: Vector) (proj: Vector).
let rsq = vectorNorm proj
let L = 1.0 + radical.[0] * rsq + radical.[1] * rsq * rsq
vectorSMul proj L

let rodriguesRotate = λ(rotation: Vector) (x: Vector).
let sqtheta = vectorNorm rotation
if sqtheta != 0. then

let theta = sqrt sqtheta
let thetaInv = 1.0 / theta
let w = vectorSMul rotation thetaInv
let wCrossX = vectorCross w x
let tmp = (vectorDot w x) * (1.0 - (cos theta))
let v1 = vectorSMul x (cos theta)
let v2 = vectorSMul wCrossX (sin theta)
vectorAdd (vectorAdd v1 v2) (vectorSMul w tmp)

else
vectorAdd x (vectorCross rotation x)

let project = λ(cam: Vector) (x: Vector).
let rotation = vectorSlice cam 0 2
let center = vectorSlice cam 3 5
let radical = vectorSlice cam 9 10
let Xcam =
rodriguesRotate rotation (vectorSub x center)

let distorted =
radialDistort radical (
vectorSMul (
vectorSlice Xcam 0 1

) (1.0/Xcam.[2]))
vectorAdd (vectorSlice cam 7 8) (
vectorSMul distorted cam.[6]

)

Fig. 12. Bundle Adjustment functions in F̃.

buffer optimizations. However, in this case the idiomatic C++ version outperforms the generated DPS C
code. Figure 11f shows that DPS generated programs consume an order of magnitude less memory than
the F# baseline, equal to the C++ versions.

6 RELATED WORK
6.1 Programming Languages without GC
Functional programming languages without using garbage collection dates back to Linear Lisp [1].
However, most functional languages (dating back to the Lisp around 1959) use garbage collection for
managing memory.
Region-based memory management was first introduced in ML [33] and then in an extended version

of C, called Cyclone [12], as an alternative or complementary technique to in order to remove the need

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



Using Destination-Passing Style to Compile a Functional Language into Efficient Low-Level Code • 1:19

for runtime garbage collection. This is achieved by allocating memory regions based on the liveness of
objects. This approach improves both performance and memory consumption in many cases. However,
in many cases the size of the regions is not known, whereas in our approach the size of each storage
location is computed using the shape expressions. Also, in practice there are cases in which one needs to
combine this technique with garbage collection [14], as well as cases in which the performance is still
not satisfying [2, 34]. Furthermore, the complexity of region inference, hinders the maintenance of the
compiler, in addition to the overhead it causes for compilation time.
Safe [23, 24] suggests a simpler region inference algorithm by restricting the language to a first-order

functional language. Also, linear regions [8] relax the stack discipline restriction on region-based memory
management. This is because of certain usecases, which use unbounded amount of memory due to
recursion. A Haskell implementation of this approach is given in [20]. The restricted form of recursion
allowed by F̃ means that we never face similar issues. Hence, we choose to always follow the stack
discipline for memory management.

6.2 Estimation of Memory Consumption
One can use type systems for estimating memory consumption. Hofmann and Jost [17] enrich the
type system with certain annotations and uses linear programming for the heap consumption inference.
Another approach is to use sized types [37] for the same purpose.

Size slicing [16] uses a technique similar to ours for inferring the shape of arrays in the Futhark
programming language. However, in F̃ we guarantee that shape inference is simplified and is based only
on size computation, whereas in their case, they rely on compiler optimizations for its simplification and
in some cases it can fall back to inefficient approaches which in the worst case could be as expensive as
evaluating the original expression [17]. The FISh programming language [19] also makes shape information
explicit in programs, and resolves the shapes at compilation time by using partial evaluation.
Clinger [4] explores different space efficiency classes. Based on the proposed formalism he defines

formally what it means for a language to properly handle tail recursion. Next, we see related work on
optimizing tail recursive calls.

6.3 Optimizing Tail Calls
Destination-passing style was originally introduced in [21], then was encoded functionally in [22] by using
linear types [36, 40]. Walker and Morrisett [41] use extensions to linear type systems to support aliasing
which is avoided in vanilla linear type systems. The idea of destination-passing style has many similarities
to tail-recursion modulo cons [9, 38].

6.4 Array Programming Languages
APL [18] can be considered as the first array programming language. Futhark [15, 16] and SAC [11] are
functional array programming languages. One interesting property of such languages is the support for
fusion, which is achieved in F̃ by certain rewrite rules. However, as this topic is out of the scope of this
paper, we leave more discussion for the future work.

