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The ambient 
al
ulus is a pro
ess 
al
ulus for des
ribing mobile 
omputation. We

develop a theory of Morris-style 
ontextual equivalen
e for proving properties of mobile

ambients. We prove a 
ontext lemma that allows derivation of 
ontextual equivalen
es by


onsidering 
ontexts of a parti
ular limited form, rather than all arbitrary 
ontexts. We

give an a
tivity lemma that 
hara
terizes the possible intera
tions between a pro
ess and

a 
ontext. We prove several examples of 
ontextual equivalen
e. The proofs depend on


hara
terizing redu
tions in the ambient 
al
ulus in terms of a labelled transition system.

1. Motivation

This paper develops tools for proving equations in the ambient 
al
ulus.

In earlier work (Cardelli and Gordon 2000b), we introdu
ed the ambient 
al
ulus by

adding ambients|mobile, hierar
hi
al prote
tion domains|to a framework for 
on
ur-

ren
y extra
ted from the �-
al
ulus (Milner 1999; Sangiorgi and Walker 2001). The

ambient 
al
ulus is an abstra
t model of mobile 
omputation, in
luding both mobile

software agents and mobile hardware devi
es. The 
al
ulus models a

ess 
ontrol as well

as mobility. For example, a pro
ess may move into or out of a parti
ular ambient only if

it possesses the appropriate 
apability.

This paper fo
uses on behavioural equivalen
e of mobile ambients. In parti
ular, we

study a form of Morris' 
ontextual equivalen
e (Morris 1968) for ambients and develop

some proof te
hniques. Our motivation is to prove a variety of equations. Some of these

equations express and 
on�rm some of the informal prin
iples we had in mind when

designing the 
al
ulus. As in other re
ent work (Abadi, Fournet, and Gonthier 1998;

Abadi and Gordon 1999), some of the equations establish se
urity properties of systems

modelled within the 
al
ulus.

The in
lusion of primitives for mobility makes the theory of the ambient 
al
ulus more


omplex than that of its an
estor, the �-
al
ulus. The main 
ontribution of this paper is

to demonstrate that some standard tools|a labelled transition system, a 
ontext lemma,

and an a
tivity lemma|may be re
ast in the setting of the ambient 
al
ulus. Moreover,

the paper introdu
es a new te
hnique|based on what we 
all the hardening relation|for

fa
toring the de�nition of the labelled transition system into a set of rules that identify

the individual pro
esses parti
ipating in a transition, and a set of rules that express how

the parti
ipant pro
esses intera
t.
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We begin, in Se
tion 2, by reviewing the syntax and redu
tion semanti
s of the ambient


al
ulus. The semanti
s 
onsists of a stru
tural 
ongruen
e relation P � Q (whi
h says

that P may be stru
turally rearranged to yield Q) and a redu
tion relation P ! Q

(whi
h says that P may evolve in one step of 
omputation to yield Q).

We introdu
e 
ontextual equivalen
e P ' Q in Se
tion 3. We de�ne a predi
ate, P + n,

whi
h means intuitively that an observer may eventually dete
t an ambient named n at

the top-level of the pro
ess P . Then we de�ne P ' Q to mean that, whenever P and Q

are pla
ed within an arbitrary 
ontext 
onstru
ted from the syntax of the 
al
ulus, any

observation made of P may also be made of Q, and vi
e versa. We give examples of pairs

of pro
esses that are equivalent and examples of pairs that are inequivalent.

In Se
tion 4, we des
ribe some te
hniques for proving 
ontextual equivalen
e. We in-

trodu
e a se
ond operational semanti
s for the ambient 
al
ulus based on a hardening

relation and a labelled transition system. The hardening relation identi�es the subpro-


esses of a pro
ess that may parti
ipate in a 
omputation step. We use the hardening

relation both for de�ning the labelled transition system and for 
hara
terizing whether

an ambient of a parti
ular name is present at the top-level of a pro
ess. Our �rst result,

Theorem 9, asserts that the � -labelled transition relation and the redu
tion relation are

the same, up to stru
tural 
ongruen
e. So our two operational semanti
s are equivalent.

The labelled transition system is useful for analyzing the possible evolution of a pro-


ess, sin
e we may read o� the possible labelled transitions of a pro
ess by inspe
ting

its synta
ti
 stru
ture. Our se
ond result, Theorem 12, is a 
ontext lemma that allows

us to prove 
ontextual equivalen
e by 
onsidering a limited set of 
ontexts, known as

harnesses, rather than all arbitrary 
ontexts. A harness is a 
ontext with a single hole

that is en
losed only within parallel 
ompositions, restri
tions, and ambients. The third

result of this se
tion, Theorem 15, is an a
tivity lemma that elaborates the ways in whi
h

a redu
tion may be derived when a pro
ess is inserted into a harness: either the pro
ess

redu
es by itself, or the harness redu
es by itself, or there is an intera
tion between the

harness and the pro
ess.

We exer
ise these proof te
hniques on examples in Se
tion 5, and 
on
lude in Se
tion 6.

Certain lemmas, propositions, and theorems are stated without proof in the main text.

Appendix A 
ontains the omitted proofs.

Earlier versions of this arti
le have appeared as a 
onferen
e paper and as a te
hni
al

report (Gordon and Cardelli 1999). The te
hni
al report in
ludes some details omitted

from proofs in Appendix A.

2. The Ambient Cal
ulus (Review)

We brie
y des
ribe the syntax and semanti
s of the 
al
ulus. We assume there are in�nite

sets of names and variables, ranged over by m, n, p, q, and x, y, z, respe
tively. The

syntax of the ambient 
al
ulus is based on 
ategories of expressions and pro
esses, ranged

over by M , N , and P , Q, R, respe
tively. The 
al
ulus inherits a 
ore of 
on
urren
y

primitives from the �-
al
ulus: a restri
tion (�n)P 
reates a fresh name n whose s
ope is

P ; a 
omposition P j Q behaves as P and Q running in parallel; a repli
ation !P behaves

as unboundedly many repli
as of P running in parallel; and the ina
tive pro
ess 0 does
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nothing. We augment these �-
al
ulus pro
esses with primitives for mobility|ambients,

n[P ℄, and the exer
ise of 
apabilities, M:P|and primitives for 
ommuni
ation|input,

(x):P , and asyn
hronous output, hMi.

Here is an example pro
ess that illustrates the new primitives for mobility and 
om-

muni
ation:

m[p[out m:in n:hMi℄℄ j n[open p:(x):Q℄

The e�e
t of the mobility primitives in this example is to move the ambient p out of

m and into n, and then to open it up. The input (x):Q may then 
onsume the output

hMi to leave the residue m[℄ j n[Qfx Mg℄. We may regard the ambients m and n in

this example as modelling two ma
hines on a network, and the ambient p as modelling a

pa
ket sent from m to n. Next, we des
ribe the semanti
s of the new primitives in more

detail.

An ambient n[P ℄ is a boundary, named n, around the pro
ess P . The boundary prevents

dire
t intera
tions between P and any pro
esses running in parallel with n[P ℄, but it does

not prevent intera
tions within P . Ambients may be nested, so they indu
e a hierar
hy.

For example, in the pro
ess displayed above, the ambient named m is a parent of the

ambient named p, and the ambients named m and n are siblings.

An a
tion M:P exer
ises the 
apabilities represented by M , and then behaves as P .

The a
tion either a�e
ts an en
losing ambient or one running in parallel. A 
apability is

an expression derived from the name of an ambient. The three basi
 
apabilities are in n,

out n, and open n. An a
tion in n:P moves its en
losing ambient into a sibling ambient

named n. An a
tion out n:P moves its en
losing ambient out of its parent ambient,

named n, to be
ome a sibling of the former parent. An a
tion open n:P dissolves the

boundary of an ambient n[Q℄ running in parallel; the out
ome is that the residue P of the

a
tion and the residue Q of the opened ambient run in parallel. In general, the expression

M in M:P may stand for a �nite sequen
e of the basi
 
apabilities, whi
h are exer
ised

one by one. Finite sequen
es are built up using 
on
atenation, writtenM:M

0

. The empty

sequen
e is written �.

The �nal two pro
ess primitives allow 
ommuni
ation of expressions. Expressions in-


lude names, variables, and 
apabilities. An output hMi outputs the expression M . An

input (x):P blo
ks until it may 
onsume an output running in parallel. Then it binds

the expression being output to the variable x, and runs P . In (x):P , the variable x is

bound; its s
ope is P . Inputs and outputs are lo
al to the en
losing ambient. Inputs and

outputs may not intera
t dire
tly through an ambient boundary. Hen
e we may think of

there being an impli
it input/output 
hannel asso
iated with ea
h ambient.

