Under consideration for publication in Math. Struct. in Comp. Science

Equational Properties of Mobile Ambients

Andrew D. Gordon, Microsoft Research

Luca Cardelli, Microsoft Research

Received Decemnber 2001

The ambient calculus is a process calculus for describing mobile computation. We
develop a theory of Morris-style contextual equivalence for proving properties of mobile
ambients. We prove a context lemma that allows derivation of contextual equivalences by
considering contexts of a particular limited form, rather than all arbitrary contexts. We
give an activity lemma that characterizes the possible interactions between a process and
a context. We prove several examples of contextual equivalence. The proofs depend on
characterizing reductions in the ambient calculus in terms of a labelled transition system.

1. Motivation

This paper develops tools for proving equations in the ambient calculus.

In earlier work (Cardelli and Gordon 2000b), we introduced the ambient calculus by
adding ambients—mobile, hierarchical protection domains—to a framework for concur-
rency extracted from the w-calculus (Milner 1999; Sangiorgi and Walker 2001). The
ambient calculus is an abstract model of mobile computation, including both mobile
software agents and mobile hardware devices. The calculus models access control as well
as mobility. For example, a process may move into or out of a particular ambient only if
it possesses the appropriate capability.

This paper focuses on behavioural equivalence of mobile ambients. In particular, we
study a form of Morris’ contextual equivalence (Morris 1968) for ambients and develop
some proof techniques. Our motivation is to prove a variety of equations. Some of these
equations express and confirm some of the informal principles we had in mind when
designing the calculus. As in other recent work (Abadi, Fournet, and Gonthier 1998;
Abadi and Gordon 1999), some of the equations establish security properties of systems
modelled within the calculus.

The inclusion of primitives for mobility makes the theory of the ambient calculus more
complex than that of its ancestor, the m-calculus. The main contribution of this paper is
to demonstrate that some standard tools—a labelled transition system, a context lemma,
and an activity lemma—may be recast in the setting of the ambient calculus. Moreover,
the paper introduces a new technique—based on what we call the hardening relation—for
factoring the definition of the labelled transition system into a set of rules that identify
the individual processes participating in a transition, and a set of rules that express how
the participant processes interact.

A.D. Gordon and L. Cardelli 2

We begin, in Section 2, by reviewing the syntax and reduction semantics of the ambient
calculus. The semantics consists of a structural congruence relation P = @) (which says
that P may be structurally rearranged to yield @) and a reduction relation P — @
(which says that P may evolve in one step of computation to yield @).

We introduce contextual equivalence P ~ () in Section 3. We define a predicate, P | n,
which means intuitively that an observer may eventually detect an ambient named n at
the top-level of the process P. Then we define P ~) to mean that, whenever P and @)
are placed within an arbitrary context constructed from the syntax of the calculus, any
observation made of P may also be made of (), and vice versa. We give examples of pairs
of processes that are equivalent and examples of pairs that are inequivalent.

In Section 4, we describe some techniques for proving contextual equivalence. We in-
troduce a second operational semantics for the ambient calculus based on a hardening
relation and a labelled transition system. The hardening relation identifies the subpro-
cesses of a process that may participate in a computation step. We use the hardening
relation both for defining the labelled transition system and for characterizing whether
an ambient of a particular name is present at the top-level of a process. Our first result,
Theorem 9, asserts that the 7-labelled transition relation and the reduction relation are
the same, up to structural congruence. So our two operational semantics are equivalent.
The labelled transition system is useful for analyzing the possible evolution of a pro-
cess, since we may read off the possible labelled transitions of a process by inspecting
its syntactic structure. Our second result, Theorem 12, is a context lemma that allows
us to prove contextual equivalence by considering a limited set of contexts, known as
harnesses, rather than all arbitrary contexts. A harness is a context with a single hole
that is enclosed only within parallel compositions, restrictions, and ambients. The third
result of this section, Theorem 15, is an activity lemma that elaborates the ways in which
a reduction may be derived when a process is inserted into a harness: either the process
reduces by itself, or the harness reduces by itself, or there is an interaction between the
harness and the process.

We exercise these proof techniques on examples in Section 5, and conclude in Section 6.
Certain lemmas, propositions, and theorems are stated without proof in the main text.
Appendix A contains the omitted proofs.

Earlier versions of this article have appeared as a conference paper and as a technical
report (Gordon and Cardelli 1999). The technical report includes some details omitted
from proofs in Appendix A.

2. The Ambient Calculus (Review)

We briefly describe the syntax and semantics of the calculus. We assume there are infinite
sets of mames and wvariables, ranged over by m, n, p, q, and z, y, z, respectively. The
syntax of the ambient calculus is based on categories of expressions and processes, ranged
over by M, N, and P, @, R, respectively. The calculus inherits a core of concurrency
primitives from the w-calculus: a restriction (vn)P creates a fresh name n whose scope is
P; a composition P | @) behaves as P and @ running in parallel; a replication [P behaves
as unboundedly many replicas of P running in parallel; and the inactive process 0 does

Equational Properties of Mobile Ambients 3

nothing. We augment these m-calculus processes with primitives for mobility—ambients,
n[P], and the exercise of capabilities, M.P—and primitives for communication—input,
(z).P, and asynchronous output, (M).

Here is an example process that illustrates the new primitives for mobility and com-
munication:

m[p[out m.in n.(M)]] | n[open p.(z).Q)]

The effect of the mobility primitives in this example is to move the ambient p out of
m and into n, and then to open it up. The input (x).) may then consume the output
(M) to leave the residue m[] | n[@Q{x<M}]. We may regard the ambients m and n in
this example as modelling two machines on a network, and the ambient p as modelling a
packet sent from m to n. Next, we describe the semantics of the new primitives in more
detail.

An ambient n[P] is a boundary, named n, around the process P. The boundary prevents
direct interactions between P and any processes running in parallel with n[P], but it does
not prevent interactions within P. Ambients may be nested, so they induce a hierarchy.
For example, in the process displayed above, the ambient named m is a parent of the
ambient named p, and the ambients named m and n are siblings.

An action M.P exercises the capabilities represented by M, and then behaves as P.
The action either affects an enclosing ambient or one running in parallel. A capability is
an expression derived from the name of an ambient. The three basic capabilities are in n,
out n, and open n. An action in n.P moves its enclosing ambient into a sibling ambient
named n. An action out n.P moves its enclosing ambient out of its parent ambient,
named n, to become a sibling of the former parent. An action open n.P dissolves the
boundary of an ambient n[Q] running in parallel; the outcome is that the residue P of the
action and the residue @ of the opened ambient run in parallel. In general, the expression
M in M.P may stand for a finite sequence of the basic capabilities, which are exercised
one by one. Finite sequences are built up using concatenation, written M.M'. The empty
sequence is written e.

The final two process primitives allow communication of expressions. Expressions in-
clude names, variables, and capabilities. An output (M) outputs the expression M. An
input (z).P blocks until it may consume an output running in parallel. Then it binds
the expression being output to the variable z, and runs P. In (z).P, the variable z is
bound; its scope is P. Inputs and outputs are local to the enclosing ambient. Inputs and
outputs may not interact directly through an ambient boundary. Hence we may think of
there being an implicit input/output channel associated with each ambient.

We formally specify the syntax of the calculus as follows:

Expressions and Processes:

I
M,N = expressions P,Q,R ::= processes

x variable (vn)P restriction
n name 0 inactivity
in M can enter M Pl@Q composition

out M can exit M P replication

A.D. Gordon and L. Cardelli 4

open M can open M M[P] ambient

€ null M.P action

M.M' path (x).P input
(M) output

The general forms in M, out M and open M allow for the ambient to be an arbitrary
capability M. The only useful cases are for M to be a name, or a variable that gets
instantiated to a name. Similarly, the ambient syntax M[P] allows M to be an arbitrary
capability. The only useful case is for M to be a name, or a variable that gets instantiated
to a name.

The following table defines the sets fn(M) and fv(M) of free names and free variables
of a capability M, and the sets fn(P) and fv(P) of free names and free variables of a
process P.

Free Names and Variables of Capabilities and Processes

fa(z) =2 fo(z) = {z}

fn(n) ={n} foln) =2

fa(in M) = fn(M) fo(in M) = fo(M)

fn(out M) = fn(M) fv(out M) = fo(M)
frn(open M) = fn(M) fo(open M) = fo(M)

fa(e) =2 fole) =2

fa(M.M") = fa(M) U fn(M") fo(M.M") = fo(M) U fo(M")
f((vn)P) = fn(P) — {n} fo((vn)P) = fo(P)
M(0)=o fo(0) =0

(P Q)= f(P)U fn(Q) fo(P1Q)=fu(P)U fu(Q)
f(1P) = fn(P) fo(tP) = fu(P)

fa(M[P]) = fn(M) U fn(P) fo(M[P]) = fu(M) U fo(P)
fa(M.P) = fan(M) U fn(P) fo(M.P) = fu(M) U fu(P)
fn((2).P) = fn(P) fo((z).P) = fo(P) — {z}
fn((M)) = fn(M) fo((M)) = fo(M)

In situations where a process is expected, we often write just M as a shorthand for
the process M.0. We often write just M[] as a shorthand for the process M[0]. We write
(vP)P as a shorthand for (vpy) - - (vpy)P where P=p1,...,pk.

If a phrase ¢ is an expression or a process, we write ¢p{z< M} and ¢{n<M} for the
outcomes of capture-avoiding substitutions of the expression M for each free occurrence
of the variable x and the name n, respectively, in ¢. We identify processes up to consistent
renaming of bound names and variables. We say an expression M is closed if and only if
fo(M) = @, similarly, a process P is closed if and only if fo(P) = @.

We formally define the operational semantics of ambient calculus in the chemical style,
using structural congruence and reduction relations:

Structural Congruence: P = @

IP|QEQ|P P=P

Equational Properties of Mobile Ambients

(P1Q)|R=P[(Q]R)
P=P|P
(vn)(vm)P = (vm)(vn)P

(
n #m = (vn)m[P] = m[(vn)P)]

Plo=P
(vn)0 =0
0=0

eP=P

(M.M").P =M.M'P

Q=P=P=Q
P=Q,Q=R=P=R

P=Q= (vn)P = (vn)Q
P=Q=P|R=Q|R
P=Q=P=1Q
P=Q = M[P]|=M[Q)]
P=Q=MP=MQ
P=Q = (2).P=(2).Q

Reduction: P — @

nlinm.P | Q] | m[R] — m[n[P | Q]| R]
m[n[out m.P | Q] | R] = n[P | Q] | m[R]
openn.P|n[Q] = P|Q

(M) | (x).P — P{z+<M}

P-Q=P|R—-Q|R

P— Q= (vn)P — (vn)Q

P — Q = n[P] = n[Q)]
P=PP—-QQ=Q =P =Q

For example, the process displayed earlier has the following reductions:

m[p[out m.in n.(M)]] | n[open p.(z).P]

= m[] | p[in n.(M)] | n[open p.(x).P]
= m[] | n[p[{M)] | open p.(z).P]

= m[] [n[(M) | (z).P]

— m[] | n[P{z+M}]

The syntax allows the formation of certain processes that may not participate in any
reductions, such as the action n.P and the ambient (in n)[P]. The presence of these
nonsensical processes is harmless as far as the purposes of this paper are concerned.
They may be ruled out by a simple type system (Cardelli and Gordon 1999).

This concludes our brief review of the calculus. Earlier papers (Cardelli 1999; Cardelli
and Gordon 2000b) explain in detail the motivation for our calculus, and give program-
ming examples.

3. Contextual Equivalence

Morris-style contextual equivalence (Morris 1968) is a standard way of saying that two
processes have the same behaviour: two processes are contextually equivalent if and
only if they admit the same elementary observations whenever they are inserted inside
any arbitrary enclosing process. In the setting of the ambient calculus, we shall define
contextual equivalence in terms of observing the presence, at the top-level of a process,
of an ambient whose name is not restricted.

Let us say that a process P ezhibits a name n just if P is a process with a top-level
ambient named n, that is not restricted:

A.D. Gordon and L. Cardelli 6

Exhibition of a Name: P | n

I
Pln = therearem, P, P" with n ¢ {m} and P = (viit)(n[P'] | P")
L

Let us say that a process P converges to a name n just if after some number of
reductions, P exhibits n:

Convergence to a Name: P | n
I 1

(Conv Exh) (Conv Red)
Pln P—qQ QUn

Pln Pln

Next, let a context, C(), be a process containing zero or more holes. We write a hole
as (). We write C(P) for the outcome of filling each of the holes in the context C with
the process P. Variables and names free in P may become bound in C(P). For example,
if P =n[(z)] and C() = (vn)(x).(), the variable z and the name n have become bound
in C(P) = (vn)(z).n[(z)]. Hence, we do not identify contexts up to renaming of bound
variables and names.