There are many domain-specific languages (DSLs) for numerical workloads such as Opt [6], Halide [26],
Diderot [3], and OptiML [29]. All these DSLs generate parallel code from their high-level programs.
Furthermore, Halide [26] exploits the memory hierarchy by making tiling and scheduling decisions, similar
to Spiral [25] and LGen [27]. Although both parallelism and improving use of a memory hierarchy are
orthogonal concepts to translation into DPS, they are still interesting directions for F̃.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:20 • Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton-Jones, and Dimitrios Vytiniotis

REFERENCES
[1] H. G. Baker. Lively linear lisp: ‘look ma, no garbage!’. ACM Sigplan notices, 27(8):89–98, 1992.
[2] L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to Von Neumann machines via region representation

inference. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’96, pages 171–183, New York, NY, USA, 1996. ACM. ISBN 0-89791-769-3.

[3] C. Chiw, G. Kindlmann, J. Reppy, L. Samuels, and N. Seltzer. Diderot: A parallel DSL for Image Analysis and
Visualization. In Acm sigplan notices, volume 47, pages 111–120. ACM, 2012.

[4] W. D. Clinger. Proper tail recursion and space efficiency. pages 174–185. ACM Press, 1998.
[5] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream Fusion. From Lists to Streams to Nothing at All. In ICFP ’07,

2007.
[6] Z. DeVito, M. Mara, M. Zollhöfer, G. Bernstein, J. Ragan-Kelley, C. Theobalt, P. Hanrahan, M. Fisher, and M. Nießner.

Opt: A Domain Specific Language for Non-linear Least Squares Optimization in Graphics and Imaging. arXiv preprint
arXiv:1604.06525, 2016.

[7] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with continuations. In ACM Sigplan
Notices, volume 28, pages 237–247. ACM, 1993.

[8] M. Fluet, G. Morrisett, and A. Ahmed. Linear regions are all you need. In European Symposium on Programming,
pages 7–21. Springer, 2006.

[9] D. Friedman and S. Wise. Unwinding stylized recursions into iterations. Comput. Sci. Dep., Indiana University,
Bloomington, IN, Tech. Rep, 19, 1975.

[10] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation. FPCA, pages 223–232. ACM, 1993.
[11] C. Grelck and S.-B. Scholz. SAC—A functional array language for efficient multi-threaded execution. International

Journal of Parallel Programming, 34(4):383–427, 2006. ISSN 1573-7640.
[12] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory management in cyclone.

In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation, PLDI
’02, pages 282–293, New York, NY, USA, 2002. ACM. ISBN 1-58113-463-0.

[13] G. Guennebaud, B. Jacob, et al. Eigen. URl: http://eigen. tuxfamily. org, 2010.
[14] N. Hallenberg, M. Elsman, and M. Tofte. Combining Region Inference and Garbage Collection. In Proceedings of the

ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation, PLDI ’02, pages 141–152,
New York, NY, USA, 2002. ACM. ISBN 1-58113-463-0. doi: 10.1145/512529.512547. URL http://doi.acm.org/10.
1145/512529.512547.

[15] T. Henriksen and C. E. Oancea. Bounds checking: An instance of hybrid analysis. In Proceedings of ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for Array Programming, ARRAY’14, pages 88:88–
88:94, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2937-8.

[16] T. Henriksen, M. Elsman, and C. E. Oancea. Size Slicing: A hybrid approach to size inference in Futhark. In
Proceedings of the 3rd ACM SIGPLAN Workshop on Functional High-performance Computing, FHPC ’14, pages
31–42, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3040-4.

[17] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional programs. In Proceedings of
the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’03, pages 185–197,
New York, NY, USA, 2003. ACM. ISBN 1-58113-628-5.

[18] K. E. Iverson. A Programming Language. In Proceedings of the May 1-3, 1962, spring joint computer conference,
pages 345–351. ACM, 1962.

[19] C. B. Jay. Programming in FISh. International Journal on Software Tools for Technology Transfer, 2(3):307–315,
1999.

[20] O. Kiselyov and C.-c. Shan. Lightweight monadic regions. In ACM Sigplan Notices, volume 44, pages 1–12. ACM,
2008.

[21] J. R. Larus. Restructuring symbolic programs for concurrent execution on multiprocessors. PhD thesis, 1989.
[22] Y. Minamide. A functional representation of data structures with a hole. In In Conference Record of the 25th

Symposium on Principles of Programming Languages (POPL ’98, pages 75–84, 1998.
[23] M. Montenegro, R. Peña, and C. Segura. A type system for safe memory management and its proof of correctness. In

Proceedings of the 10th international ACM SIGPLAN conference on Principles and practice of declarative programming,
pages 152–162. ACM, 2008.