We formally spe
ify the syntax of the 
al
ulus as follows:

Expressions and Pro
esses:

M;N ::= expressions P;Q;R ::= pro
esses

x variable (�n)P restri
tion

n name 0 ina
tivity

in M 
an enter M P j Q 
omposition

out M 
an exit M !P repli
ation
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open M 
an open M M [P ℄ ambient

� null M:P a
tion

M:M

0

path (x):P input

hMi output

The general forms in M , out M and open M allow for the ambient to be an arbitrary


apability M . The only useful 
ases are for M to be a name, or a variable that gets

instantiated to a name. Similarly, the ambient syntax M [P ℄ allows M to be an arbitrary


apability. The only useful 
ase is forM to be a name, or a variable that gets instantiated

to a name.

The following table de�nes the sets fn(M) and fv (M) of free names and free variables

of a 
apability M , and the sets fn(P ) and fv (P ) of free names and free variables of a

pro
ess P .

Free Names and Variables of Capabilities and Pro
esses

fn(x) = ? fv(x) = fxg

fn(n) = fng fv(n) = ?

fn(in M) = fn(M) fv(in M) = fv (M)

fn(out M) = fn(M) fv(out M) = fv(M)

fn(open M) = fn(M) fv(open M) = fv (M)

fn(�) = ? fv(�) = ?

fn(M:M

0

) = fn(M) [ fn(M

0

) fv(M:M

0

) = fv(M) [ fv(M

0

)

fn((�n)P ) = fn(P )� fng fv((�n)P ) = fv (P )

fn(0) = ? fv(0) = ?

fn(P j Q) = fn(P ) [ fn(Q) fv(P j Q) = fv (P ) [ fv(Q)

fn(!P ) = fn(P ) fv(!P ) = fv(P )

fn(M [P ℄) = fn(M) [ fn(P ) fv(M [P ℄) = fv (M) [ fv (P )

fn(M:P ) = fn(M) [ fn(P ) fv(M:P ) = fv(M) [ fv(P )

fn((x):P ) = fn(P ) fv((x):P ) = fv(P )� fxg

fn(hMi) = fn(M) fv(hMi) = fv(M)

In situations where a pro
ess is expe
ted, we often write just M as a shorthand for

the pro
ess M:0. We often write just M [℄ as a shorthand for the pro
ess M [0℄. We write

(�~p)P as a shorthand for (�p

1

) � � � (�p

k

)P where ~p = p

1

; : : : ; p

k

.

If a phrase � is an expression or a pro
ess, we write �fx Mg and �fn Mg for the

out
omes of 
apture-avoiding substitutions of the expression M for ea
h free o

urren
e

of the variable x and the name n, respe
tively, in �. We identify pro
esses up to 
onsistent

renaming of bound names and variables. We say an expression M is 
losed if and only if

fv (M) = ?; similarly, a pro
ess P is 
losed if and only if fv(P ) = ?.

We formally de�ne the operational semanti
s of ambient 
al
ulus in the 
hemi
al style,

using stru
tural 
ongruen
e and redu
tion relations:

Stru
tural Congruen
e: P � Q

P j Q � Q j P P � P
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(P j Q) j R � P j (Q j R) Q � P ) P � Q

!P � P j !P P � Q;Q � R) P � R

(�n)(�m)P � (�m)(�n)P

n =2 fn(P )) (�n)(P j Q) � P j (�n)Q P � Q) (�n)P � (�n)Q

n 6= m) (�n)m[P ℄ � m[(�n)P ℄ P � Q) P j R � Q j R

P j 0 � P P � Q) !P � !Q

(�n)0 � 0 P � Q)M [P ℄ �M [Q℄

!0 � 0 P � Q)M:P �M:Q

�:P � P P � Q) (x):P � (x):Q

(M:M

0

):P �M:M

0

:P

Redu
tion: P ! Q

n[in m:P j Q℄ j m[R℄! m[n[P j Q℄ j R℄ P ! Q) P j R! Q j R

m[n[out m:P j Q℄ j R℄! n[P j Q℄ j m[R℄ P ! Q) (�n)P ! (�n)Q

open n:P j n[Q℄! P j Q P ! Q) n[P ℄! n[Q℄

hMi j (x):P ! Pfx Mg P

0

� P; P ! Q;Q � Q

0

) P

0

! Q

0

For example, the pro
ess displayed earlier has the following redu
tions:

m[p[out m:in n:hMi℄℄ j n[open p:(x):P ℄ ! m[℄ j p[in n:hMi℄ j n[open p:(x):P ℄

! m[℄ j n[p[hMi℄ j open p:(x):P ℄

! m[℄ j n[hMi j (x):P ℄

! m[℄ j n[Pfx Mg℄

The syntax allows the formation of 
ertain pro
esses that may not parti
ipate in any

redu
tions, su
h as the a
tion n:P and the ambient (in n)[P ℄. The presen
e of these

nonsensi
al pro
esses is harmless as far as the purposes of this paper are 
on
erned.

They may be ruled out by a simple type system (Cardelli and Gordon 1999).

This 
on
ludes our brief review of the 
al
ulus. Earlier papers (Cardelli 1999; Cardelli

and Gordon 2000b) explain in detail the motivation for our 
al
ulus, and give program-

ming examples.

3. Contextual Equivalen
e

Morris-style 
ontextual equivalen
e (Morris 1968) is a standard way of saying that two

pro
esses have the same behaviour: two pro
esses are 
ontextually equivalent if and

only if they admit the same elementary observations whenever they are inserted inside

any arbitrary en
losing pro
ess. In the setting of the ambient 
al
ulus, we shall de�ne


ontextual equivalen
e in terms of observing the presen
e, at the top-level of a pro
ess,

of an ambient whose name is not restri
ted.

Let us say that a pro
ess P exhibits a name n just if P is a pro
ess with a top-level

ambient named n, that is not restri
ted:
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Exhibition of a Name: P # n

P # n

�

= there are ~m, P

0

, P

00

with n =2 f~mg and P � (� ~m)(n[P

0

℄ j P

00

)

Let us say that a pro
ess P 
onverges to a name n just if after some number of

redu
tions, P exhibits n:

Convergen
e to a Name: P + n

(Conv Exh)

P # n

P + n

(Conv Red)

P ! Q Q + n

P + n

Next, let a 
ontext, C(), be a pro
ess 
ontaining zero or more holes. We write a hole

as (). We write C(P ) for the out
ome of �lling ea
h of the holes in the 
ontext C with

the pro
ess P . Variables and names free in P may be
ome bound in C(P ). For example,

if P = n[hxi℄ and C() = (�n)(x):(), the variable x and the name n have be
ome bound

in C(P ) = (�n)(x):n[hxi℄. Hen
e, we do not identify 
ontexts up to renaming of bound

variables and names.

Now, we 
an formally de�ne 
ontextual equivalen
e of pro
esses:

Contextual Equivalen
e: P ' Q

P ' Q

�

= for all n, C() with C(P ), C(Q) 
losed, C(P ) + n, C(Q) + n

This equivalen
e is a form of the may-testing equivalen
e studied by De Ni
ola and

Hennessy (1984). De Ni
ola and Hennessy also study must-testing equivalen
e and the

Egli-Milner equivalen
e; these also 
ould be re
ast in the setting of the ambient 
al
ulus.

The following two propositions state some basi
 properties enjoyed by 
ontextual equiv-

alen
e. Let a relation R be a pre
ongruen
e if and only if, for all P , Q, and C(), if P R Q

then C(P ) R C(Q). If, in addition, R is re
exive, symmetri
, and transitive, we say it

is a 
ongruen
e. For example, the stru
tural 
ongruen
e relation has these properties.

Moreover, by a standard argument, so has 
ontextual equivalen
e:

Proposition 1. Contextual equivalen
e is a 
ongruen
e.

Stru
tural 
ongruen
e preserves exhibition of or 
onvergen
e to a name, and hen
e is

in
luded in 
ontextual equivalen
e:

Lemma 2. Suppose P � Q. If P # n then Q # n. Moreover, if P + n then Q + n with

the same depth of inferen
e.

Proof. For part (1), P # n, by de�nition, means that there are ~m, P

0

, P

00

with n =2 f~mg

and P � (� ~m)(n[P

0

℄ j P

00

). Sin
e P � Q, we have Q � (� ~m)(n[P

0

℄ j P

00

), and hen
e

Q # n. Part (2) follows by a 
ase analysis of the derivation of P + n.