Now, we can formally define contextual equivalence of processes:

Contextual Equivalence: P ~ ()

IP:Q = for all n, C() with C(P), C(Q) closed, C(P) n < C(Q) U n

This equivalence is a form of the may-testing equivalence studied by De Nicola and
Hennessy (1984). De Nicola and Hennessy also study must-testing equivalence and the
Egli-Milner equivalence; these also could be recast in the setting of the ambient calculus.

The following two propositions state some basic properties enjoyed by contextual equiv-
alence. Let a relation R be a precongruence if and only if, for all P,), and C(),if PR @
then C(P) R C(Q). If, in addition, R is reflexive, symmetric, and transitive, we say it
is a congruence. For example, the structural congruence relation has these properties.
Moreover, by a standard argument, so has contextual equivalence:

Proposition 1. Contextual equivalence is a congruence.

Structural congruence preserves exhibition of or convergence to a name, and hence is
included in contextual equivalence:

Lemma 2. Suppose P = Q. If P | n then @ | n. Moreover, if P | n then @Q | n with
the same depth of inference.

Proof. For part (1), P | n, by definition, means that there are 17, P’, P" with n ¢ {mi}
and P = (vm)(n[P'] | P"). Since P = @, we have Q = (vm)(n[P'] | P"), and hence
@ | n. Part (2) follows by a case analysis of the derivation of P |} n.]

Proposition 3. If P =@ then P ~ Q.

Proof. Consider any context C() and any name n, such that C(P) | n. Since = is

Equational Properties of Mobile Ambients 7

a congruence, P = @ implies C(P) = C(Q). By Lemma 2, this and C(P) | n imply
C(Q) | n. Similarly, we can show that for all C and n, C(Q) {} n implies C(P) |} n. Hence
P~Q.]

The following two examples illustrate that to show that two processes are contextually
inequivalent, it suffices to find a context that distinguishes them.

Example 1. If m # n then m[] # n[].

Proof. Consider the context C() = (). Since C(m[]) = m]], we have C(m[]) | m. By
(Conv Exh), C(m[]) § m. On the other hand, the process n[] has no reductions, and does
not exhibit m. Hence, we cannot derive C(n[]) { m. U

Example 2. If m # n then open m.0 % open n.0.
Proof. Let C() = m[p[]] | (). Then C(open m.0) | p but not C(open n.0) | p. U

On the other hand, it is harder to show that two processes are contextually equivalent,
since one must consider their behaviour when placed in an arbitrary context. For example,
consider the following contextual equivalence:

Example 3. (vn)(n[] | open n.P) ~ P if n ¢ fn(P).

The restriction of the name n in the process (vn)(n[] | open n.P) implies that no
context may interact with this process until it has reduced to P. Therefore, we would
expect the equation to hold. But to prove this and other equations formally we need
some further techniques, which we develop in the next section. We return to Example 3
in Section 5.

4. Tools for Proving Contextual Equivalence

The tools we introduce are relations and theorems that help prove contextual equivalence.

4.1. A Hardening Relation

In this section, we define a relation that explicitly identifies the top-level subprocesses
of a process that may be involved in a reduction. This relation, the hardening relation,
takes the form,

P> (vp1,...,pp){P)P"

where the phrase (vp1,...,pg)(PYP" is called a concretion. We say that P’ is the prime
of the concretion, and that P" is the residue of concretion. Both P’ and P” lie in the
scope of the restricted names p1, ..., pg. The intuition is that the process P, which
may have many top-level subprocesses, may harden to a concretion that singles out a
prime subprocess P’, leaving behind the residue P”. By saying that P’ has a top-level
occurrence in P, we mean that P’ is a subprocess of P not enclosed within any ambient
boundaries. In the next section, we use the hardening relation to define an operational

A.D. Gordon and L. Cardelli 8

semantics for the ambient calculus in terms of interactions between top-level occurrences
of processes.

Concretions were introduced by Milner in the context of the m-calculus (Milner 1999).
For the ambient calculus, we specify them as follows, where the prime of the concretion
must be an action, an ambient, an input, or an output:

Concretions:
I 1
C,D := concretions
(vp)(M.PYQ action, M € {inn, out n, open n}
(vp)(n[P])@ ambient
(v)(2)-P)Q input
(vp)((M)Q output
L 1
The order of the bound names py, ..., pg in a concretion (vps,...,pr)(P')P" does not

matter and they may be renamed consistently. When k = 0, we may write the concretion
as (v)(P")P".

We now introduce the basic ideas of the hardening relation informally. If P is an
action in n.Q, out n.Q, open n.Q), an ambient n[Q], an input (z).Q, or an output (M),
then P hardens to (v){P)0. Consider two processes P and Q. If either of these hardens
to a concretion, then their composition P | ¢} may harden to the same concretion,
but with the other process included in the residue of the concretion. For example, if
P > (v)(P1)P; then P | @ > (v){(P1)(P | Q). If a process P hardens to a concretion,
then the replication !P may harden to the same concretion, but with !'P included in
the residue of the concretion—a replication is not consumed by hardening. Finally, if a
process P hardens to a concretion C, then the restriction (vn)P hardens to a concretion

written (vn)C, which is the same as C' but with the restriction (vn) included either in

the list of bound names, the prime, or the residue of C'. We define (vn)C by:

Restricting a Concretion: (vn)C where C = (vp)(P1)P> and n ¢ {p}
I(1) If n € fn(Py) then:
(a) If P1 = m[P]], m #n, n ¢ fn(F2), let (vn)C & (vp)(m|(vn)P}])Ps.
(b) Otherwise, let (vn)C = (vn, §){(P)Ps.
(2)Ifn ¢ fn(P1) let (vn)C = (vp)(P,)(vn)Py.

Next, we define the hardening relation by the following;:
Hardening: P > C'
I

(Harden Action) (Harden ¢) (Harden .)
M € {inn, out n, open n} P>C M.(N.P)>C
M.P > (v){(M.P)0 eP>C (M.N).P>C
(Harden Amb) (Harden Input) (Harden Output)

n[P] > (v)(n[P])0 (z).P > (v){(z).P)0 (M) > (v){{M))0

Equational Properties of Mobile Ambients 9

(Harden Par 1) (for {g} N fn(Q) = @) (Harden Par 2) (for {¢} N fn(P) = @)

P> (wp)(P)pP" Q> (v(QHQ"
P1Q> wp)(PH)P"| Q) PlQ> ()P [Q")
(Harden Repl) (Harden Res)
P > (vp)(P")P" P>C
1P > (vp)(P")(P" | P) (vn)P > (vn)C

For example, the process P = (vp)(vq)(n[p[]] | ¢[]) may harden in two ways:
P> (@) {n[wp)pll)(¥a)(0 | l])
P> (vg){al)(wp)(n[pll] 1 0)

The following is a basic property of hardening:

Lemma 4. If P > (vp)(P')P"” then {p} C fn(P') and the names j are pairwise distinct.
Proof. By induction on the derivation of P > (vp)(P')P". 1
The next two results relate hardening and structural congruence.

Lemma 5. If P > (vp)(P')P" then P = (vp)(P' | P").

Proposition 6. If P = @ and @ > (v7){(Q')Q" then there are P' and P" with P >
(v (PYP", P'=Q’, and P" =Q".

These results follow from inductions on the derivations of P > (vp)(P')P" and P = @,
respectively. Using them, we may characterize exhibition of a name independently of
structural congruence:

Proposition 7. P | n if and only if there are p, P, P", such that P > (vp){n[P'])P"
and n ¢ {p}.

Now, we can show that the hardening relation is image-finite:
Lemma 8. For all P, {C': P > C} is finite.
Proof. By induction on the structure of P.]

The proof suggests a procedure for enumerating the set {C' : P > C}. Given Proposi-
tion 7, it follows that the predicate P | n is decidable.

4.2. A Labelled Transition System

The labelled transition system presented in this section allows for an analysis of the
possible reductions from a process P in terms of the syntactic structure of P. The def-
inition of the reduction relation does not directly support such an analysis, because of
the rule P = PP — Q,Q = @' = P’ — (', which allows for arbitrary structural
rearrangements of a process during the derivation of a reduction.

A.D. Gordon and L. Cardelli 10

We define a family of transition relations P —— @, indexed by a set of labels, ranged
over by «, which is given in the following table:

Labels:
I 1
Q= label

T internal step

mn enter ambient n

out n exit ambient n

openn dissolve ambient n

An M-transition P 2% @ means that the process P has a top-level process exercising
the capability M; these transitions are defined by the rule (Trans Cap) below. A 7-
transition P — () means that P evolves in one step to Q; these transitions are defined
by the other rules below.

Labelled Transitions: P -2 P!
I 1

(Trans Cap)
P> (vp)(M.PYP" fn(M)N{p} =2

P (vp)(P'| P")

(Trans Amb)
P> (vp)(nl@)P' Q — Q'
P — (vp)(n[Q']| P')
(Trans In) (where {7} ﬂfn(n[Q]) =@ and {F} N {p} = 2)
P> @wp)(mQDR Q™2 Q" R > (wi)(m[R])R"
P — (vp,M)(mn[Q']| R']| R")

(Trans Out) (where n ¢ {q})
P> @p)@@)P Q> wd(m[R)Q R™“S R
P = (i) ((v@) (m[R'] | n[Q']) | P')
(Trans Open)
P> (vp)(n[Q)P' P " P!
P (vp)(Q | P")

(Trans I/O) (where {¢} N fn({(M)) = @)
P> wp)((M)P P> (vg)((x).P")P"

P - (vp, Q)(P"{z+M} | P")

The rules (Trans In), (Trans Out), and (Trans Open) derive a 7-transition from an
M -transition. We introduced the M-transitions to simplify the statement of these three

Equational Properties of Mobile Ambients 11

rules. (Trans I/O) allows for exchange of messages. (Trans Amb) is a congruence rule for
T-transitions within ambients.

Given its definition in terms of the hardening relation, we may analyze the transitions
derivable from any process by inspection of its syntactic structure. This allows a struc-
tural analysis of the possible reductions from a process, since the 7-transition relation
corresponds to the reduction relation as in the following theorem, where P = @
means there is R with P -+ R and R = Q.

Theorem 9. P — @ if and only if P = Q.

As corollaries of Lemma 8 and Theorem 9, we get that the transition system is image-
finite, and that the reduction relation is image-finite up to structural congruence.

Lemma 10. For all P and a, the set {R: P -+ R} is finite.

Proof. By induction on the depth of inference of P — R, with appeal to Lemma 8,
one can see that the set {R: P — R} is finite. U

Lemma 11. For all P, the set {{R:Q = R} : P — @} is finite.

Proof. By Lemma 10, the set {Q) : P — Q} is finite. Therefore, the set {{R: Q =
R} : P 15 Q) is finite. But, by Theorem 9 and the transitivity of structural congruence
this set is the same as {{R: Q@ = R} : P - Q}. 1

4.3. A Context Lemma

The context lemma presented in this section is a tool for proving contextual equivalence
by considering only a limited set of contexts, rather than all contexts. Many context
lemmas have been proved for a wide range of calculi, starting with Milner’s context
lemma for the combinatory logic form of PCF (Milner 1977).

Our context lemma is stated in terms of a notion of a harness:

Harnesses:
I 1
H::= harnesses

— process variable

(vn)H restriction

P|H left composition

H|Q right composition

n[H] ambient

Harnesses are analogous to the evaluation contexts found in context lemmas for some
other calculi. Unlike the contexts of Section 3, harnesses are identified up to consistent
renaming of bound names. We let fn(H) and fv(H) be the sets of names and variables,
respectively, occurring free in a harness H. There is exactly one occurrence of the process
variable — in any harness. If H is an harness, we write H{P} for the outcome of substitut-
ing the process P for the single occurrence of the process variable —. Names restricted in
H are renamed to avoid capture of free names of P. For example, if H = (vn)(— | openn)

A.D. Gordon and L. Cardelli 12

then H{n[]} = (vn')(n[] | openn') for some n' # n. Similarly, if H and H' are harnesses,
we write H{H'} for the harness obtained by substituting H' for the process variable —
in H.

Let a substitution, o, be a list 1< M, ...,z M}, where the variables zy, ..., zg
are pairwise distinct, and fv(M;) = @ for each ¢ € 1..k. Let dom(o) = {x1,...,2zx}. Let
Po be the process P{z1+ M} {xr<M;}. Let a harness be closed if and only if it has
no free variables (though it may have free names).

Here is our context lemma:

Theorem 12 (Context). For all processes P and @, P ~ @ if and only if for all
substitutions o with dom(co) = fo(P) U fv(Q), and for all closed harnesses H and names
n, that H{Pc} | n < H{Qo} | n.

A corollary is that for all closed processes P and @, P ~ @ if and only if for all closed
harnesses H and names n, that H{P} { n & H{Q} | n.