[24] M. Montenegro, R. Peña, and C. Segura. A simple region inference algorithm for a first-order functional language. In
International Workshop on Functional and Constraint Logic Programming, pages 145–161. Springer, 2009.

[25] M. Puschel, J. M. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer, J. Xiong, F. Franchetti, A. Gacic,
Y. Voronenko, et al. SPIRAL: code generation for DSP transforms. Proceedings of the IEEE, 93(2):232–275, 2005.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://doi.acm.org/10.1145/512529.512547
http://doi.acm.org/10.1145/512529.512547


Using Destination-Passing Style to Compile a Functional Language into Efficient Low-Level Code • 1:21

[26] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe. Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines. ACM SIGPLAN Notices, 48(6):
519–530, 2013.

[27] D. G. Spampinato and M. Püschel. A basic linear algebra compiler for structured matrices. In CGO ’16. ACM.
[28] F. Srajer, Z. Kukelova, A. Fitzgibbon, A. G. Schwing, M. Pollefeys, and T. Pajdla. A benchmark of selected algorithmic

differentiation tools on some problems in machine learning and computer vision. Automatic Differentiation, 2016.
[29] A. Sujeeth, H. Lee, K. Brown, T. Rompf, H. Chafi, M. Wu, A. Atreya, M. Odersky, and K. Olukotun. OptiML:

An Implicitly Parallel Domain-Specific Language for Machine Learning. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 609–616, 2011.

[30] J. Svenningsson. Shortcut fusion for accumulating parameters & zip-like functions. ICFP ’02, pages 124–132. ACM,
2002. ISBN 1-58113-487-8.

[31] D. Syme. Leveraging .NET Meta-programming Components from F#: Integrated Queries and Interoperable Hetero-
geneous Execution. In Proceedings of the 2006 Workshop on ML, ML ’06, pages 43–54, New York, NY, USA, 2006.
ACM. ISBN 1-59593-483-9. doi: 10.1145/1159876.1159884. URL http://doi.acm.org/10.1145/1159876.1159884.

[32] J. Taylor, R. Stebbing, V. Ramakrishna, C. Keskin, J. Shotton, S. Izadi, A. Hertzmann, and A. Fitzgibbon. User-specific
hand modeling from monocular depth sequences. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 644–651, 2014.

[33] M. Tofte and J.-P. Talpin. Region-based memory management. Information and Computation, 132(2):109 – 176, 1997.
ISSN 0890-5401.

[34] M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg. A retrospective on region-based memory management. Higher
Order Symbol. Comput., 17(3):245–265, Sept. 2004. ISSN 1388-3690.

[35] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle adjustment—a modern synthesis. In
International workshop on vision algorithms, pages 298–372. Springer, 1999.

[36] D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In Proceedings of the seventh international conference on
Functional programming languages and computer architecture, pages 1–11. ACM, 1995.

[37] P. B. Vasconcelos. Space cost analysis using sized types. PhD thesis, University of St Andrews, 2008.
[38] P. Wadler. Listlessness is better than laziness: Lazy evaluation and garbage collection at compile-time. In Proceedings

of the 1984 ACM Symposium on LISP and functional programming, pages 45–52. ACM, 1984.
[39] P. Wadler. Deforestation: Transforming programs to eliminate trees. In ESOP’88, pages 344–358. Springer, 1988.
[40] P. Wadler. Linear types can change the world. In IFIP TC, volume 2, pages 347–359. Citeseer, 1990.
[41] D. Walker and G. Morrisett. Alias types for recursive data structures. In International Workshop on Types in

Compilation, pages 177–206. Springer, 2000.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://doi.acm.org/10.1145/1159876.1159884

	Abstract
	1 Introduction
	2 "0365F
	2.1 Syntax and types of "0365F
	2.2 Fusion

	3 Destination-Passing Style
	3.1 The DPS-"0365F language
	3.2 Translation from "0365F to DPS-"0365F
	3.3 Shape translation
	3.4 An example
	3.5 Simplification
	3.6 Properties of shape translation

	4 Implementation
	4.1 "0365F Language
	4.2 C Code Generation

	5 Experimental Results
	5.1 Micro Benchmarks
	5.2 Computer Vision and Machine Learning Workloads

	6 Related Work
	6.1 Programming Languages without GC
	6.2 Estimation of Memory Consumption
	6.3 Optimizing Tail Calls
	6.4 Array Programming Languages

	References