Proposition 3. If P � Q then P ' Q.

Proof. Consider any 
ontext C() and any name n, su
h that C(P ) + n. Sin
e � is
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a 
ongruen
e, P � Q implies C(P ) � C(Q). By Lemma 2, this and C(P ) + n imply

C(Q) + n. Similarly, we 
an show that for all C and n, C(Q) + n implies C(P ) + n. Hen
e

P ' Q.

The following two examples illustrate that to show that two pro
esses are 
ontextually

inequivalent, it suÆ
es to �nd a 
ontext that distinguishes them.

Example 1. If m 6= n then m[℄ 6' n[℄.

Proof. Consider the 
ontext C() = (). Sin
e C(m[℄) � m[℄, we have C(m[℄) # m. By

(Conv Exh), C(m[℄) + m. On the other hand, the pro
ess n[℄ has no redu
tions, and does

not exhibit m. Hen
e, we 
annot derive C(n[℄) + m.

Example 2. If m 6= n then open m:0 6' open n:0.

Proof. Let C() = m[p[℄℄ j (). Then C(open m:0) + p but not C(open n:0) + p.

On the other hand, it is harder to show that two pro
esses are 
ontextually equivalent,

sin
e one must 
onsider their behaviour when pla
ed in an arbitrary 
ontext. For example,


onsider the following 
ontextual equivalen
e:

Example 3. (�n)(n[℄ j open n:P ) ' P if n =2 fn(P ).

The restri
tion of the name n in the pro
ess (�n)(n[℄ j open n:P ) implies that no


ontext may intera
t with this pro
ess until it has redu
ed to P . Therefore, we would

expe
t the equation to hold. But to prove this and other equations formally we need

some further te
hniques, whi
h we develop in the next se
tion. We return to Example 3

in Se
tion 5.

4. Tools for Proving Contextual Equivalen
e

The tools we introdu
e are relations and theorems that help prove 
ontextual equivalen
e.

4.1. A Hardening Relation

In this se
tion, we de�ne a relation that expli
itly identi�es the top-level subpro
esses

of a pro
ess that may be involved in a redu
tion. This relation, the hardening relation,

takes the form,

P > (�p

1

; : : : ; p

k

)hP

0

iP

00

where the phrase (�p

1

; : : : ; p

k

)hP

0

iP

00

is 
alled a 
on
retion. We say that P

0

is the prime

of the 
on
retion, and that P

00

is the residue of 
on
retion. Both P

0

and P

00

lie in the

s
ope of the restri
ted names p

1

, . . . , p

k

. The intuition is that the pro
ess P , whi
h

may have many top-level subpro
esses, may harden to a 
on
retion that singles out a

prime subpro
ess P

0

, leaving behind the residue P

00

. By saying that P

0

has a top-level

o

urren
e in P , we mean that P

0

is a subpro
ess of P not en
losed within any ambient

boundaries. In the next se
tion, we use the hardening relation to de�ne an operational
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semanti
s for the ambient 
al
ulus in terms of intera
tions between top-level o

urren
es

of pro
esses.

Con
retions were introdu
ed by Milner in the 
ontext of the �-
al
ulus (Milner 1999).

For the ambient 
al
ulus, we spe
ify them as follows, where the prime of the 
on
retion

must be an a
tion, an ambient, an input, or an output:

Con
retions:

C;D ::= 
on
retions

(�~p)hM:P iQ a
tion, M 2 fin n; out n; open ng

(�~p)hn[P ℄iQ ambient

(�~p)h(x):P iQ input

(�~p)hhMiiQ output

The order of the bound names p

1

; : : : ; p

k

in a 
on
retion (�p

1

; : : : ; p

k

)hP

0

iP

00

does not

matter and they may be renamed 
onsistently. When k = 0, we may write the 
on
retion

as (�)hP

0

iP

00

.

We now introdu
e the basi
 ideas of the hardening relation informally. If P is an

a
tion in n:Q, out n:Q, open n:Q, an ambient n[Q℄, an input (x):Q, or an output hMi,

then P hardens to (�)hP i0. Consider two pro
esses P and Q. If either of these hardens

to a 
on
retion, then their 
omposition P j Q may harden to the same 
on
retion,

but with the other pro
ess in
luded in the residue of the 
on
retion. For example, if

P > (�)hP

1

iP

2

then P j Q > (�)hP

1

i(P

2

j Q). If a pro
ess P hardens to a 
on
retion,

then the repli
ation !P may harden to the same 
on
retion, but with !P in
luded in

the residue of the 
on
retion|a repli
ation is not 
onsumed by hardening. Finally, if a

pro
ess P hardens to a 
on
retion C, then the restri
tion (�n)P hardens to a 
on
retion

written (�n)C, whi
h is the same as C but with the restri
tion (�n) in
luded either in

the list of bound names, the prime, or the residue of C. We de�ne (�n)C by:

Restri
ting a Con
retion: (�n)C where C = (�~p)hP

1

iP

2

and n =2 f~pg

(1) If n 2 fn(P

1

) then:

(a) If P

1

= m[P

0

1

℄, m 6= n, n =2 fn(P

2

), let (�n)C

�

= (�~p)hm[(�n)P

0

1

℄iP

2

.

(b)Otherwise, let (�n)C

�

= (�n; ~p)hP

1

iP

2

.

(2) If n =2 fn(P

1

) let (�n)C

�

= (�~p)hP

1

i(�n)P

2

.

Next, we de�ne the hardening relation by the following:

Hardening: P > C

(Harden A
tion)

M 2 fin n; out n; open ng

M:P > (�)hM:P i0

(Harden �)

P > C

�:P > C

(Harden :)

M:(N:P ) > C

(M:N):P > C

(Harden Amb)

n[P ℄ > (�)hn[P ℄i0

(Harden Input)

(x):P > (�)h(x):P i0

(Harden Output)

hMi > (�)hhMii0
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(Harden Par 1) (for f~pg \ fn(Q) = ?)

P > (�~p)hP

0

iP

00

P j Q > (�~p)hP

0

i(P

00

j Q)

(Harden Par 2) (for f~qg \ fn(P ) = ?)

Q > (�~q)hQ

0

iQ

00

P j Q > (�~q)hQ

0

i(P j Q

00

)

(Harden Repl)

P > (�~p)hP

0

iP

00

!P > (�~p)hP

0

i(P

00

j !P )

(Harden Res)

P > C

(�n)P > (�n)C

For example, the pro
ess P = (�p)(�q)(n[p[℄℄ j q[℄) may harden in two ways:

P > (�)hn[(�p)p[℄℄i(�q)(0 j q[℄)

P > (�q)hq[℄i(�p)(n[p[℄℄ j 0)

The following is a basi
 property of hardening:

Lemma 4. If P > (�~p)hP

0

iP

00

then f~pg � fn(P

0

) and the names ~p are pairwise distin
t.

Proof. By indu
tion on the derivation of P > (�~p)hP

0

iP

00

.

The next two results relate hardening and stru
tural 
ongruen
e.

Lemma 5. If P > (�~p)hP

0

iP

00

then P � (�~p)(P

0

j P

00

).

Proposition 6. If P � Q and Q > (�~r)hQ

0

iQ

00

then there are P

0

and P

00

with P >

(�~r)hP

0

iP

00

, P

0

� Q

0

, and P

00

� Q

00

.

These results follow from indu
tions on the derivations of P > (�~p)hP

0

iP

00

and P � Q,

respe
tively. Using them, we may 
hara
terize exhibition of a name independently of

stru
tural 
ongruen
e:

Proposition 7. P # n if and only if there are ~p, P

0

, P

00

, su
h that P > (�~p)hn[P

0

℄iP

00

and n =2 f~pg.

Now, we 
an show that the hardening relation is image-�nite:

Lemma 8. For all P , fC : P > Cg is �nite.

Proof. By indu
tion on the stru
ture of P .

The proof suggests a pro
edure for enumerating the set fC : P > Cg. Given Proposi-

tion 7, it follows that the predi
ate P # n is de
idable.

4.2. A Labelled Transition System

The labelled transition system presented in this se
tion allows for an analysis of the

possible redu
tions from a pro
ess P in terms of the synta
ti
 stru
ture of P . The def-

inition of the redu
tion relation does not dire
tly support su
h an analysis, be
ause of

the rule P

0

� P; P ! Q;Q � Q

0

) P

0

! Q

0

, whi
h allows for arbitrary stru
tural

rearrangements of a pro
ess during the derivation of a redu
tion.
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We de�ne a family of transition relations P

�

�! Q, indexed by a set of labels, ranged

over by �, whi
h is given in the following table:

Labels:

� ::= label

� internal step

in n enter ambient n

out n exit ambient n

open n dissolve ambient n

An M -transition P

M

�! Q means that the pro
ess P has a top-level pro
ess exer
ising

the 
apability M ; these transitions are de�ned by the rule (Trans Cap) below. A � -

transition P

�

�! Q means that P evolves in one step to Q; these transitions are de�ned

by the other rules below.