In general, however, we need to consider the arbitrary closing substitution ¢ when
using Theorem 12. This is because a variable free in a process may become bound to an
expression once the process is placed in a context. For example, let P = z[n[]] | open y.0
and @ = 0. Consider the context C() = (m,m) | (z,y).(). We have C(P) { n but not
C(Q) | n. So P and @ are not contextually equivalent but they do satisfy H{P} | n <
H{Q} | n for all closed H and n.

Some process calculi enjoy stronger context lemmas. Let processes P and Q) be parallel
testing equivalent if and only if for all processes R and names n, that P | R{ n & @ |
R |} n. We might like to show that any two closed processes are contextually equivalent
if and only if they are parallel testing equivalent. This would be a stronger result than
Theorem 12 because it would avoid considering contexts that include ambients. Such
a result is true for CCS (De Nicola and Hennessy 1984), for example, but it is false
for the ambient calculus. To see this, let P = out p.0 and Q = 0. We may show that
P|Ryn& Q|RJYnforall n and R. Now, consider the context C() = pm[()]]. We
have C(P) § m but not C(0) § m. So P and @ are parallel testing equivalent but not
contextually equivalent.

4.4. An Activity Lemma

When we come to apply Theorem 12 we need to analyze judgments of the form H{P} | n
or H{P} — @. In this section we formalize these analyses.
We begin by extending the structural congruence, hardening, and reduction relations
to harnesses as follows:
— Let H = H' hold if and only if H{P} = H'{P} for all P.
— Let H > (vp)(n[H'])Q hold if and only if H{P} > (vp)(n[H'{P})Q for all P such
that {p} N fn(P) = .
— Let H > (vp){Q)H' hold if and only if H{P} > (vp)(Q)(H'{P}) for all P such that
B N fu(P) = 2.
— Let H — H' hold if and only if, for all P, H{P} — H'{P}.

We need the following lemma about hardening:

Equational Properties of Mobile Ambients 13

Lemma 13. If H{P} > (vp)(P1)P, then either:

(1) H > (vp)(n[H']) P> and P, = n[H'{P}], or

(2) H > (vp)(P1)H' and P, = H'{P}, or

B)P > wp)(P)P',H=—|R,P,=P |R,and {§} N fn(R) = 2.

Intuitively, there are two ways in which H{P} | n can arise: either the process P
exhibits the name by itself, or the harness H exhibits the name n by itself. Proposition 14
formalizes this analysis. Similarly, there are three ways in which a reduction H{P} — Q
may arise: either (1) the process P reduces by itself, or (2) the harness H reduces by
itself, or (3) there is an interaction between the process and the harness. Theorem 15
formalizes this analysis. Such a result is sometimes known as an activity lemma (Plotkin
1977).

Proposition 14. If H{P} | n then either (1) H{Q} | n for all @, or (2) both P | n
and also for all @, @ | n implies that H{Q} | n.

Proof. By Proposition 7, H{P} | n means there are g, P, P" such that H{P} >
(vp)(n[P'])P" with n ¢ {p}. Hence, the proposition follows from Lemma 13. U

Theorem 15 (Activity). H{P} — R if and only if:

(Act Proc) there is a reduction P — P’ with R = H{P'}, or
(Act Har) there is a reduction H — H' with R = H'{P}, or
(Act Inter) there are H' and 7 with {7} N fn(P) = @, and one of the following holds:
(Inter In) H = (v#)H'{m[— | R'] | n[R"]}, P nsp
and R = (vA)H'{n[m[P' | R'] | R"]}
(Inter Out) H = (v H'{n[m[- | R | R"]}, P “45' P',
and R = (vi)H'{m[P' | R'] | n[R"]}
(Inter Open) H = (vA)H'{— | n|[R']}, P *5" P/,
and R = (v/)H'{P' | R'}
(Inter Input) H = (v#)H'{— | (M)}, P > (vp){(x).P")P",
and R = (vA)H'{(vp)(P'{z<M} | P")}, with {p} N fn(M) = &
(Inter Output) H = (vi)H'{— | (z).R'}, P > (vp){{M))P’,
and R = (vA)H'{(vp)(P' | R'{z<M})}, with {pTNfn(R') =&
(Inter Amb) P > (vp)(n[Q])P' and one of the following holds:

(1) Q™3 Q', H = (w)H'{~ | m[R]}, {F} N fu(m[R']) = 2,
and R = (vi)H'{(vp)(P" | m[n[Q'] | R'])}
(2) Q ™' @', H = (v H'{m[— | R']}, {F} N fn(m[R")) = 2,
and R = (vi)H'{(vp)(n[Q'] | m[P" | R'])}
(3) H = wA)H'{m[R' | inn.R"]| =}, {F} N fa(m[R' | inn.R")) = @,
and R = (v H'{(p)(nlQ | m[R' | R")] | P')}
(4) H = (v H'{~ | open n.R'}, n ¢ {5},
and R = (vr)H'{(vp)(Q | P') | R'}

A.D. Gordon and L. Cardelli 14

5. Examples of Contextual Equivalence

In this section, three examples demonstrate how we can apply Theorem 12 and Theo-
rem 15 to establish contextual equivalence.

5.1. Opening an Ambient
First, we return to and prove Example 3 from Section 3.
Lemma 16. If H{(vn)(n[] | openn.P)} } m and n ¢ fn(P) then H{P} | m.

Proof. By induction on the derivation of H{(vn)(n[] | open n.P)} | m:

(Conv Exh)Here H{(vn)(n[] | open n.P)} | m. By Proposition 14, either (1), for all
Q, H{Q} | m, or (2), (vn)(n[] | open n.P) | m. In case (1), we have, in particular,
that H{P} | m. Hence, H{P} | m, by (Conv Exh). Case (2) cannot arise, since,
by Proposition 7, (vn)(n[] | open n.P) | m implies that (vn)(n]] | open n.P) >
(vp)(m[P'))P" with m ¢ {p}. But the only hardenings of the process (vn)(n[] |
open n.P) are:

(vn)(n[] | openn.P) > (vn)(n[])(0 | open n.P)
(vn)(n[] | openn.P) > (vn){openn.P)(n[]|0)

So case (2) is impossible.
(Conv Red)Here H{(vn)(n[] | open n.P)} — R and R | m. By Theorem 15, one of
three cases pertains:

(Act Proc)Then (vn)(n[] | open n.P) — P' with R = H{P'}. By inspection of the
rules of the labelled transition system, it must be that (Trans Open) derives this
transition, with P’ = P. Therefore R | m implies that H{P} | m.

(Act Har)Then H — H' with R = H'{(vn)(n[] | open n.P)}. By Lemma 2, we may
derive H'{(vn)(n[] | open n.P)} J m by the same depth of inference as R | m.
By induction hypothesis, H'{P} | m. From H — H' we obtain H{P} — H'{P}
in particular. By (Act Har), we get H{P} | m.

(Act Inter)Then there is an interaction between the process (vn)(n[] | openn.P) and
the harness H. Given the possible hardenings of (vn)(n[] | openn.P) stated above,
there are no transitions derivable from (vn)(n[] | open n.P), so none of (Inter In),
(Inter Out), or (Inter Open) is applicable. Similarly, neither (Inter Input) nor (In-
ter Output) is applicable. Given (vn)(n[] | open n.P) > (vn)(n[])(0 | open n.P),
clause (Inter Amb) might be applicable. Points (1) and (2) are impossible, be-
cause 0 has no transitions, and points (3) and (4) are impossible because n is
restricted. We conclude that none of the possibilities stated in clause (Act Inter)
of Theorem 15 pertains. So this case is impossible. |

Proof of Example 3. (vn)(n[] | open n.P) ~ P if n ¢ fn(P).

Proof. By Theorem 12, it suffices to prove H{((vn)(n[] | open n.P))o} | m &
H{Po} | m for all closed harnesses H and names m and for all substitutions ¢ with

Equational Properties of Mobile Ambients 15

dom(o) = fv(P). Since the name n is bound, we may assume that n ¢ fn(o(z)) for all
z € dom(o). Therefore, we are to prove that: H{(vn)(n[] | openn.Po} |y m & H{Po} |
m where n ¢ fn(Po).

We prove each direction separately. First, suppose that H{Po} || m. Since (vn)(n[] |
open n.Po) — Po, we get H{(vn)(n[] | open n.Po)} — H{Pc}. By (Conv Red), we get
H{(vn)(n]] | open n.Pc)} | m. Second, suppose that H{(vn)(n[] | open n.Po)} || m. By
Lemma 16, we get H{Po} | m. U

5.2. The Perfect Firewall Equation

Counsider a process (vn)n[P], where n is not free in P. Since the name n is known neither
inside the ambient n[P], nor outside it, the ambient n[P] is a “perfect firewall” that
neither allows another ambient to enter nor to exit. The following two lemmas allow us
to prove that (vn)n[P] is contextually equivalent to 0, when n ¢ fn(P), which is to say
that no context can detect the presence of (vn)n[P].

Lemma 17. If H{(vn)n[P]} § m and n ¢ fn(P) then H{0} | m.

Proof. By induction on the derivation of H{(vn)n[P]} | m.

(Conv Exh)Here H{(vn)n[P]} | m. By Proposition 14, either (1), for all Q, H{Q} | m,
or (2), (vn)n[P] | m. In case (1), we have, in particular, that H{0} | m. Hence,
H{0} | m, by (Conv Exh). Case (2) cannot arise, since, by Proposition 7, (vn)n[P] |
m implies that (vn)n[P] > (vp)(m[P'])P" with m ¢ {p}, which is impossible.

(Conv Red)Here H{(vn)n[P]} - R and R | m. By Theorem 15, one of three cases
pertains:

(Act Proc)Then (vn)n[P] — P" with R = H{P"}. By Theorem 9, there is @) with
(vn)n[P] —— Q and Q = P". Since (vn)n[P] > (vn){(n[P])0 is the only hardening
derivable from (vn)n[P], and since n ¢ fn(P), the transition (vn)n[P] — @ can
only be derived using (Trans Amb), with P - P’ and Q = (vn)(n[P'] | 0).
Therefore, there is a reduction P — P’ and P" = (vn)n[P’]. By Lemma 21 stated
in the Appendix, P — P’ implies fn(P') C fn(P) and so n ¢ fn(P'). We have
R = H{(vn)n[P']} with n ¢ fn(P’). By Lemma 2, we may derive H{(vn)n[P']} |
m by the same depth of inference as R |} m. By induction hypothesis, H{0} | m.

(Act Har)Then H — H' with R = H'{(vn)n[P]}. By Lemma 2, we may derive
H'{(vn)n[P]} J m by the same depth of inference as R || m. By induction hy-
pothesis, H'{0} |} m. From H — H' we obtain H{0} — H'{0} in particular. By
(Conv Red), we get H{0} | m.

(Act Inter)Then there are H' and # with {} N fn(P) = @ and one of several
conditions must hold. Since the only hardening or transition from (vn)n[P] is
(vn)n[P] > (vn){n[P])0, only the rule (Inter Amb) applies. According to Theo-
rem 15, there are four possibilities to consider.

(1) Here, P ™% P', H = (vA)H'{— | m[R']}, {n} N fn(m[R']) = @, and R =
(w)H'{(vn)(0 | m[n[P'] | R'])}. We have R = (v#)H'{m[R' | (vn)n[P']]}.

By Lemma 23 (stated in the Appendix), n ¢ fn(P) and P 2% P’ imply

A.D. Gordon and L. Cardelli 16

n ¢ fn(P'). By Lemma 2, we get (vr)H'{m[R' | (vn)n[P']]} § m with the same
depth of inference as R |} m. By induction hypothesis, (v#)H'{m[R' | 0]} | m.
Moreover, H{0} = (v7)H'{m[R' | 0]}, and therefore H{0} | m.

(2) Here, P 28" p' H = (wvA)H'{m[— | R']}, R = (vP)H'{(vn)(n[P'] | m[0 |
R')}, with m ¢ {n}. Since n is bound, we may assume n ¢ fn(H) U {7}, so
that n ¢ fn(R'), and hence we can derive that R = (vi")H'{m[R'] | (vn)n[P']}.
By Lemma 23, n ¢ fn(P) and P Ly pr imply n ¢ fn(P'). By Lemma 2,
we get (vi)H'{m[R'] | (vn)n[P']} § m with the same depth of inference as
R | m. By induction hypothesis, (vi)H'{m[R'] | 0} { m. Moreover, H{0} =
(vi)H'{m[R'] | 0} and therefore H{0} || m.

The other possibilities, (3) and (4), are ruled out because the name n is restricted
in the concretion (vn)(n[P])O0. U

Lemma 18. If H{0} | m then H{P} | m.

Proof. By induction on the derivation of H{0} | m.

(Conv Exh)Here H{0} | m. By Proposition 14, either (1), for all @, H{Q} | m, or
(2), 0 | m. Case (2) is impossible. In case (1), we get, in particular, that H{P} | m.
Hence, H{P} | m.

(Conv Red)Here H{0} — @ and @ § m. By Theorem 15, and the fact that 0 has no
reductions and no hardenings, it must be that H — H' with @ = H'{0}. By Lemma 2,
we get that H'{0} { m is derivable with the same depth of inference as @ | m. By
induction hypothesis, H'{P} | m. From H — H' we get that H{P} — H'{P}. By
(Conv Red), H{P} — H'{P} and H'{P} || m imply H{P} | m. |

Using these two lemmas we get:
Example 4. If n ¢ fn(P) then (vn)n[P] ~ 0.
Proof. By Theorem 12, it suffices to prove that

H{((wn)n[Pl)o} |} m & H{O0c} | m

for all closed harnesses H and names m and for all substitutions o with dom(o) =
fo((vn)n[P]). Since the name n is bound, we may assume that n ¢ fn(o(x)) for any
x € dom(o). Therefore, we are to prove that:

H{(vn)n[Po]} § m & H{0} I m
where n ¢ fn(Po). This follows from Lemma 17 and Lemma 18. 1
Our first proof of this equation (which was stated in an earlier paper (Cardelli and

Gordon 2000b)) was by a direct quantification over all contexts. The proof above using
the context lemma, is simpler.

Equational Properties of Mobile Ambients 17

5.3. Crossing a Firewall

This example concerns an agent that crosses a firewall using previously arranged pass-
words. We explained this example, but did not state a proof, in an earlier paper (Cardelli
and Gordon 2000b).

Lemma 19. Suppose that (fn(P) U fn(Q)) N{k, k' k"} = @ and w ¢ fn(Q). Consider
the processes defined by:

Ri 2 (kK K" (K [open kK"(Q]] |
(vw)w(k[out w.in k'.in w] | open k'.open k" .P])
Ry = (vkE K" w)(k'[open k.k"[Q]] | k[in K .in w] | w[open k'.open k" .P))
Rs = (vkE K" w)(k'[k[in w] | open k.k"[Q]] | w[open k'.open E".P))
Ry = (kK K" w)(k'[inw | k"[Q]] | w[open k'.open k" .P))
Ry = (vkE K" w)w[k'[E"[Q]] | open K .open k" .P]
Re = (vkE K" w)w[k"[Q]| open k".P]
R = (vww[Q | P]

For each ¢ € 16, Rz >~ Ri+1-

Proof. Suppose that ¢ € 1..6. Without loss of generality, we may assume that the
processes P and @) are closed, and hence that all the R; are closed. By Theorem 12, we
need to show for all H and m that H{R;} §{ m & H{R;+1} | m. We may calculate that
R; — R;y1, for each i. It follows that H{R;+1} { m implies H{R;} | m.

We now prove that H{R;} { m implies H{R;+1} { m by induction on the derivation
of H{R;} | m.

(Conv Exh)Here H{R;} | m. By Proposition 14, either (1), for all @, H{Q} | m, or (2),
R; | m. In case (1), we have, in particular, that H{R; 1} | m. Hence, H{R; {1} | m,
by (Conv Exh). Case (2) cannot arise, because of the outermost restrictions on each
R;.

(Conv Red)Here H{R;} — R and R | m. By Theorem 9 and Theorem 15, one of three
cases pertains:

(Act Proc)Then R; — R’ with R = H{R'}. By inspection of the definitions of R;
and the labelled transition system, it must be that R’ = R;y;. Therefore R || m
implies that H{R;+1} { m.

(Act Har)Then H — H' with R = H'{R;}. By Lemma 2, we may derive H'{R;} |
m by the same depth of inference as R || m. By induction hypothesis, H'{R;+1} |
m. From H — H' we obtain H{R;+1} — H'{R;+1} in particular. By (Conv Red),
we get H{R;11} | m.

(Act Inter)Then there is an interaction between the process R; and the harness H'.
Given that fn(Q)N{k', k", w} = @, none of the conditions stated in the rule (Act
Inter) of Theorem 15 applies. Therefore this case is impossible.

This completes the proof by induction.]

A.D. Gordon and L. Cardelli 18

Example 5. Let us define:

Firewall (vw)w[k[out w.in k'.in w] | open k'.open k" .P]

Agent = k'[open k.E"[Q]]
If (fn(P)Ufm(@Q)N{k,k, K"} =2 and w ¢ fn(Q) then:
(vk k' K")(Agent | Firewall) ~ (vw)w[Q | P]

Proof. Recall the processes R; and R7 from Lemma 19. By that lemma, R; ~ Ry.
This is exactly the desired equation, since Ry = (vk k' k")(Agent | Firewall) and R; =
(vw)ul@ | P). O

6. Conclusions

We developed a theory of Morris-style contextual equivalence for the ambient calculus.
We showed that standard tools such as a labelled transition system, a context lemma,
and an activity lemma, may be adapted to the ambient calculus. We introduced a new
technique, based on a hardening relation, for defining the labelled transition system. We
employed these tools to prove equational properties of mobile ambients.

We adapted the concretions of Milner (1999) to highlight those subprocesses of a
process that may participate in a computation. This is an alternative to the membranes
and airlocks of the chemical abstract machine of Berry and Boudol (1992). Unlike these
authors, in the definition of our transition relation we use the hardening relation, rather
than the full structural congruence relation, to choose subprocesses to participate in a
transition. In applications of the activity lemma, Theorem 15, and in other situations, our
proof techniques depend on analyzing the possible hardenings and the possible transitions
of processes by examining their structure. This is possible because, unlike structural
congruence, the hardening relation is not transitive. Therefore, the use of hardening
rather than structural congruence in the definition of the transition relation is essential
for the techniques we advocate here.

Our use of the hardening relation to define the transition relation for the ambient
calculus is similar to the use by Vitek and Castagna (1999) of a heating relation to define
reduction in their Seal calculus. A difference in style is that Vitek and Castagna use
structural congruence as well as the heating relation to define their reduction relation.

Since the work presented in this paper was completed, several authors have advanced
the study of labelled transition systems and bisimulation for ambient calculi.

— Vigliotti (1999) studies labelled transition systems for the ambient calculus, but not
bisimulation. She proves a completeness result relating reductions and labelled tran-
sitions, akin to Theorem 9 of this paper.

— Fournet, Lévy, and Schmitt (2000) describe the first distributed implementation of
mobile ambients, based on a translation to the join-calculus (Fournet and Gonthier
1996). They verify its correctness by adapting the technique of barbed coupled sim-
ulations.

— Although in this paper we have developed some novel tools for proving equational

Equational Properties of Mobile Ambients 19

properties, we have found it difficult to state a very rich collection of equational
properties. Levi and Sangiorgi (2000) attribute this difficulty to certain interferences
between overlapping redexes in the original ambient calculus. To allow such interfer-
ences to be avoided, they add co-capabilities to obtain a calculus of Safe Ambients
(SA). With this addition, they state and prove a richer set of equational properties
than seems to be possible for the unmodified calculus.

— Sangiorgi (2001) studies the equivalence induced by the ambient logic (Cardelli and
Gordon 2000a) on an ambient calculus without replication or restriction. He charac-
terises this equivalence as the bisimulation induced by a certain labelled transition
system, and shows that the equivalence is closely related to structural congruence.

— Merro and Hennessy (2002) are the first to study the bisimulation induced by a
labelled transition system for an ambient calculus with replication and restriction.
They work with a calculus of Safe Ambients with Passwords (SAP), which has co-
capabilities like the SA calculus but synchronisation is additionally contingent on
shared knowledge of a secret password. They define a barbed congruence for the SAP
calculus, and show that it equals the bisimulation induced by their labelled transition
system. Hence, they obtain a convenient co-inductive proof technique for equational
reasoning about ambients.

Acknowledgement

Comments by Giuseppe Castagna, Cédric Fournet, Georges Gonthier, Tony Hoare, and
Jan Vitek were helpful. We thank the anonymous referees for very thorough readings of
the manuscript.

Appendix A. Proofs

In this appendix, we prove all the propositions stated without proof in the main body of
the paper. To do so, we need several auxiliary results.
The appendix consists of several sections.

(1) In Section A.1 we prove that contextual equivalence is a congruence, which was stated
in Section 3.

(2) In Section A.2, we prove three important facts about the hardening relation, Lemma, 5,
Proposition 6, and Proposition 7, which were stated in Section 4.1.

(3) Section A.3 contains some auxiliary results and a proof of Theorem 9 from Sec-
tion 4.2, which states that the reduction and 7-transition relations are the same up
to structural congruence.

(4) In Section A.4 we prove the activity lemma, Theorem 15, stated in Section 4.4.

(5) In Section A.5, we prove some auxiliary results about replication.

(6) Section A.6 is devoted to proving our context lemma, Theorem 12, which was stated
in Section 4.3.

In the main text, we stated Theorem 12 ahead of Theorem 15, but in fact we use
Theorem 15 in the proof of Theorem 12. Therefore, we give the proof of Theorem 15
before the proof of Theorem 12.

A.D. Gordon and L. Cardelli

20

Throughout this appendix, we shall refer to the rules of structural congruence and
reduction using the names in the following tables:

Structural Congruence: P = ()

IPEP
Q=P=P=Q
P=@Q,Q=R=P=R

P=Q= (vn)P = (vn)Q
P=Q=P|R=Q|R
P=@Q=1P=1Q
P=Q= M[P]=M[Q]
P=Q=>MP=M.Q
P=Q= (z).P=(2)Q

PlQ=Q|P
(P1Q)|R=P[(Q]R)
P=P|'P
(vn)(vm)P = (vm)(vn)P

(
n #m = (vn)m[P] = m[(vn)P)]
Plo=P

Struct Refl)
Struct Symm)
Struct Trans)

Struct Res)
Struct Par)
Struct Repl)
Struct Amb)
Struct Action)
Struct Input)

Struct Par Comm)
Struct Par Assoc)
Struct Repl Par)
Struct Res Res)
Struct Res Par)
Struct Res Amb)
Struct Zero Par)

N N N N N N N N N N S N N N N SN N ~ S N

(vn)0 =0 Struct Zero Res)
0=0 Struct Zero Repl)
eP=P Struct €)
(M.M'").P = M.M'.P Struct .)
Reduction: P — @

In[m m.P | Q] | m[R] = m[n[P | Q]| R] (Red In) I
m[nlout m.P | Q] | R] = n[P | Q] | m[R] (Red Out)
openn.P | n[Q] = P|Q (Red Open)

(M) | (z).P — P{z<M} (Red I/0)
P-@Q=P|R—>Q|R (Red Par)

P— Q= (wvn)P — (vn)Q (Red Res)

P — @ = n[P] = n[Q)] (Red Amb)
P=PP-QQ=Q =P -Q (Red =)

Many of the proofs in the rest of the appendix depend on the following basic facts
about structural congruence, reduction, hardening, and the transition relation:

Lemma 20. If P = @ then fn(P) = fn(Q) and fo(P) = fu(Q).

Lemma 21. If P — @ then fn(P) C fn(Q) and fo(P) C fu(Q).

Lemma 22. If P > C then fn(P) = fn(C) and fu(P) = fu(C).

Equational Properties of Mobile Ambients 21

Lemma 23. If P -5 P’ then fn(a) U fa(P') C fn(P), fu(a) = @, and fo(P') C fu(P).
Lemma 24. If n ¢ fn(P) then (vn)P = P.

Proof. Using the axioms (Struct Zero Par), (Struct Res Par), and (Struct Zero Res),
we get: (vn)P = (wn)(P|0)=P|(vn)0=P|0=P. O

A.1. Proof Omitted From Section 3

Apart from proving transitivity, the proof that contextual equivalence is a congruence is
easy:

Proof of Proposition 1. Contextual equivalence is a congruence.

Proof. Reflexivity and symmetry are trivial.

For transitivity, suppose that P ~ P’ and P’ ~ P". To show that P ~ P", consider
any context C() and any name n such that C(P) and C(P") are closed. It need not be
that C(P') is closed. Suppose that {z1,...,zx} = fo(C(P')), and suppose that m, ...,
my, are fresh names. We define a new family of contexts Dy, D1, ..., Dy by induction:
Do =C and D41 = (myy1) | (xi41)-D;. The context Dy has two useful properties. First,
for all @ and g,

De(Q) ¥ ¢ & C(Q){xremi}--{zpemi} 4 g

Second, Dy (P") is closed. Now, suppose that C(P) | n. Since C(P) is closed, C(P) =
C(P){z1¢my} - {xzp+my}. Hence, by the first property of Dy, Dy (P) | n. By the
second property of Dy, and P ~ P’ Dy (P') | n. Since C(P") is closed, it follows that
Dy (P") is closed too. Therefore, P’ ~ P" implies that Dy (P") | n. Since C(P") is closed,
C(P") = C(P"Y{x1ma1}---{zr+ms}. Hence, by the first property of Dy, C(P") | n.
A symmetric argument establishes that C(P"') | n implies C(P) | n. Hence P ~ P".