Labelled Transitions: P

�

�! P

0

(Trans Cap)

P > (�~p)hM:P

0

iP

00

fn(M) \ f~pg = ?

P

M

�! (�~p)(P

0

j P

00

)

(Trans Amb)

P > (�~p)hn[Q℄iP

0

Q

�

�! Q

0

P

�

�! (�~p)(n[Q

0

℄ j P

0

)

(Trans In) (where f~rg \ fn(n[Q℄) = ? and f~rg \ f~pg = ?)

P > (�~p)hn[Q℄iR Q

in m

�! Q

0

R > (�~r)hm[R

0

℄iR

00

P

�

�! (�~p;~r)(m[n[Q

0

℄ j R

0

℄ j R

00

)

(Trans Out) (where n =2 f~qg)

P > (�~p)hn[Q℄iP

0

Q > (�~q)hm[R℄iQ

0

R

out n

�! R

0

P

�

�! (�~p)((�~q)(m[R

0

℄ j n[Q

0

℄) j P

0

)

(Trans Open)

P > (�~p)hn[Q℄iP

0

P

0

open n

�! P

00

P

�

�! (�~p)(Q j P

00

)

(Trans I/O) (where f~qg \ fn(hMi) = ?)

P > (�~p)hhMiiP

0

P

0

> (�~q)h(x):P

00

iP

000

P

�

�! (�~p; ~q)(P

00

fx Mg j P

000

)

The rules (Trans In), (Trans Out), and (Trans Open) derive a � -transition from an

M -transition. We introdu
ed the M -transitions to simplify the statement of these three
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rules. (Trans I/O) allows for ex
hange of messages. (Trans Amb) is a 
ongruen
e rule for

� -transitions within ambients.

Given its de�nition in terms of the hardening relation, we may analyze the transitions

derivable from any pro
ess by inspe
tion of its synta
ti
 stru
ture. This allows a stru
-

tural analysis of the possible redu
tions from a pro
ess, sin
e the � -transition relation


orresponds to the redu
tion relation as in the following theorem, where P

�

�!� Q

means there is R with P

�

�! R and R � Q.

Theorem 9. P ! Q if and only if P

�

�!� Q.

As 
orollaries of Lemma 8 and Theorem 9, we get that the transition system is image-

�nite, and that the redu
tion relation is image-�nite up to stru
tural 
ongruen
e.

Lemma 10. For all P and �, the set fR : P

�

�! Rg is �nite.

Proof. By indu
tion on the depth of inferen
e of P

�

�! R, with appeal to Lemma 8,

one 
an see that the set fR : P

�

�! Rg is �nite.

Lemma 11. For all P , the set ffR : Q � Rg : P ! Qg is �nite.

Proof. By Lemma 10, the set fQ : P

�

�! Qg is �nite. Therefore, the set ffR : Q �

Rg : P

�

�! Qg is �nite. But, by Theorem 9 and the transitivity of stru
tural 
ongruen
e

this set is the same as ffR : Q � Rg : P ! Qg.

4.3. A Context Lemma

The 
ontext lemma presented in this se
tion is a tool for proving 
ontextual equivalen
e

by 
onsidering only a limited set of 
ontexts, rather than all 
ontexts. Many 
ontext

lemmas have been proved for a wide range of 
al
uli, starting with Milner's 
ontext

lemma for the 
ombinatory logi
 form of PCF (Milner 1977).

Our 
ontext lemma is stated in terms of a notion of a harness :

Harnesses:

H ::= harnesses

� pro
ess variable

(�n)H restri
tion

P j H left 
omposition

H j Q right 
omposition

n[H ℄ ambient

Harnesses are analogous to the evaluation 
ontexts found in 
ontext lemmas for some

other 
al
uli. Unlike the 
ontexts of Se
tion 3, harnesses are identi�ed up to 
onsistent

renaming of bound names. We let fn(H) and fv (H) be the sets of names and variables,

respe
tively, o

urring free in a harness H . There is exa
tly one o

urren
e of the pro
ess

variable� in any harness. IfH is an harness, we writeHfPg for the out
ome of substitut-

ing the pro
ess P for the single o

urren
e of the pro
ess variable �. Names restri
ted in

H are renamed to avoid 
apture of free names of P . For example, if H = (�n)(� j openn)
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then Hfn[℄g = (�n

0

)(n[℄ j open n

0

) for some n

0

6= n. Similarly, if H and H

0

are harnesses,

we write HfH

0

g for the harness obtained by substituting H

0

for the pro
ess variable �

in H .

Let a substitution, �, be a list x

1

 M

1

; : : : ; x

k

 M

k

, where the variables x

1

, . . . , x

k

are pairwise distin
t, and fv (M

i

) = ? for ea
h i 2 1::k. Let dom(�) = fx

1

; : : : ; x

k

g. Let

P� be the pro
ess Pfx

1

 M

1

g � � � fx

k

 M

k

g. Let a harness be 
losed if and only if it has

no free variables (though it may have free names).

Here is our 
ontext lemma:

Theorem 12 (Context). For all pro
esses P and Q, P ' Q if and only if for all

substitutions � with dom(�) = fv(P ) [ fv (Q), and for all 
losed harnesses H and names

n, that HfP�g + n, HfQ�g + n.

A 
orollary is that for all 
losed pro
esses P and Q, P ' Q if and only if for all 
losed

harnesses H and names n, that HfPg + n, HfQg + n.

In general, however, we need to 
onsider the arbitrary 
losing substitution � when

using Theorem 12. This is be
ause a variable free in a pro
ess may be
ome bound to an

expression on
e the pro
ess is pla
ed in a 
ontext. For example, let P = x[n[℄℄ j open y:0

and Q = 0. Consider the 
ontext C() = hm;mi j (x; y):(). We have C(P ) + n but not

C(Q) + n. So P and Q are not 
ontextually equivalent but they do satisfy HfPg + n,

HfQg + n for all 
losed H and n.

Some pro
ess 
al
uli enjoy stronger 
ontext lemmas. Let pro
esses P and Q be parallel

testing equivalent if and only if for all pro
esses R and names n, that P j R + n , Q j

R + n. We might like to show that any two 
losed pro
esses are 
ontextually equivalent

if and only if they are parallel testing equivalent. This would be a stronger result than

Theorem 12 be
ause it would avoid 
onsidering 
ontexts that in
lude ambients. Su
h

a result is true for CCS (De Ni
ola and Hennessy 1984), for example, but it is false

for the ambient 
al
ulus. To see this, let P = out p:0 and Q = 0. We may show that

P j R + n , Q j R + n for all n and R. Now, 
onsider the 
ontext C() = p[m[()℄℄. We

have C(P ) + m but not C(0) + m. So P and Q are parallel testing equivalent but not


ontextually equivalent.

4.4. An A
tivity Lemma

When we 
ome to apply Theorem 12 we need to analyze judgments of the form HfPg # n

or HfPg ! Q. In this se
tion we formalize these analyses.

We begin by extending the stru
tural 
ongruen
e, hardening, and redu
tion relations

to harnesses as follows:

| Let H � H

0

hold if and only if HfPg � H

0

fPg for all P .

| Let H > (�~p)hn[H

0

℄iQ hold if and only if HfPg > (�~p)hn[H

0

fPg℄iQ for all P su
h

that f~pg \ fn(P ) = ?.

| Let H > (�~p)hQiH

0

hold if and only if HfPg > (�~p)hQi(H

0

fPg) for all P su
h that

f~pg \ fn(P ) = ?.

| Let H ! H

0

hold if and only if, for all P , HfPg ! H

0

fPg.

We need the following lemma about hardening:
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Lemma 13. If HfPg > (�~p)hP

1

iP

2

then either:

(1)H > (�~p)hn[H

0

℄iP

2

and P

1

= n[H

0

fPg℄, or

(2)H > (�~p)hP

1

iH

0

and P

2

= H

0

fPg, or

(3) P > (�~p)hP

1

iP

0

, H � � j R, P

2

� P

0

j R, and f~pg \ fn(R) = ?.

Intuitively, there are two ways in whi
h HfPg # n 
an arise: either the pro
ess P

exhibits the name by itself, or the harnessH exhibits the name n by itself. Proposition 14

formalizes this analysis. Similarly, there are three ways in whi
h a redu
tion HfPg ! Q

may arise: either (1) the pro
ess P redu
es by itself, or (2) the harness H redu
es by

itself, or (3) there is an intera
tion between the pro
ess and the harness. Theorem 15

formalizes this analysis. Su
h a result is sometimes known as an a
tivity lemma (Plotkin

1977).

Proposition 14. If HfPg # n then either (1) HfQg # n for all Q, or (2) both P # n

and also for all Q, Q # n implies that HfQg # n.

Proof. By Proposition 7, HfPg # n means there are ~p, P

0

, P

00

su
h that HfPg >

(�~p)hn[P

0

℄iP

00

with n =2 f~pg. Hen
e, the proposition follows from Lemma 13.

Theorem 15 (A
tivity). HfPg ! R if and only if:

(A
t Pro
) there is a redu
tion P ! P

0

with R � HfP

0

g, or

(A
t Har) there is a redu
tion H ! H

0

with R � H

0

fPg, or

(A
t Inter) there are H

0

and ~r with f~rg \ fn(P ) = ?, and one of the following holds:

(Inter In) H � (�~r)H

0

fm[� j R

0

℄ j n[R

00

℄g, P

in n

�! P

0

,

and R � (�~r)H

0

fn[m[P

0

j R

0

℄ j R

00

℄g

(Inter Out)H � (�~r)H

0

fn[m[� j R

0

℄ j R

00

℄g, P

out n

�! P

0

,

and R � (�~r)H

0

fm[P

0

j R

0

℄ j n[R

00

℄g

(Inter Open)H � (�~r)H

0

f� j n[R

0

℄g, P

open n

�! P

0

,

and R � (�~r)H

0

fP

0

j R

0

g

(Inter Input) H � (�~r)H

0

f� j hMig, P > (�~p)h(x):P

0

iP

00

,

and R � (�~r)H

0

f(�~p)(P

0

fx Mg j P

00

)g, with f~pg \ fn(M) = ?

(Inter Output) H � (�~r)H

0

f� j (x):R

0

g, P > (�~p)hhMiiP

0

,

and R � (�~r)H

0

f(�~p)(P

0

j R

0

fx Mg)g, with f~pg \ fn(R

0

) = ?

(Inter Amb) P > (�~p)hn[Q℄iP

0

and one of the following holds:

(1)Q

in m

�! Q

0

, H � (�~r)H

0

f� j m[R

0

℄g, f~pg \ fn(m[R

0

℄) = ?,

and R � (�~r)H

0

f(�~p)(P

0

j m[n[Q

0

℄ j R

0

℄)g

(2)Q

out m

�! Q

0

, H � (�~r)H

0

fm[� j R

0

℄g, f~pg \ fn(m[R

0

℄) = ?,

and R � (�~r)H

0

f(�~p)(n[Q

0

℄ j m[P

0

j R

0

℄)g

(3)H � (�~r)H

0

fm[R

0

j in n:R

00

℄ j �g, f~pg \ fn(m[R

0

j in n:R

00

℄) = ?,

and R � (�~r)H

0

f(�~p)(n[Q j m[R

0

j R

00

℄℄ j P

0

)g

(4)H � (�~r)H

0

f� j open n:R

0

g, n =2 f~pg,

and R � (�~r)H

0

f(�~p)(Q j P

0

) j R

0

g
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5. Examples of Contextual Equivalen
e

In this se
tion, three examples demonstrate how we 
an apply Theorem 12 and Theo-

rem 15 to establish 
ontextual equivalen
e.

5.1. Opening an Ambient

First, we return to and prove Example 3 from Se
tion 3.

Lemma 16. If Hf(�n)(n[℄ j open n:P )g + m and n =2 fn(P ) then HfPg + m.

Proof. By indu
tion on the derivation of Hf(�n)(n[℄ j open n:P )g + m:

(Conv Exh)Here Hf(�n)(n[℄ j open n:P )g # m. By Proposition 14, either (1), for all

Q, HfQg # m, or (2), (�n)(n[℄ j open n:P ) # m. In 
ase (1), we have, in parti
ular,

that HfPg # m. Hen
e, HfPg + m, by (Conv Exh). Case (2) 
annot arise, sin
e,

by Proposition 7, (�n)(n[℄ j open n:P ) # m implies that (�n)(n[℄ j open n:P ) >

(�~p)hm[P

0

℄iP

00

with m =2 f~pg. But the only hardenings of the pro
ess (�n)(n[℄ j

open n:P ) are:

(�n)(n[℄ j open n:P ) > (�n)hn[℄i(0 j open n:P )

(�n)(n[℄ j open n:P ) > (�n)hopen n:P i(n[℄ j 0)

So 
ase (2) is impossible.

(Conv Red)Here Hf(�n)(n[℄ j open n:P )g ! R and R + m. By Theorem 15, one of

three 
ases pertains:

(A
t Pro
)Then (�n)(n[℄ j open n:P ) ! P

0

with R � HfP

0

g. By inspe
tion of the

rules of the labelled transition system, it must be that (Trans Open) derives this

transition, with P

0

� P . Therefore R + m implies that HfPg + m.

(A
t Har)Then H ! H

0

with R � H

0

f(�n)(n[℄ j open n:P )g. By Lemma 2, we may

derive H

0

f(�n)(n[℄ j open n:P )g + m by the same depth of inferen
e as R + m.

By indu
tion hypothesis, H

0

fPg + m. From H ! H

0

we obtain HfPg ! H

0

fPg

in parti
ular. By (A
t Har), we get HfPg + m.

(A
t Inter)Then there is an intera
tion between the pro
ess (�n)(n[℄ j openn:P ) and

the harness H . Given the possible hardenings of (�n)(n[℄ j openn:P ) stated above,

there are no transitions derivable from (�n)(n[℄ j open n:P ), so none of (Inter In),

(Inter Out), or (Inter Open) is appli
able. Similarly, neither (Inter Input) nor (In-

ter Output) is appli
able. Given (�n)(n[℄ j open n:P ) > (�n)hn[℄i(0 j open n:P ),


lause (Inter Amb) might be appli
able. Points (1) and (2) are impossible, be-


ause 0 has no transitions, and points (3) and (4) are impossible be
ause n is

restri
ted. We 
on
lude that none of the possibilities stated in 
lause (A
t Inter)

of Theorem 15 pertains. So this 
ase is impossible.

Proof of Example 3. (�n)(n[℄ j open n:P ) ' P if n =2 fn(P ).

Proof. By Theorem 12, it suÆ
es to prove Hf((�n)(n[℄ j open n:P ))�g + m ,

HfP�g + m for all 
losed harnesses H and names m and for all substitutions � with
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dom(�) = fv (P ). Sin
e the name n is bound, we may assume that n =2 fn(�(x)) for all

x 2 dom(�). Therefore, we are to prove that: Hf(�n)(n[℄ j open n:P�g + m, HfP�g +

m where n =2 fn(P�).

We prove ea
h dire
tion separately. First, suppose that HfP�g + m. Sin
e (�n)(n[℄ j

open n:P�)! P�, we get Hf(�n)(n[℄ j open n:P�)g ! HfP�g. By (Conv Red), we get

Hf(�n)(n[℄ j open n:P�)g + m. Se
ond, suppose that Hf(�n)(n[℄ j open n:P�)g + m. By

Lemma 16, we get HfP�g + m.

5.2. The Perfe
t Firewall Equation

Consider a pro
ess (�n)n[P ℄, where n is not free in P . Sin
e the name n is known neither

inside the ambient n[P ℄, nor outside it, the ambient n[P ℄ is a \perfe
t �rewall" that

neither allows another ambient to enter nor to exit. The following two lemmas allow us

to prove that (�n)n[P ℄ is 
ontextually equivalent to 0, when n =2 fn(P ), whi
h is to say

that no 
ontext 
an dete
t the presen
e of (�n)n[P ℄.

Lemma 17. If Hf(�n)n[P ℄g + m and n =2 fn(P ) then Hf0g + m.

Proof. By indu
tion on the derivation of Hf(�n)n[P ℄g + m.

(Conv Exh)Here Hf(�n)n[P ℄g # m. By Proposition 14, either (1), for all Q, HfQg # m,

or (2), (�n)n[P ℄ # m. In 
ase (1), we have, in parti
ular, that Hf0g # m. Hen
e,

Hf0g + m, by (Conv Exh). Case (2) 
annot arise, sin
e, by Proposition 7, (�n)n[P ℄ #

m implies that (�n)n[P ℄ > (�~p)hm[P

0

℄iP

00

with m =2 f~pg, whi
h is impossible.