For precongruence, consider any P, @, and C(), with P ~ Q. To show that C(P) ~
C(Q), consider any context D() and any name n with D(C(P)) | n. Since D(C()) is a
context, P ~ @ implies D(C(Q)) J n. Similarly, D(C(Q)) ¥ n implies D(C(P)) Y n. It
follows that C(P) ~ C(Q). 1

A.2. Proofs Omitted From Section 4.1

This section provides proofs of Lemma 5, Proposition 6, and Proposition 7. The main
lemma of the section, Lemma 31, asserts that the hardening relation preserves structural
congruence. To state and prove it, we need three auxiliary definitions.

The first auxiliary definition is a relation P = () on primes, where a prime is an
ambient m[P], an action M.P where M € {in n, out n, open n}, an input (z).P, or an
output (M). The relation P = @ is the least to satisfy the following rules:

Structural Congruence of Primes: P = ()
I 1

n[P] = n[Q]if P = Q
M.P=M.Q it M € {inn,out n,openn} and P = Q
().P=(x).Qift P=Q

A.D. Gordon and L. Cardelli 22

(M) = (N)if M =N

This relation is clearly reflexive, symmetric, and transitive, and implies structural
congruence:

Lemma 25. For all primes P, @, R:
(1) P=P.
(2)If P =(Q then Q = P.
(3)If P=Q and Q = R then P = R.
(4)If P=(Q then P =Q.
We prove the converse of part (4) at the end of this section.
The second auxiliary definition is a relation C' = D on concretions:

Structural Congruence of Concretions: C = D

'c =D = C=@wA(PP,D=wMHQ)Q,P=Q,and P'=Q".

Lemma 26. If C = D then (vn)C = (vn)D.

Proof. From C' = D, it follows that C' = (v#)(P)P', D = (vP)(Q)Q’', P = @, and
P' = (Q'. Now, either n € fn(P) or not. First, suppose n € fn(P).

—If P = m[P"], m # n, and n ¢ fn(P’), then (vn)C = (vi){m[(vn)P"])P'. Since
P = @, it follows that @ = m[Q"] with P" = Q". By Lemma 20, n ¢ fn(P’) implies
n ¢ fn(Q"). Therefore, (vn)D = (v7)(m[(vn)Q"])Q’, and so (vn)C = (vn)D.

— Otherwise, (vn)C = (vn,7)(P)P', and (vn)D = (vn,7)(Q)Q’.

Second, if n ¢ fn(P), we haven ¢ fn(Q) by Lemma 20. Therefore, (vn)C = (v7)(P)(vn)P’

and (vm)D = (v7)(Q) ()@’ 0

By a similar analysis, we can prove the following:

Lemma 27. (vm)(vn)C = (vn)(vm)C.

The third auxiliary definition is a relation M > N on expressions, defined by the
following rules:

Auxiliary Relation on Expressions: M > N

I

M > M.e it M € {inn, out n, open n}
€>€

M.N > M,;.(My.N) if M > My. M,

M.N > N' if M >eand N > N’
L

Lemma 28. If M.P > C then either:

(1) M > My.Ms, C = (V)<M1R>0, and R = M. P, or
(2) M >eand P> C.

Proof. By induction on the derivation of M.P > C'.]

Equational Properties of Mobile Ambients 23

Lemma 29. If M > e and P > C then M.P > C.
Proof. By induction on the derivation of M > e.]
Lemma 30. If M > M;.M, then M.P > (v){M;.P')0 with P' = M,.P.
Proof. By induction on the derivation of M > M;.M>.]
Next, we prove the main lemma of the section.
Lemma 31. If P =@ and @ > D then there is C with P > C and C = D.

Proof. We show by induction on the derivation of P = @, that P = @ implies:

(1) Whenever P > C' there is D with @ > D and C = D;
(2) Whenever @ > D there is C with P > C and C = D.

We proceed by a case analysis of the rule that derives P = Q).

(Struct Refl)In this case, P =). So parts (1) and (2) are trivial.

(Struct Symm)In this case, @ = P. Part (1) follows from part (2) of the induction
hypothesis, and part (2) follows from part (1) of the induction hypothesis.

(Struct Trans)In this case, P = R and R = Q. For (1), suppose P > (v7)(P,)P». By
induction hypothesis, R > (v7)(R1)R2 with P = R; and P> = R,. By induction
hypothesis, again, Q@ > (v7){Q1)Q2 with Ry = @1 and Ry = @». By transitivity,
Py = @1 and P> = Q». Part (2) follows by a symmetric argument.

(Struct Res)In this case, P = (vn)P', Q = (vn)Q' and P' = Q'. For (1), suppose
(vn)P' > C. This can only be derived using (Harden Res), so P’ > C' with C =

(vn)C'. By induction hypothesis, @' > D' with C' = D’. By (Harden Res), Q =
(vn)Q' > (vn)D'. By Lemma 26, (vn)C’' = (vn)D'. Part (2) follows by a symmetric
argument.

(Struct Par)In this case, P = P' | R, Q@ = Q' | R, and P’ = Q'. For (1), suppose

P'| R > (vF)(P1)P,. This judgment must be derived from one of the following rules:

(Harden Par 1)Here P' > (vi)(P1)Py with P, = Py | R and {7} N fn(R) = @. By
induction hypothesis, @' > (v¥7){Q1)Q% with P, = @1 and Py = Q). Let Q2 =
Q4 | R. By (Harden Par 1), @ = Q' | R > (v7){Q1)Q2. Moreover, Py | R =)} | R,
that iS, P2 = QQ.

(Harden Par 2)Here R > (vi)(P,)P; with P, = P’ | Pj and {F} N fn(P') = @. By
Lemma 20, fn(P") = fn(Q'), so {F} N fn(Q') = @. Let Q2 = Q' | P;. By (Harden
Par 2), @' | R > (vF)(P1)Q2. Moreover, P' | Py = Q' | Py, that is, P» = Qs.

Part (2) follows by a symmetric argument.

We omit the other cases. |

Proof of Proposition 6. If P = @ and @ > (v7){(Q')Q" then there are P' and P"
with P > (v/)(P)P", P'=Q', and P" =Q".

Proof. Combine Lemma 25 and Lemma, 31.]

A.D. Gordon and L. Cardelli 24

Proof of Proposition 7. P | n if and only if there exist 5, P’, P" such that P >
(vp)(n[P'])P" and n ¢ {p}.

Proof. First, suppose P | n, that is, there are p, R, R" with n ¢ {§} and P = R
where R = (vp)(n[R'] | R"). Given (Struct Res Amb) and (Struct Res Par), we may
assume that {p} C fn(R') N fn(R"). Therefore, we may derive R > (vp){n[R'])(0 | R").
By Lemma 31, P = R implies there are P’, P" such that P > (vp)(n[P'])P", P' = R/,
and P" = R".

Second, suppose P > (vp)(n[P'])P" and n ¢ {p}. By Lemma 5, P = (vp)(n[P’'] | P").
Therefore, P | n. O

We end this section by exploring another consequence of Lemma 31.
Proposition 32. For all primes P and @, if P = @, then P = Q.

Proof. Since P and () are primes, their only hardenings are P > (v)(P)0 and Q >
(v){@)0. By Lemma 31, P = Q. 1

A corollary of Lemma 25 and Proposition 32 is that for all primes P and @), P = @ if
and only if P = Q. For example, it follows that m[P] = n[Q] if and only if m = n and

P=qQ.

A.3. Proofs Omitted From Section 4.2

This section provides a proof of Theorem 9, that P — @ if and only if there is R with
P 5 R and R = Q. We prove each direction separately, starting with the right-to-left
implication.

First, we need the following lemmas:

Lemma 33. If P 25 P/ then P = (vp)(PL | M.P,) with P' = (vp)(P, | P2) and
n(M)N{p} = 2.
Proof. Only (Trans Cap) may derive the judgment P M, P'. So we have P >

(wp)(M.P)Ps, P' = (vD)(P, | P»), M € {inn, out n,open n}, and n ¢ {p}. By Proposi-
tion 5, P = (vp)(M.Py | Py). Moreover, fn(M) = {n}, so the result follows. O

We use the following to establish the right-to-left direction of Theorem 9.
Proposition 34. If P /5 P’ then P — P'.

Proof. By induction on the derivation of P —— P’. We examine one case:
(Trans In)We have P > (vp)(n[Q])R, @ 2% Q. R > (vi)(m[R')R", and P' =
(wp, ™) (m[n]Q"]| R'] | R") with {7} Nfn(n[Q]) = @. By Lemma 5, P = (vp)(n[Q] | R).

By Lemma 33, @ = (¢q)(Q1 | in m.Q2), with Q' = (vq)(Q1 | Q2) and n ¢ {g}. Since
the names ¢ are bound, we may assume that {¢} N fn(m[R']) = @. By Lemma 5,

R = (vF)(m[R'] | R"). Hence, we have:
Po= @p)n[)(@Q | innQ)]| (vi)(m[R]|R"))

Equational Properties of Mobile Ambients 25

= (Wi, M) ((vd)(n[Q | inn.Qo] | m[R']) | R")
= (a7 ((vd)(mn[Q:1 | Q2] | R']) | R")
= (M) (mqn[Q] | R']| R")
= P!
The other cases follow similarly.]

Next, we prove a couple of lemmas needed for proving the left-to-right direction of
Theorem 9.

Lemma 35. If P = Q and Q — Q' then there is P’ such that P = P’ and P' = Q'.

Proof. By induction on the derivation of @ — Q'.

(Trans Cap)We have Q@ > (vi)(M.Q1)Q2, @ = (vF)(Q1 | Q2), and M € {in n, out n,
open n}, with n ¢ {7}. By Proposition 6, there are P; and P, with P > (vF)(M.Py) P,
P, = @1, and P, = Q2. By (Trans Cap), P ELN (vF)(Py | P2), and we have that
(P | Py) = Q. |

(Trans In)We have Q > (vq)(n[Q1])Q2, @1 = Q), Q2 > (v (m[QL])QY, and Q' =
(vq, M) (mn[Q1] | Q5] | Q%) with {7} N fu(n[@1]) = @ and {7} N {7} = @. By
Proposition 6, we have P > (v@)(n[P1])Ps, with P, = @1 and P» = Q2. By in-
duction hypothesis, P, ™% P} with P/ = Q. By Proposition 6, P, > (v7)(m[Pi]) Py,
with Pj = @) and Py = QY. By Lemma 20, fan(n[P1]) = fn(n[Q1]), and therefore
{F} N fn(n[P]) = @. Let P' = (vq,7)(m[n[P]] | P3] | Py). By (Trans In), we have
P = P'. Moreover, P' = (v, 7)(m[n[Q}] | Q5] | @Y), that is, P' = Q'

(Trans Out)We have Q > (vp)(n[Q1])Q@2, @1 > (¥§)(m[Q3])Q4, and Qs oy Q%,
with Q' = wp)(Q2 | (vQ)(n[Q4] | m[Q4])) and n ¢ {gJ}. By Proposition 6, P >
(wp)(n[P1]) Py, with P, = @1 and P> = (2. By Proposition 6, P, > (vq){(m[Ps]) Py,
with P; = (3 and Py = 4. By induction hypothesis, Ps uty Pj with P = @Q%. Let
P' = wp)(Ps | (vq)(n[P4] | m[P4])). By (Trans Out), we have P — P'. Moreover,
P'= wi)(Q: | () (nlQu] | m[QL))), that is, P' = Q.

(Trans Amb)We have Q > (I(Q)Qs, @1 — Q1 @' = WAMQL] | @2)- By
Proposition 6, P > (vi){n[P]) P, with P, =)1 and P> = Q2. By induction hypoth-
esis, P, — P} with P} = Q!. Let P' = (vi")(n[P}] |). By (Trans Amb), P — P'.
Moreover, P’ = (vi)(n[Q]] | @2), that is, P' = Q'.

The other cases, (Trans Open) and (Trans I/0), follow similarly. U

Lemma 36.
(1) If P %5 P and n ¢ fn(a) there is Q with (vn)P — Q and Q = (vn)P'.
(2) If (vn)P = Q and n ¢ fn(a) there is P’ with P - P’ and Q = (vn)P'.

Proof. By inductions on the derivations of P — P’ and (vn)P -+ @ respectively.
We omit the details. O

The following establishes the left-to-right direction of Theorem 9.

Proposition 37. If P — Q then P 5= Q.

A.D. Gordon and L. Cardelli 26

Proof. By induction on the derivation of P —). The only interesting case is (Red =).
We omit the other cases, which are routine.

(Red =)Here, P = P', P' — @', and Q' = Q. By induction hypothesis, P’ —== Q'.