(Conv Red)Here Hf(�n)n[P ℄g ! R and R + m. By Theorem 15, one of three 
ases

pertains:

(A
t Pro
)Then (�n)n[P ℄! P

00

with R � HfP

00

g. By Theorem 9, there is Q with

(�n)n[P ℄

�

�! Q and Q � P

00

. Sin
e (�n)n[P ℄ > (�n)hn[P ℄i0 is the only hardening

derivable from (�n)n[P ℄, and sin
e n =2 fn(P ), the transition (�n)n[P ℄

�

�! Q 
an

only be derived using (Trans Amb), with P

�

�! P

0

and Q = (�n)(n[P

0

℄ j 0).

Therefore, there is a redu
tion P ! P

0

and P

00

� (�n)n[P

0

℄. By Lemma 21 stated

in the Appendix, P ! P

0

implies fn(P

0

) � fn(P ) and so n =2 fn(P

0

). We have

R � Hf(�n)n[P

0

℄g with n =2 fn(P

0

). By Lemma 2, we may derive Hf(�n)n[P

0

℄g +

m by the same depth of inferen
e as R + m. By indu
tion hypothesis, Hf0g + m.

(A
t Har)Then H ! H

0

with R � H

0

f(�n)n[P ℄g. By Lemma 2, we may derive

H

0

f(�n)n[P ℄g + m by the same depth of inferen
e as R + m. By indu
tion hy-

pothesis, H

0

f0g + m. From H ! H

0

we obtain Hf0g ! H

0

f0g in parti
ular. By

(Conv Red), we get Hf0g + m.

(A
t Inter)Then there are H

0

and ~r with f~rg \ fn(P ) = ? and one of several


onditions must hold. Sin
e the only hardening or transition from (�n)n[P ℄ is

(�n)n[P ℄ > (�n)hn[P ℄i0, only the rule (Inter Amb) applies. A

ording to Theo-

rem 15, there are four possibilities to 
onsider.

(1) Here, P

in m

�! P

0

, H � (�~r)H

0

f� j m[R

0

℄g, fng \ fn(m[R

0

℄) = ?, and R �

(�~r)H

0

f(�n)(0 j m[n[P

0

℄ j R

0

℄)g. We have R � (�~r)H

0

fm[R

0

j (�n)n[P

0

℄℄g.

By Lemma 23 (stated in the Appendix), n =2 fn(P ) and P

in m

�! P

0

imply
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n =2 fn(P

0

). By Lemma 2, we get (�~r)H

0

fm[R

0

j (�n)n[P

0

℄℄g + m with the same

depth of inferen
e as R + m. By indu
tion hypothesis, (�~r)H

0

fm[R

0

j 0℄g + m.

Moreover, Hf0g � (�~r)H

0

fm[R

0

j 0℄g, and therefore Hf0g + m.

(2) Here, P

out m

�! P

0

, H � (�~r)H

0

fm[� j R

0

℄g, R � (�~r)H

0

f(�n)(n[P

0

℄ j m[0 j

R

0

℄)g, with m =2 fng. Sin
e n is bound, we may assume n =2 fn(H) [ f~rg, so

that n =2 fn(R

0

), and hen
e we 
an derive that R � (�~r)H

0

fm[R

0

℄ j (�n)n[P

0

℄g.

By Lemma 23, n =2 fn(P ) and P

out m

�! P

0

imply n =2 fn(P

0

). By Lemma 2,

we get (�~r)H

0

fm[R

0

℄ j (�n)n[P

0

℄g + m with the same depth of inferen
e as

R + m. By indu
tion hypothesis, (�~r)H

0

fm[R

0

℄ j 0g + m. Moreover, Hf0g �

(�~r)H

0

fm[R

0

℄ j 0g and therefore Hf0g + m.

The other possibilities, (3) and (4), are ruled out be
ause the name n is restri
ted

in the 
on
retion (�n)hn[P ℄i0.

Lemma 18. If Hf0g + m then HfPg + m.

Proof. By indu
tion on the derivation of Hf0g + m.

(Conv Exh)Here Hf0g # m. By Proposition 14, either (1), for all Q, HfQg # m, or

(2), 0 # m. Case (2) is impossible. In 
ase (1), we get, in parti
ular, that HfPg # m.

Hen
e, HfPg + m.

(Conv Red)Here Hf0g ! Q and Q + m. By Theorem 15, and the fa
t that 0 has no

redu
tions and no hardenings, it must be thatH ! H

0

withQ � H

0

f0g. By Lemma 2,

we get that H

0

f0g + m is derivable with the same depth of inferen
e as Q + m. By

indu
tion hypothesis, H

0

fPg + m. From H ! H

0

we get that HfPg ! H

0

fPg. By

(Conv Red), HfPg ! H

0

fPg and H

0

fPg + m imply HfPg + m.

Using these two lemmas we get:

Example 4. If n =2 fn(P ) then (�n)n[P ℄ ' 0.

Proof. By Theorem 12, it suÆ
es to prove that

Hf((�n)n[P ℄)�g + m, Hf0�g + m

for all 
losed harnesses H and names m and for all substitutions � with dom(�) =

fv ((�n)n[P ℄). Sin
e the name n is bound, we may assume that n =2 fn(�(x)) for any

x 2 dom(�). Therefore, we are to prove that:

Hf(�n)n[P�℄g + m, Hf0g + m

where n =2 fn(P�). This follows from Lemma 17 and Lemma 18.

Our �rst proof of this equation (whi
h was stated in an earlier paper (Cardelli and

Gordon 2000b)) was by a dire
t quanti�
ation over all 
ontexts. The proof above using

the 
ontext lemma is simpler.
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5.3. Crossing a Firewall

This example 
on
erns an agent that 
rosses a �rewall using previously arranged pass-

words. We explained this example, but did not state a proof, in an earlier paper (Cardelli

and Gordon 2000b).

Lemma 19. Suppose that (fn(P ) [ fn(Q)) \ fk; k

0

; k

00

g = ? and w =2 fn(Q). Consider

the pro
esses de�ned by:

R

1

�

= (�k k

0

k

00

)(k

0

[open k:k

00

[Q℄℄ j

(�w)w[k[out w:in k

0

:in w℄ j open k

0

:open k

00

:P ℄)

R

2

�

= (�k k

0

k

00

w)(k

0

[open k:k

00

[Q℄℄ j k[in k

0

:in w℄ j w[open k

0

:open k

00

:P ℄)

R

3

�

= (�k k

0

k

00

w)(k

0

[k[in w℄ j open k:k

00

[Q℄℄ j w[open k

0

:open k

00

:P ℄)

R

4

�

= (�k k

0

k

00

w)(k

0

[in w j k

00

[Q℄℄ j w[open k

0

:open k

00

:P ℄)

R

5

�

= (�k k

0

k

00

w)w[k

0

[k

00

[Q℄℄ j open k

0

:open k

00

:P ℄

R

6

�

= (�k k

0

k

00

w)w[k

00

[Q℄ j open k

00

:P ℄

R

7

�

= (�w)w[Q j P ℄

For ea
h i 2 1::6, R

i

' R

i+1

.

Proof. Suppose that i 2 1::6. Without loss of generality, we may assume that the

pro
esses P and Q are 
losed, and hen
e that all the R

i

are 
losed. By Theorem 12, we

need to show for all H and m that HfR

i

g + m, HfR

i+1

g + m. We may 
al
ulate that

R

i

! R

i+1

, for ea
h i. It follows that HfR

i+1

g + m implies HfR

i

g + m.

We now prove that HfR

i

g + m implies HfR

i+1

g + m by indu
tion on the derivation

of HfR

i

g + m.

(Conv Exh)HereHfR

i

g # m. By Proposition 14, either (1), for all Q,HfQg # m, or (2),

R

i

# m. In 
ase (1), we have, in parti
ular, that HfR

i+1

g # m. Hen
e, HfR

i+1

g + m,

by (Conv Exh). Case (2) 
annot arise, be
ause of the outermost restri
tions on ea
h

R

i

.

(Conv Red)Here HfR

i

g ! R and R # m. By Theorem 9 and Theorem 15, one of three


ases pertains:

(A
t Pro
)Then R

i

! R

0

with R � HfR

0

g. By inspe
tion of the de�nitions of R

i

and the labelled transition system, it must be that R

0

� R

i+1

. Therefore R + m

implies that HfR

i+1

g + m.