By (Struct Trans), this and Q' = Q imply P’ = Q. By Lemma 35, P = P’ and

P' 5= Q imply that P = Q. a

Proof of Theorem 9. P — @ if and only if P == Q.

Proof. Combine Proposition 34, Proposition 37, and rule (Red =).]

A 4. Proofs Omitted From Section 4.4

We provide proofs for Lemma 13 and Theorem 15.

Proof of Lemma 13. If H{P} > (vp)(P1) P> then either:

(1) H > (vp)(n[H'])P; and P, = n[H'{P}], or

(2) H > (vp){(P1)H' and P, = H'{P}, or

B)P>wp)(P)P',H=—|R, P, =P | R, and {p} N fn(R) = 2.

Proof. By induction on the derivation of H{P} > (vp)(P,)Ps.

(Harden Par 1)Then H{P} = Q1 | Q2, @1 > (wp)(P1)Ps, and P, = P; | ()2, with
{P} N fn(Q2) = @. Given that H{P} = Q1 | Q2, there are three cases to consider:
— Here H = — and P = ()1 | Q2. Case (3) of the lemma pertains, with R = 0.

— Here H = @1 | Hz and Q2 = Hx{P}. By (Harden Par 1) and {p} N fn(Q2) = @,
we may derive H{R} > (vp)(P1)(Ps | H2{R}) for all R with {p} N fn(R) = @.
Let H' = P3| Hy. We have H > (vp)(P1)H', and moreover, P, = P3 | Q2 = Ps |
Hy{P} = H'{P}. So case (2) of the lemma pertains.

— Here H = H; | Q2 and @Q; = H;{P}. By induction hypothesis, H;{P} >
(vp)(P,)P; implies that one of three cases holds:

(1) Hy > (wp){(n[H'])Ps and P, = n[H'{P}]. We can derive H > (vp)(n[H'])(Ps |
(Q)2) since {p} N fn(Q2) = @. Therefore, H > (vp)(n[H']) P2, as required to
establish case (1) of the lemma.

(2) Hy > (vp)(P1)H' and P; = H'{P}. We have H > (vp)(P1)(H' | Q2) since
{P} N fn(Q2) = @. Moreover, P, = Ps | Q2 = H'{P} | Q2. This establishes
case (2) of the lemma.

B)YP > (wp)(P)P', H = — | R, Ps = P' | R, and {p} N fn(R) = @. We have

=—|R|Q2, P, =P |R|Q2 and {pP} N (R | Q2) = @. This establishes
case (3) of the lemma.

We omit the remaining cases. U

For the purposes of proving Theorem 15, we adopt the following notation.

Interaction between a harness and a process: H e P~ R

I
Let H o P~ R if and only if there are H' and 7 with {7} N fn(P) = &,
and one of the following holds:

Equational Properties of Mobile Ambients 27

(Inter In) H = (v#)H'{m[— | R'] | n|
and R = (vP)H'{n[m[P' | R'] | R"]
(Inter Out) H = (v)H'{n[m[— | R']| R"]}, P e pr
and R = (viA)H'{m[P' | R'] | n[R"]}
(Inter Open) H = (vA)H'{— | n|R']}, P *5&" P,
and R = (v#/)H'{P' | R'}
(Inter Input) H = (v)H'{— | (M)}, P > (vD){(z).P")P",
and R = (vPA)H'{(vp)(P'{z<M} | P")}, with {p} N fn(M) =0
(Inter Output) H = (v#)H'{—| (z).R'}, P > (vp)({(M))P',
and R = (vP)H'{(vp)(P' | R'{z+<M})}, with {p} N fn(R') = @
(Inter Amb) P > (vp)(n[Q@])P' and one of the following holds:

() Q == @', H=(wn)H'{— | m[R]}, {F} N fa(m[R]) = 2,
and R = (vi)H'{(vp)(P" | m[n[Q'] | R'])}
(2)Q ™' Q', H = wi)H'{m[~ | R}, {#} N fa(m[R]) = &,
and R = (vi)H'{(vp)(n[Q'] | m[P" | R'])}
3)H = (v H'{m[R' | inn.R"] | =}, {Pt N fa(m[R' | inn.R"]) =@,
and R = (vP)H'{(vp)(n[Q | m[R" | R"]] [P")}
(4) H = (vi)H'{— | openn.R'}, n ¢ {7},
and R = (W) H'{(vp)(@ | P') | R}

R")}, P28 p,
}

The following lemmas about the H e P ~» R notation may easily be checked. (Lemma 40
is not a simple consequence of Lemma 39 since n may occur free in H.)

Lemma 38. If He P~» Rand H=H' and R = R’ then H' e P~ R'.

Lemma 39. If H e P~ R then H'{H} o P~ H'{R}.

Lemma 40. If H ¢ P~ R and n ¢ fn(P) then (vn)H o P~ (vn)R.
The following lemma is a simple specialization of Lemma 13:

Lemma 41. If H{P} > (vp)(n[P1]) P> then either:
(1) H = (wvp)(n[H'] | P») and P, = H'{P}, or
(2) H = (vp)(n[P1] | H') and P, = H'{P}, or
(3) P> (wp)(n[P)P',H=—|R, P, =P'| R, and {p} N fn(R) = @.
The next two lemmas follow from the definition of the M-transitions in terms of hard-
ening.
Lemma 42. If H{P} 2 Rfor M ¢ {in n, out n, open n} then either:
(1) H = w7)(M.R | H'), R= (v)(R' | H'{P}), {7} 0 ({n} U fa(P)) = &, or
QH=-|R, P P andR=P|R.

Lemma 43. If P | Q 2%, R then either:

WP P and R=P|Q,or
2 QL Q andR=P|Q.

A.D. Gordon and L. Cardelli 28

The following proposition is the main fact we need to prove in order to establish
Theorem 15.

Proposition 44. If H{P} - R then one of the following holds:

(1) there is a reduction P — P’ with R = H{P'}, or
(2) there is a reduction H — H' with R = H'{P}, or
(3)H e P~ R.

Proof. By induction on the derivation of H{P} - R.

(Trans Open)Here, H{P} > (vq)(n[Q1])Q2, and Q> "*=5" @}, and R = (v)(Q1 | Q).
We may assume that {¢} Nfn(P) = @. By Lemma 41, H{P} > (vq)(n[Q1])Q2 implies
there are three cases to consider:

(1) H = (vq)(n[H'] | Q2) and Q; = H'{P}. Let H" = (vq)(H' | Q%). In this case, we
can see, for all @, that H{Q} — H"{Q}, which is to say that H — H". Moreover,
R = (vq)(H'{P} | Qy) = H"{P}. Hence, case (2) pertains.
(2) H = (vd)(n]Q1] | H1) and Q, = H,{P}. By Lemma 42, H;{P} “%" Q), implies
either:
(a) Hy = (vP)(openn.R' | Hs), Q4 = (vF)(R' | Hy{P}) and {F} N ({n}Ufn(P)) =
@. Let H = (vq)(Q1 | (vF)(R' | Hz)). We have that H{Q} — H'{Q} for all
@, that is, H — H'. Moreover, R = (vq)(Q: | (v7)(R' | H2{P})) = H'{P}.
Hence, case (2) pertains.
b)H, =—-| R, P™" P' and Q) = P' | R'. From H = (v{)(R' | — | n[Q1]),
PP and R= (vq)(QL | P' | R') = w)(R' | P' | Q1) we may derive
H o P ~» R using (Inter Open). Hence, case (3) pertains.

BYP > (w{n[h])P', H=—-| R, Qs = P | R, and {¢} N fn(R") = @. From
P> (th)([Ql])P’ we get P = (vq)(n[@1] | P'). By Lemma 35, Q2 = P' | R
and Q, "2 Q2 imply there is @4 such that P’ | R’ ek 5 and Q) = Q). By
Lemma 43 there are two cases to consider:

(a)P’ TP and QY = P" | R'. We have P — (vq)(Q, | P"), H = — | R' and
R= (@) Q) = @ | |) = ()@ |) | . Hemc, caso (1
pertains.

b)R 5" R" and QY = P' | R". From R' %" R" it follows that R' =
(v)(Ry | open n.Ry) with R" = (v7)(Ry | R2) and n ¢ {7}. We have:

H = r)(Ry|— | openn.Rs)

R = (D@ Q)
= D)Qi|P'|R")
= (vq)(Qu | P'| (vr)(Ry | Ry))
= ()R | (v (Q1 | P') | Ry)

since we may assume that {g} N fn(Ry | R2) = @ and {F} N fn(Q1 | P') = @
and {¢} N {7} = . From {¢} N fn(R') = @ and R' “*%" R" it follows that
n ¢ {q}. From P > (v@){(n[Q1])P’, n ¢ {7}, and the two displayed equations,

Equational Properties of Mobile Ambients 29

we may derive H o P ~» R using clause (4) of (Inter Amb). Hence, case (3)
pertains.

(Trans Amb)Here, H{P} > (vq)(n[Q:])Q2, Q1 — @}, and R = (vq)(n[Q}] | Q2).
From H{P} > (vq){n[@h])Q= it follows that {q} N fn(P) = @, since fn(P) C
fn(H{P}). By Lemma 13, H{P} > (vq)(n[Q1])Q2 implies there are three cases to
consider:

(1) H > (vq)(n[H'])Q2 and @, = H'{P}. By induction hypothesis, Q; = H'{P}
Q)] implies one of the following:
(a) Here P — P' with Q] = H'{P'}. We have R = (vq)(n[H'{P'}] | Q2), and
H = (v§)(n[H'] | Q2) so case (1) pertains.
(b) Here H' — H" with Q| = H"{P}. From H > (v)(n[H'])Q2 and H' — H"
we can derive H — (vq)(n[H"] | Q2). We have R = (v§)(n[H"{P}] | Q2), so
case (2) pertains.

(c) Here H' @ P ~ Q). From H > (vq)(n[H'])Q2 we get that H = (vq)(n[H'] |
Q2). Also, R = (v§)(n[Q}] | Q2). By Lemma 39, H e P ~ ()} implies that
n[H'] | Q2 ® P ~ n[Q}] | Q2. By Lemma 40, {¢} N fn(P) = @ implies that
(w@(n[H'] | Q2) ® P~ (v (n[Q}] | Q2). By Lemma 38, H o P ~» R. Hence
case (3) pertains.

(2) H > (v@)(n[Q1]YHy and Q2 = H1{P}. Let H' = (vq)(n[Q}] | H1)- Since H =
(v@)(n[Q1] | H1) and Q; — @', we get that H — H'. Moreover, R = (vq)(n[Q}] |
H,{P}) = H'{P}. Hence case (2) pertains.

BYP > (v)(n[Q1)P', H = — | R', Q2 = P' | R, and {¢} N fn(R') = @. Let
P' = (vq)(n[Q}] | P). From Q1 — Q) and P = (vq)(n[Q.1] | P'), we get that
P — P'. Moreover, R = (v§)(n[Q}] | P' | R') = H{P'}. Hence case (1) pertains.

The cases for the rules (Trans In), (Trans Out), and (Trans I/O) are proved by arguments
similar to that for (Trans Open). Since the rule (Trans Cap) cannot derive a 7-transition,
this completes the analysis of all the rules that may derive H{P} - R.]

We now prove Theorem 15, which we restate in terms of the interaction predicate,
Heoe P~ R.

Proof of Theorem 15. H{P} — R if and only if:
(Act Proc) P — P’ with R= H{P'}, or

(Act Har) H — H' with R = H'{P}, or

(Act Inter) H e P~ R.

Proof. The right-to-left direction is a routine calculation. For the left-to-right direction,
suppose that H{P} — R. By Theorem 9, there is @ with H{P} = Q and Q = R. By
Proposition 44, there are three cases to consider:

(1) There is a reduction P — P’ with Q = H{P'}. From Q = R we get R = H{P'}, so
(Act Proc) applies.

(2) There is a reduction H — H' with @ = H'{P}. From Q = R we get R = H'{P}, so
(Act Har) applies.

A.D. Gordon and L. Cardelli 30

(3) We have H o P ~ (). By Lemma 38,) = R implies that H e P ~» R. Therefore,
(Act Inter) applies. 1

A.5. Proofs About Replication

In this section, we prove a series of lemmas about replicated processes. These lemmas are
needed in the next section, in the proof of Proposition 61, that the equivalence implicit
in the context lemma is a congruence with respect to replication.

We use the notation P* as an abbreviation for k copies of P running in parallel: we
inductively define P® = 0, and P**! = P | P*,

Lemma 45. If |P > (vp)(Q)R then there is P’ such that P > (vp)(Q)P' with R = P’ |
IP and {p} N fn(P) = 2.

Proof. The judgment !P > (vp){Q)R can only be derived using the rule (Harden Repl),
from a judgment P > (vp){Q)P' such that R = P’ | IP. By Lemma 22, P > (vp)(Q) P’
implies that fn(P) = fn((vp)(Q)P'), and therefore that {7} N fn(P) = @. O

Lemma 46. If P 2% (then there is R such that P -5 R and Q = R | |P.

Proof. The judgment !P 2 Q can only be derived using (Trans Cap) from a judgment
IP > (vp)(M.P"YP" with fn(M)N{p} = @ and Q = (vp)(P' | P"). By Lemma 45, there
is P"" with P > (vp)(M.P"YP", P" = P" | P, and {p} N fn(P) = &. Let R = (vp)(P' |
P""). By (Trans Cap), we have P 2%, R. Moreover, Q = (wp)(P'|P"|'P)=R|!P. O

Lemma 47. If |P -5 @ then there is R with P | P — R and Q = R | !P.

Proof. By a case analysis of the derivation of !P - Q.
(Trans Amb)Here, !P - (vp)(n[Q'] | P') derives from !P > (vp)(n[Q])P' and Q -

Q'. By Lemma 45, P > (vp)(n[Q])P' implies there is R’ such that P > (vp)(n[Q])R’,

P' = R' | IP, and fn(P) N {p} = @. By (Harden Par 1), P > (vp)(n[Q])R' and

{p} N fn(P) = @ imply that P | P > (vp)(n[Q])(R' | P). By (Trans Amb), this and

Q — Q' imply that P | P - R, where R = (vp)(n[Q'] | R' | P). Finally, we may

calculate: (vp)(n[Q'] | P") = (wp)(n[@'] | R' | 1P) = wp)(n[Q'] | R' | P|!P)=R|!P.

(Trans In)Here, !P —— (vp,7)(m[n[Q'] | R1] | Ry) derives from the judgments !P >
p)([QDR, Q@ % Q', and R > (vi)(m[R1])Rs, with {7} N fn(n[Q]) = @ and

{F} N {p} = @. By Lemma 45, |P > (vp)(n[Q])R implies there is R’ such that

P > (vp)(n[Q)R' and R = R' | IP with {p} N fn(P) = @.

By Proposition 6 and (Struct Symm), R > (vi){(m[R1])Rs and R = R' | |P imply

there are R} and R} such that R' | P > (vF){(m[R}])RS, Ry = R}, and R, = Rj).

Only two rules may derive the judgment R' | P > (vi){(m[R|])R:

(Harden Par 1)In this case, R' > (v7)(m[R|])R" with R, = R" | |P and {7} N
f(1P) = @. By (Harden Par 1), P > (vp)(n[Q])R’ and {p} N fn(P) = @ imply
that P | P > (vp)(n[Q])(R' | P). By (Harden Par 1), R' > (v#){(m[R}])R" and
{F} N fn(P) = @ imply that R' | P > (v7)(m[R{])(R" | P). By (Trans In),
PP > eRm@Q)ER | P), Q™% Q' and R' | P> (i) (mlR)(R | P) imply

Equational Properties of Mobile Ambients 31

that P | P - (vp,7)(m[n[Q'] | R] | R" | P). We know that fn(P) N {p,7} = @,
and hence we may calculate:

g, P)(mn[Q| Bi] | Bo) = (wp,7)(m[n[Q] | R1] | R5)
= (Wi, M)(mq[Q]| By] | R | IP)
= (B (mn[Q]| B[R | P) [P

(Harden Par 2)In this case, P > (vr)(m[R{])R" with R, = R' | R" and {7} N
fn(R'") = @. By Lemma 45, P > (v)(m[R}])R" implies there is R" such that
P > (vP)(m[R{])R" with R" = R"' | P and {¥} Nfn(P) = @. By (Harden Par 1),
P > (vp)(n[Q)R' and {p} Nfn(P) = @ imply that P | P > (vp)(n[Q])(R' | P). By
(Harden Par 2), {F} N fn(R') = @ and P > (vi')(m[R}])R"" imply that R’ | P >
(A (m[R])(R' | R"). By (Trans In), P | P> (vp)(n[Q])(R' | P), Q@ == Q', and
R'| P> (vi)(m[R])(R" | R") imply P | P — (vp,7)(m[n[Q'] | Ri] | R" | R").
We know that fn(P) N {p,7} = @, and hence we may calculate:

g, M) (mn[Q | Ra] | R2) = (vp,)(m[n[Q]| Bi] | R' | R)
= (BN (mn[QT|]| R"| (R" |P))
= (g, M(m[n[Q]| Bi]| R"| R") | P

The other cases—(Trans Out), (Trans Open), and (Trans I/O)—follow by similar argu-
ments. U

Lemma 48. If H{!P} — R then there is H' such that R = H'{!P} and for all %,
H{P¥2} — H'{P*}.

Proof. The proof is a case analysis induced by Theorem 15. We omit the details. [
Lemma 49. If H{!P} | n then there is k such that H{P*} |} n.

Proof. By induction on the derivation of H{!P} || n.

(Conv Exh)Here, H{!P} | n. By Proposition 14, this implies that either (1) H{Q@} | n
for all @, or (2) IP | n,and for all @, @ | n implies that H{Q} | n. In case (1), let k =
1 and we have H{P} | n. In case (2), Proposition 7 implies that !P > (vp)(n[P'])P"
with n ¢ {p}, for some names jand processes P’ and P". By Lemma 45, it follows that
there is P such that P > (vp)(n[P'])P"" with P" = P"" | !P and {p} N fn(P) = 2.
Proposition 7 now yields that P | n. Let k = 1 and we get that H{P} | n.

(Conv Red)Here, H{!P} — () and @ | n. By Lemma 48, H{!P} — @ implies there is
H' such that Q = H'{!P} and, for all j, H{P/*?} — H'{P/}. By Lemma 2, there
is a derivation of H'{!P} | n with the same depth of inference as the derivation
of @ U n. By induction hypothesis, there is k such that H'{P*} | n. Now, we
have that H{P**?} — H'{P*}. By (Conv Red), this and H'{P*} || n imply that
H{P**2} | n. U

A.D. Gordon and L. Cardelli 32

A.6. Proofs Omitted From Section 4.3

The purpose of this section is to prove our context lemma, Theorem 12. Roughly speaking,
the context lemma asserts that the distinctions made by all contexts are the same as
the distinctions made by harnesses. To prove the context lemma, it is convenient to
introduce the following auxiliary equivalence, defined in terms of harnesses. Recall that a
substitution, o, be alist 1< My, ..., xp< M}, where the variables z1, ..., xj are pairwise
distinct, and fv(M;) = @ for each i € 1..k.

The Equivalence Implicit in the Context Lemma: P ~ @

I
Let P ~ @ if and only if for all substitutions ¢ with dom (o) = fo(P) U fv(Q),
and for all closed harnesses H and names n, that H{Po} § n & H{Qo} | n.

Next, we prove a series of lemmas, which taken together imply Proposition 64, that
the auxiliary equivalence P ~ @ is a congruence. The context lemma then follows easily.

Proposition 50. The relation P ~ () is an equivalence, that is, reflexive, transitive, and
symmetric. Moreover, if P = () then P ~ Q.

Proof. That P ~ @ is an equivalence follows easily from its definition. Suppose that
P = Q. Consider any substitution ¢ such that fu(P) U fu(Q) = dom(o). Structural
congruence is preserved by substitutions, so Po = Qo. Moreover, structural congruence
is a congruence, so H{Pc} = H{Qc}. By Lemma 2, it follows that for all n, H{Pco} |
n < H{Qo} | n. Therefore, P ~ Q.]

Proposition 51. If P ~ P' then P | Q ~ P' | Q.

Proof. Consider any substitution o with dom(o) = fu(P | Q) U fu(P' | @), and any
closed harness H and any name n. Let H' = H{— | Qo}. Since fv(Q) C dom(o), the
harness H' is closed. Let ¢’ be the restriction of o to the domain fu(P)U fu(P'). We have
that:

H{(P|Q)o} = H'{Po'}
H{(P'|Q)o} = H{P'o'}

Now, suppose H{(P | Q)o} | n, that is, H'{Po'} | n. This and P ~ P’ imply that
H'{P'¢'} | n, which is to say, H{(P' | @)o} | n. A symmetric argument establishes
that H{(P' | Q)o} | n implies H{(P | Q)o} | n. Therefore, P | Q ~ P' | Q. 1

Lemma 52. If m # n, then (vn)P |} m < P | m.

Proof. An induction on the derivation of P |} m establishes that (vn)P | m, using
(Harden Res) and Proposition 7. On the other hand, an induction on the derivation of
(vn)P | m establishes that P || m, using Lemma 2, Theorem 9, and Lemma 36. |

Proposition 53. If P ~ P' then (vn)P ~ (vn)P'.

Proof. Consider any substitution o with dom (o) = fo((vn)P) U fo((vn)P'), that is,
dom(o) = fu(P) U fu(P'). Consider any closed harness H and any name m. Since the

Equational Properties of Mobile Ambients 33

name n is bound, we may assume that n ¢ fn(o(z)) for all z € dom(o), that n ¢ fn(H)
and that m # n. We have that:

H{((vn)P)o} = (vn)(H{Po})
H{((wn)P)o} = (vn)(H{P'c})

By definition of P ~ P', it follows that H{Po} | m < H{P'c} | m. By Lemma 52, it fol-
lows that (vn)(H{Po}) } m < (vn)(H{P'c}) | m, which is to say that H{((vn)P)o} |
m < H{((vn)P")o} | m. It follows that (vn)P ~ (vn)P". 1

Lemma 54. If M is not a name and H{M[P]} | m then H{0} | m.

Proof. By induction on the derivation of H{M[P]} |} m, with appeal to Proposition 14,
and the activity lemma, Theorem 15. An ambient M[P], where M is not a name, cannot
participate in any transitions. |

Proposition 55. If P ~ P’ then M[P] ~ M[P'].

Proof. Consider any substitution o with dom(o) = fu(M[P]) U fo(M[P']), that is,
dom(o) = fu(M) U fo(P) U fu(P"). Consider any closed harness H and any name m.
Either Mo is a name n, or not. If not, we get that H{(M[P])o} | m & H{0} | m &
H{(M[P'])c} U m from Lemma 18 and Lemma 54. On the other hand, suppose that
Mo is the name n. Let H' = H{n[—]}. Given that H is closed, so is H'. We have that:

H{(M[P))o} = H'{Po}
H{(M[P)o} = H'{P's}

Now, suppose H{(M[P])o} | m, that is, H'{Po} || m. This and P ~ P’ imply that
H'{P'c} | m, which is to say, H{(M[P'])o} {J m. A symmetric argument establishes
that H{(M[P'])c} | m implies H{(M[P])o} | m. Therefore, whether or not M is a
name, M[P] ~ M[P']. U

The relation M > € in the following lemma is as defined in Appendix A.2.
Lemma 56. M.P — @ if and only if M > € and P — Q.

Proof. The right-to-left direction follows from the fact that M > e implies that M.P =
P. For the other direction, M.P — () implies, by Theorem 9 that there is R with
M.P - R and R = Q. An inspection of the rules for deriving 7-transitions reveals that
the first step in deriving M.P — R is a hardening M.P > C, where the prime of the
concretion C' is either an ambient or an output. Therefore, the second case of Lemma 28
must hold, and we have that M > ¢ and P > C. It follows that P —— R, and therefore
that P — Q. |

Lemma 57. If M.P -~ P' then either:
(1) M > NNN"and P' = N'.P, or
(2) M >eand P25 P,

A.D. Gordon and L. Cardelli 34

Proof. By definition, M.P Nopr implies that M.P > (vp)(N.P)P, with P' =
(vp)(Py | P2) and fn(N) N {p} = @. By Lemma 28, one of two cases arises. In the first
case, M > N.N', (vp)(N.P1)P, = (v){N.R)0, and R = N'.P. So = @, P, = R, and
P, = 0. Therefore, P’ = R | 0 = N'.P. In the second case, M > e and P > (vp)(N.P,)P;,.
By (Trans Cap), P -, (vp)(Py | P2) = P'. 1

Lemma 58. Consider any closed P and P’ such that P ~ P'. If H{M.P} || n then
H{M.P'} | n.

Proof. By induction on the derivation of H{M.P} | n.

(Conv Exh)Here H{M.P} | n, and we are to show that H{M.P'} | n. By Proposi-
tion 14, either (1) H{Q} | n for all @, or (2) M.P | n, and for all @, @ | n im-
plies that H{Q} | n. In case (1), we immediately get that H{M.P'} | n, and hence
H{M.P'} |} nby (Conv Exh). In case (2), M.P | n implies that M.P > (vi¥)(n[R1])R2
with n ¢ {F} by Proposition 7. By Lemma 28, M.P > (v)(n[R;])Rz implies that
M > eand P > (vi)(n[R1])Rz2. (The first clause of Lemma 28 cannot apply since the
prime of the concretion (v)(n[R;])R2 is an ambient and not an action.) By Propo-
sition 7 and (Conv Exh), we get that P |} n. Since P ~ P'| it follows that P’ |} n.
So there is P"” such that P' —* P" and P" | n. We have H{M.P'} = H{P'} from
M >¢,and H{P'} —»* H{P"}, and H{P"} | n, by the property of H obtained from
Proposition 14 above. These three facts imply that H{M.P'} | n.