(A
t Har)Then H ! H

0

with R � H

0

fR

i

g. By Lemma 2, we may derive H

0

fR

i

g +

m by the same depth of inferen
e as R + m. By indu
tion hypothesis, H

0

fR

i+1

g +

m. From H ! H

0

we obtain HfR

i+1

g ! H

0

fR

i+1

g in parti
ular. By (Conv Red),

we get HfR

i+1

g + m.

(A
t Inter)Then there is an intera
tion between the pro
ess R

i

and the harness H

0

.

Given that fn(Q)\fk

0

; k

00

; wg = ?, none of the 
onditions stated in the rule (A
t

Inter) of Theorem 15 applies. Therefore this 
ase is impossible.

This 
ompletes the proof by indu
tion.
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Example 5. Let us de�ne:

Firewall

�

= (�w)w[k[out w:in k

0

:in w℄ j open k

0

:open k

00

:P ℄

Agent

�

= k

0

[open k:k

00

[Q℄℄

If (fn(P ) [ fn(Q)) \ fk; k

0

; k

00

g = ? and w =2 fn(Q) then:

(�k k

0

k

00

)(Agent j Firewall ) ' (�w)w[Q j P ℄

Proof. Re
all the pro
esses R

1

and R

7

from Lemma 19. By that lemma, R

1

' R

7

.

This is exa
tly the desired equation, sin
e R

1

= (�k k

0

k

00

)(Agent j Firewall ) and R

7

=

(�w)w[Q j P ℄.

6. Con
lusions

We developed a theory of Morris-style 
ontextual equivalen
e for the ambient 
al
ulus.

We showed that standard tools su
h as a labelled transition system, a 
ontext lemma,

and an a
tivity lemma, may be adapted to the ambient 
al
ulus. We introdu
ed a new

te
hnique, based on a hardening relation, for de�ning the labelled transition system. We

employed these tools to prove equational properties of mobile ambients.

We adapted the 
on
retions of Milner (1999) to highlight those subpro
esses of a

pro
ess that may parti
ipate in a 
omputation. This is an alternative to the membranes

and airlo
ks of the 
hemi
al abstra
t ma
hine of Berry and Boudol (1992). Unlike these

authors, in the de�nition of our transition relation we use the hardening relation, rather

than the full stru
tural 
ongruen
e relation, to 
hoose subpro
esses to parti
ipate in a

transition. In appli
ations of the a
tivity lemma, Theorem 15, and in other situations, our

proof te
hniques depend on analyzing the possible hardenings and the possible transitions

of pro
esses by examining their stru
ture. This is possible be
ause, unlike stru
tural


ongruen
e, the hardening relation is not transitive. Therefore, the use of hardening

rather than stru
tural 
ongruen
e in the de�nition of the transition relation is essential

for the te
hniques we advo
ate here.

Our use of the hardening relation to de�ne the transition relation for the ambient


al
ulus is similar to the use by Vitek and Castagna (1999) of a heating relation to de�ne

redu
tion in their Seal 
al
ulus. A di�eren
e in style is that Vitek and Castagna use

stru
tural 
ongruen
e as well as the heating relation to de�ne their redu
tion relation.

Sin
e the work presented in this paper was 
ompleted, several authors have advan
ed

the study of labelled transition systems and bisimulation for ambient 
al
uli.

| Vigliotti (1999) studies labelled transition systems for the ambient 
al
ulus, but not

bisimulation. She proves a 
ompleteness result relating redu
tions and labelled tran-

sitions, akin to Theorem 9 of this paper.

| Fournet, L�evy, and S
hmitt (2000) des
ribe the �rst distributed implementation of

mobile ambients, based on a translation to the join-
al
ulus (Fournet and Gonthier

1996). They verify its 
orre
tness by adapting the te
hnique of barbed 
oupled sim-

ulations.

| Although in this paper we have developed some novel tools for proving equational
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properties, we have found it diÆ
ult to state a very ri
h 
olle
tion of equational

properties. Levi and Sangiorgi (2000) attribute this diÆ
ulty to 
ertain interferen
es

between overlapping redexes in the original ambient 
al
ulus. To allow su
h interfer-

en
es to be avoided, they add 
o-
apabilities to obtain a 
al
ulus of Safe Ambients

(SA). With this addition, they state and prove a ri
her set of equational properties

than seems to be possible for the unmodi�ed 
al
ulus.

| Sangiorgi (2001) studies the equivalen
e indu
ed by the ambient logi
 (Cardelli and

Gordon 2000a) on an ambient 
al
ulus without repli
ation or restri
tion. He 
hara
-

terises this equivalen
e as the bisimulation indu
ed by a 
ertain labelled transition

system, and shows that the equivalen
e is 
losely related to stru
tural 
ongruen
e.

| Merro and Hennessy (2002) are the �rst to study the bisimulation indu
ed by a

labelled transition system for an ambient 
al
ulus with repli
ation and restri
tion.

They work with a 
al
ulus of Safe Ambients with Passwords (SAP), whi
h has 
o-


apabilities like the SA 
al
ulus but syn
hronisation is additionally 
ontingent on

shared knowledge of a se
ret password. They de�ne a barbed 
ongruen
e for the SAP


al
ulus, and show that it equals the bisimulation indu
ed by their labelled transition

system. Hen
e, they obtain a 
onvenient 
o-indu
tive proof te
hnique for equational

reasoning about ambients.
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Appendix A. Proofs

In this appendix, we prove all the propositions stated without proof in the main body of

the paper. To do so, we need several auxiliary results.

The appendix 
onsists of several se
tions.

(1) In Se
tion A.1 we prove that 
ontextual equivalen
e is a 
ongruen
e, whi
h was stated

in Se
tion 3.

(2) In Se
tion A.2, we prove three important fa
ts about the hardening relation, Lemma 5,

Proposition 6, and Proposition 7, whi
h were stated in Se
tion 4.1.

(3) Se
tion A.3 
ontains some auxiliary results and a proof of Theorem 9 from Se
-

tion 4.2, whi
h states that the redu
tion and � -transition relations are the same up

to stru
tural 
ongruen
e.

(4) In Se
tion A.4 we prove the a
tivity lemma, Theorem 15, stated in Se
tion 4.4.

(5) In Se
tion A.5, we prove some auxiliary results about repli
ation.

(6) Se
tion A.6 is devoted to proving our 
ontext lemma, Theorem 12, whi
h was stated

in Se
tion 4.3.

In the main text, we stated Theorem 12 ahead of Theorem 15, but in fa
t we use

Theorem 15 in the proof of Theorem 12. Therefore, we give the proof of Theorem 15

before the proof of Theorem 12.
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Throughout this appendix, we shall refer to the rules of stru
tural 
ongruen
e and

redu
tion using the names in the following tables:

Stru
tural Congruen
e: P � Q

P � P (Stru
t Re
)

Q � P ) P � Q (Stru
t Symm)

P � Q;Q � R) P � R (Stru
t Trans)

P � Q) (�n)P � (�n)Q (Stru
t Res)

P � Q) P j R � Q j R (Stru
t Par)

P � Q) !P � !Q (Stru
t Repl)

P � Q)M [P ℄ �M [Q℄ (Stru
t Amb)

P � Q)M:P �M:Q (Stru
t A
tion)

P � Q) (x):P � (x):Q (Stru
t Input)

P j Q � Q j P (Stru
t Par Comm)

(P j Q) j R � P j (Q j R) (Stru
t Par Asso
)

!P � P j !P (Stru
t Repl Par)

(�n)(�m)P � (�m)(�n)P (Stru
t Res Res)

n =2 fn(P )) (�n)(P j Q) � P j (�n)Q (Stru
t Res Par)

n 6= m) (�n)m[P ℄ � m[(�n)P ℄ (Stru
t Res Amb)

P j 0 � P (Stru
t Zero Par)

(�n)0 � 0 (Stru
t Zero Res)

!0 � 0 (Stru
t Zero Repl)

�:P � P (Stru
t �)

(M:M

0

):P �M:M

0

:P (Stru
t :)

Redu
tion: P ! Q

n[in m:P j Q℄ j m[R℄! m[n[P j Q℄ j R℄ (Red In)

m[n[out m:P j Q℄ j R℄! n[P j Q℄ j m[R℄ (Red Out)

open n:P j n[Q℄! P j Q (Red Open)

hMi j (x):P ! Pfx Mg (Red I/O)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (�n)P ! (�n)Q (Red Res)

P ! Q) n[P ℄! n[Q℄ (Red Amb)

P

0

� P; P ! Q;Q � Q

0

) P

0

! Q

0

(Red �)

Many of the proofs in the rest of the appendix depend on the following basi
 fa
ts

about stru
tural 
ongruen
e, redu
tion, hardening, and the transition relation:

Lemma 20. If P � Q then fn(P ) = fn(Q) and fv(P ) = fv (Q).