(Conv Red)Here H{M.P} — R and R | n. By Theorem 15, one of the following cases
must hold:

(Act Proc)Then M.P — R' with R = H{R'}. By Lemma 56, we have that M > ¢
and P - R'. If M > ¢, then H{M.P} = H{P}, so H{P} | n. Since P ~ P/,
H{P} | n implies that H{P'} || n. From M > ¢, we get that H{M.P'} = H{P'},
and therefore that H{M.P'} || n.

(Act Har)Then H — H' with R = H'{M.P}. By Lemma 2, R = H'{M.P} implies
that H'{M.P} | n with the same depth of inference as R || n. By induction
hypothesis, we get H'{M.P'} | n too. From H — H' we get that H{M.P'} —
H'{M.P'}, and hence that H{M.P'} | n.

(Act Inter)Then there are H' and # with {7} N fn(M.P) = @&, and one of several
cases holds. We consider just one; the others follow by similar arguments.

(Inter In)Here we have H = (v#)H'{m[— | R'] | n[R"]}, M.P =% P" and
R = (vi)H'{n[m[P" | R'] | R"]}. By Lemma 57, M.P 2% P" implies that
one of two cases must hold. 4
In the first case, M > inn.N' and P" = N'.P. Here, M.P' 25 N'.P’, and
therefore we have:

H{M.P}y 5 (vi)H'{n[m[N'.P'"|R']|R"]}
R = (WA)H'{n[m[N'.P|R]|R")}
By induction hypothesis, R |} n and Lemma 2 imply that
(A H {n[m[N".P"| R’} | R"]} U n

Equational Properties of Mobile Ambients 35

and therefore that H{M.P'} | n.

In the second case, M > ¢ and P % P". In this case, H{M.P} = H{P},
and H{M.P'} = H{P'}. Therefore H{M.P} | n and P ~ P’ imply that
H{M.P'} | n. |

Proposition 59. If P ~ P' then M.P ~ M.P'.

Proof. Consider any substitution o with dom (o) = fo(M.P)Ufv(M.P'), and any closed
harness H and any name m. By Lemma 58, we get that H{Mo.Po)} | m if and only if
H{Mo.P'o)} | m. Hence, M.P ~ M.P'. 1

Lemma 60. If H{P} | n then H{P | Q} | n.

Proof. Suppose H{P} || n. Let H' = H{P | —}. We have that H{P} = H{P | 0} =
H'{0}. Hence, by Lemma 2, H{P} | n implies H'{0} | n. By Lemma 18, this implies
H'{Q} U n, which is to say that H{P | Q} | n. U

Proposition 61. If P ~ P’ then !P ~ [P’

Proof. Consider any substitution o with dom(c) = fo(!P)U fu(!P'), that is, dom (o) =
fo(P)Ufu(P"). Consider any closed harness H and any name n. Suppose that H{(!P)o} |
n. By Lemma 49, there is k such that H{(Po)*} || n, which is to say H{P*s} | n.
By Proposition 51, P¥ ~ P'*. Therefore, H{P*c} |} n implies H{P"*¢} | n, which
is to say H{(P'o)*} |} n. By Lemma 60, this implies H{(P'o)* | {(P's)} | n. Since
H{'P'c} = H{(P'o)* | |(P'0)}, it follows that H{!P'c} || n, that is, H{('P')o} | n. By
symmetric reasoning, H{(!P")o} | n implies H{(!P)o} | n. U

Lemma 62. Consider any P and P’ such that P ~ P' and fu(P) U fo(P') C {z}. If
H{(z).P} | n then H{(z).P'} | n.

Proof. By induction on the derivation of H{(z).P} | n.

(Conv Exh)Here H{(z).P} | n. By Proposition 14, either H{Q} | n for all @, or
(z).P | n. In the first case, we get H{(z).P'} | n. In the second case, Proposi-
tion 7 implies that (z).P hardens to a concretion whose prime is an ambient. This is
impossible, so the second case cannot arise.

(Conv Red)Here H{(z).P} — R and R | n. By Theorem 15, one of the following cases
must hold:

(Act Proc)Then (x).P — R’ with R = H{R'}. This case cannot arise, since (z).P
has no 7-transitions.

(Act Har)Then H — H' with R = H'{(z).P}. By Lemma 2, R = H'{(z).P}
implies that H'{(z).P} | n with the same depth of inference as R | n. By
induction hypothesis, we get H'{(z).P'} | n too. From H — H' we get that
H{(z).P'} - H'{(x).P'}, and hence that H{(z).P'} | n.

(Act Inter)Then H e (z).P ~ R. By analysing the rules of interaction, H e (z).P ~
R can only be derived using (Inter Input) given that H = (vF)H'{— | (M)},
().P > (vp){(x).P1)P, and R = (vi)H'{(vp)(Pi{z+M} | P)}, with {p} N
(M) = @ and {7} N fn(P) = @. From (z).P > (vp){(z).P1) P, it follows that

A.D. Gordon and L. Cardelli 36

=@, P = P, P, = 0. Therefore, R = (vi)H'{P{x+<M}}. We have that
vi)H'{P{z+M}} | n. By assumption, this implies that (v7)H'{P'{z+M}} |

Now, H{(z).P'} = (wP)H'{(z).P' | (M)} — (vF)H'{P'{x+M}}. Therefore,
H{(z).P'} § n.

Proposition 63. If P ~ P’ then (z).P ~ (x).P'.

S o

Proof. Consider any substitution o with dom(o) = fv((z).P) U fo((z).P'), that is,
dom(o) = (fo(P) U fu(P")) — {z}. From P ~ P’ it follows that Po ~ P'c and that
fo(Po)U fuo(P'o) C {z}. Consider any closed harness H and any name n. By Lemma 62,
we get H{(z).Po)} { n if and ounly if H{(z).P'c)} | n. Hence, (x).P ~ (z).P’. U

Proposition 64. If P ~ P’ then C(P) ~ C(Q).

Proof. Combine Proposition 50, Proposition 51, Proposition 53, Proposition 55, Propo-
sition 59, Proposition 61, and Proposition 63. |

We end by proving that the relations P ~ @ and P ~) are one.
Proposition 65. If P ~ @Q then P ~ Q.

Proof. We must show for all names n and contexts C with C(P) and C(Q) closed,
that C(P) | n & C(Q) | n, assuming that P ~ (). By Proposition 64, P ~ @) implies
that C(P) ~ C(Q). Therefore C(P) | n & C(Q) | n follows from the definition of
C(P) ~ C(Q), given that C(P) and C(Q) are closed. 1

To show the converse implication, we need the following combinator.

A substitution combinator: subst xt M P
I 1

subst x M P = (vm)(vn)(open n | m[(M) | (x).n[out m.open m.P]))
for {m,n}Nfn(M.P) =@

Lemma 66. For all P and M, subst x M P ~ P{x<M}.

Proof. Consider the processes defined by the following, where {m,n} N fn(M.P) = @.

R = (vm)(wn)(open n | m[(M) | (x).n[out m.open m.P]])
Ry = (vm)(vn)(open n | m[n[out m.open m.P{x+M}]])
Rs = (vm)(vn)(open n | n[open m.P{x+M}]|m])

Ry = (vm)(open m.P{x<M} | m[])

Rs = P{z+M}

We omit the details, but using the activity lemma we can show that R; ~ R;y; for
i € 1.4, much as in the proof of Lemma 19. By transitivity, we obtain Ry ~ Rs, that is,
subst x M P ~ P{z<M}. U

Lemma 67. If P~ @ then P{z+M} ~ Q{z+<M}.

Equational Properties of Mobile Ambients 37

Proof. From P ~ @) it follows that subst x M P ~ subst x M (). By Lemma 66 and
Proposition 65, we get that subst « M P ~ P{z+M} and subst x M Q ~ Q{z+M}.
Combining these equations yields P{z+ M} ~ Q{z<M}. 1

Proposition 68. If P ~ @ then P ~ Q.

Proof. Suppose P ~ (). Consider any substitution o with dom (o) = fuo(P) U fu(Q),
and any closed harness H and name n. By Lemma 67, P ~ @ implies that Po ~ Qo.
Since ~ is a congruence, Proposition 1, we get that H{Po} ~ H{Qo}. By definition of
H{Po} ~ H{Qo}, the fact that H{Po} and H{Qo} are closed implies that H{Po} |
n < H{Qo} | n. Therefore P ~ Q.]

Proof of Theorem 12. For all processes P and @), P ~ @ if and only if for all
substitutions o with dom(co) = fo(P) U fv(Q), and for all closed harnesses H and names
n, that H{Po} § n < H{Qo} | n.

Proof. By definition of P ~ @, this is equivalent to showing that P ~ @ if and only if
P ~ @, for all P and @), which follows from Proposition 65 and Proposition 68.]

Appendix. References

Abadi, M., C. Fournet, and G. Gonthier (1998). Secure communications implementation
of channel abstractions. In 13th IEEE Symposium on Logic in Computer Science
(LICS’98), pp. 105-116.

Abadi, M. and A. D. Gordon (1999). A calculus for cryptographic protocols: The spi
calculus. Information and Computation 148, 1-70.

Berry, G. and G. Boudol (1992). The chemical abstract machine. Theoretical Computer
Science 96(1), 217-248.

Cardelli, L. (1999). Abstractions for mobile computation. In C. Jensen and J. Vitek
(Eds.), Secure Internet Programming: Issues in Distributed and Mobile Object Sys-
tems, Volume 1603 of Lecture Notes in Computer Science, pp. 51-94. Springer.

Cardelli, L. and A. D. Gordon (1999). Types for mobile ambients. In 26th ACM Sym-
posium on Principles of Programming Languages (POPL’99), pp. 79-92.

Cardelli, L. and A. D. Gordon (2000a). Anytime, anywhere: Modal logics for mo-
bile ambients. In 27th ACM Symposium on Principles of Programming Languages
(POPL’00), pp. 365-377.

Cardelli, L. and A. D. Gordon (2000b). Mobile ambients. Theoretical Computer Sci-
ence 240, 177-213.

De Nicola, R. and M. Hennessy (1984). Testing equivalences for processes. Theoretical
Computer Science 34, 83-133.

Fournet, C. and G. Gonthier (1996). The reflexive CHAM and the Join-calculus. In
23rd ACM Symposium on Principles of Programming Languages (POPL’96), pp.
372-385.

Fournet, C., J.-J. Lévy, and A. Schmitt (2000). An asynchronous distributed imple-
mentation of mobile ambients. In IFIP International Conference on Theoretical

A.D. Gordon and L. Cardelli 38

Computer Science (IFIP TCS 2000), Volume 1872 of Lecture Notes in Computer
Science, pp. 348-364. Springer.

Gordon, A. D. and L. Cardelli (1999). Equational properties of mobile ambients. In
Foundations of Software Science and Computation Structures (FoSSaCS’99), Vol-
ume 1578 of Lecture Notes in Computer Science, pp. 212-226. Springer. An ex-
tended version appears as Microsoft Research Technical Report MSR-TR-99-11,
April 1999.

Levi, F. and D. Sangiorgi (2000). Controlling interference in ambients. In 27th ACM
Symposium on Principles of Programming Languages (POPL’00), pp. 352-364.
Merro, M. and M. Hennessy (2002). Bisimulation congruences in safe ambients. In 29th

ACM Symposium on Principles of Programming Languages (POPL’02). To appear.

Milner, R. (1977). Fully abstract models of typed lambda-calculi. Theoretical Computer
Science 4, 1-23.

Milner, R. (1999). Communicating and Mobile Systems: the w-Calculus. Cambridge
University Press.

Morris, J. H. (1968). Lambda-Calculus Models of Programming Languages. Ph. D. the-
sis, MIT.

Plotkin, G. D. (1977). LCF considered as a programming language. Theoretical Com-
puter Science 5, 223-255.

Sangiorgi, D. (2001). Extensionality and intensionality of the ambient logics. In 28th
ACM Symposium on Principles of Programming Languages (POPL’01), pp. 4-13.

Sangiorgi, D. and D. Walker (2001). The w-calculus: a Theory of Mobile Processes.
Cambridge University Press.

Vigliotti, M. G. (1999). Transition systems for the ambient calculus. Master’s thesis,
Imperial College of Science, Technology and Medicine.

Vitek, J. and G. Castagna (1999). Seal: A framework for secure mobile computations.
In Internet Programming Languages, Volume 1686 of Lecture Notes in Computer
Science, pp. 47-77. Springer.