Lemma 21. If P ! Q then fn(P ) � fn(Q) and fv (P ) � fv(Q).

Lemma 22. If P > C then fn(P ) = fn(C) and fv (P ) = fv(C).
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Lemma 23. If P

�

�! P

0

then fn(�) [ fn(P

0

) � fn(P ), fv (�) = ?, and fv (P

0

) � fv (P ).

Lemma 24. If n =2 fn(P ) then (�n)P � P .

Proof. Using the axioms (Stru
t Zero Par), (Stru
t Res Par), and (Stru
t Zero Res),

we get: (�n)P � (�n)(P j 0) � P j (�n)0 � P j 0 � P .

A.1. Proof Omitted From Se
tion 3

Apart from proving transitivity, the proof that 
ontextual equivalen
e is a 
ongruen
e is

easy:

Proof of Proposition 1. Contextual equivalen
e is a 
ongruen
e.

Proof. Re
exivity and symmetry are trivial.

For transitivity, suppose that P ' P

0

and P

0

' P

00

. To show that P ' P

00

, 
onsider

any 
ontext C() and any name n su
h that C(P ) and C(P

00

) are 
losed. It need not be

that C(P

0

) is 
losed. Suppose that fx

1

; : : : ; x

k

g = fv (C(P

0

)), and suppose that m

1

, . . . ,

m

k

are fresh names. We de�ne a new family of 
ontexts D

0

, D

1

, . . . , D

k

by indu
tion:

D

0

= C and D

i+1

= hm

i+1

i j (x

i+1

):D

i

. The 
ontext D

k

has two useful properties. First,

for all Q and q,

D

k

(Q) + q , C(Q)fx

1

 m

1

g � � � fx

k

 m

k

g + q

Se
ond, D

k

(P

0

) is 
losed. Now, suppose that C(P ) + n. Sin
e C(P ) is 
losed, C(P ) =

C(P )fx

1

 m

1

g � � � fx

k

 m

k

g. Hen
e, by the �rst property of D

k

, D

k

(P ) + n. By the

se
ond property of D

k

, and P ' P

0

, D

k

(P

0

) + n. Sin
e C(P

00

) is 
losed, it follows that

D

k

(P

00

) is 
losed too. Therefore, P

0

' P

00

implies thatD

k

(P

00

) + n. Sin
e C(P

00

) is 
losed,

C(P

00

) = C(P

00

)fx

1

 m

1

g � � � fx

k

 m

k

g. Hen
e, by the �rst property of D

k

, C(P

00

) + n.

A symmetri
 argument establishes that C(P

00

) + n implies C(P ) + n. Hen
e P ' P

00

.

For pre
ongruen
e, 
onsider any P , Q, and C(), with P ' Q. To show that C(P ) '

C(Q), 
onsider any 
ontext D() and any name n with D(C(P )) + n. Sin
e D(C()) is a


ontext, P ' Q implies D(C(Q)) + n. Similarly, D(C(Q)) + n implies D(C(P )) + n. It

follows that C(P ) ' C(Q).

A.2. Proofs Omitted From Se
tion 4.1

This se
tion provides proofs of Lemma 5, Proposition 6, and Proposition 7. The main

lemma of the se
tion, Lemma 31, asserts that the hardening relation preserves stru
tural


ongruen
e. To state and prove it, we need three auxiliary de�nitions.

The �rst auxiliary de�nition is a relation P

^

� Q on primes, where a prime is an

ambient m[P ℄, an a
tion M:P where M 2 fin n; out n; open ng, an input (x):P , or an

output hMi. The relation P � Q is the least to satisfy the following rules:

Stru
tural Congruen
e of Primes: P

^

� Q

n[P ℄

^

� n[Q℄ if P � Q

M:P

^

�M:Q if M 2 fin n; out n; open ng and P � Q

(x):P

^

� (x):Q if P � Q
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hMi

^

� hNi if M = N

This relation is 
learly re
exive, symmetri
, and transitive, and implies stru
tural


ongruen
e:

Lemma 25. For all primes P , Q, R:

(1) P

^

� P .

(2) If P

^

� Q then Q

^

� P .

(3) If P

^

� Q and Q

^

� R then P

^

� R.

(4) If P

^

� Q then P � Q.

We prove the 
onverse of part (4) at the end of this se
tion.

The se
ond auxiliary de�nition is a relation C � D on 
on
retions:

Stru
tural Congruen
e of Con
retions: C � D

C � D

�

= C = (�~r)hP iP

0

, D = (�~r)hQiQ

0

, P

^

� Q, and P

0

� Q

0

.

Lemma 26. If C � D then (�n)C � (�n)D.

Proof. From C � D, it follows that C = (�~r)hP iP

0

, D = (�~r)hQiQ

0

, P

^

� Q, and

P

0

� Q

0

. Now, either n 2 fn(P ) or not. First, suppose n 2 fn(P ).

| If P = m[P

00

℄, m 6= n, and n =2 fn(P

0

), then (�n)C = (�~r)hm[(�n)P

00

℄iP

0

. Sin
e

P

^

� Q, it follows that Q = m[Q

00

℄ with P

00

� Q

00

. By Lemma 20, n =2 fn(P

0

) implies

n =2 fn(Q

0

). Therefore, (�n)D = (�~r)hm[(�n)Q

00

℄iQ

0

, and so (�n)C � (�n)D.

| Otherwise, (�n)C = (�n;~r)hP iP

0

, and (�n)D = (�n;~r)hQiQ

0

.

Se
ond, if n =2 fn(P ), we have n =2 fn(Q) by Lemma 20. Therefore, (�n)C = (�~r)hP i(�n)P

0

and (�n)D = (�~r)hQi(�n)Q

0

.

By a similar analysis, we 
an prove the following:

Lemma 27. (�m)(�n)C � (�n)(�m)C.

The third auxiliary de�nition is a relation M > N on expressions, de�ned by the

following rules:

Auxiliary Relation on Expressions: M > N

M > M:� if M 2 fin n; out n; open ng

� > �

M:N > M

1

:(M

2

:N) if M >M

1

:M

2

M:N > N

0

if M > � and N > N

0

Lemma 28. If M:P > C then either:

(1)M >M

1

:M

2

, C = (�)hM

1

:Ri0, and R �M

2

:P , or

(2)M > � and P > C.

Proof. By indu
tion on the derivation of M:P > C.
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Lemma 29. If M > � and P > C then M:P > C.

Proof. By indu
tion on the derivation of M > �.

Lemma 30. If M >M

1

:M

2

then M:P > (�)hM

1

:P

0

i0 with P

0

�M

2

:P .

Proof. By indu
tion on the derivation of M >M

1

:M

2

.

Next, we prove the main lemma of the se
tion.

Lemma 31. If P � Q and Q > D then there is C with P > C and C � D.

Proof. We show by indu
tion on the derivation of P � Q, that P � Q implies:

(1) Whenever P > C there is D with Q > D and C � D;

(2) Whenever Q > D there is C with P > C and C � D.

We pro
eed by a 
ase analysis of the rule that derives P � Q.

(Stru
t Re
)In this 
ase, P = Q. So parts (1) and (2) are trivial.

(Stru
t Symm)In this 
ase, Q � P . Part (1) follows from part (2) of the indu
tion

hypothesis, and part (2) follows from part (1) of the indu
tion hypothesis.

(Stru
t Trans)In this 
ase, P � R and R � Q. For (1), suppose P > (�~r)hP

1

iP

2

. By

indu
tion hypothesis, R > (�~r)hR

1

iR

2

with P

1

^

� R

1

and P

2

� R

2

. By indu
tion

hypothesis, again, Q > (�~r)hQ

1

iQ

2

with R

1

^

� Q

1

and R

2

� Q

2

. By transitivity,

P

1

^

� Q

1

and P

2

� Q

2

. Part (2) follows by a symmetri
 argument.

(Stru
t Res)In this 
ase, P = (�n)P

0

, Q = (�n)Q

0

and P

0

� Q

0

. For (1), suppose

(�n)P

0

> C. This 
an only be derived using (Harden Res), so P

0

> C

0

with C =

(�n)C

0

. By indu
tion hypothesis, Q

0

> D

0

with C

0

� D

0

. By (Harden Res), Q =

(�n)Q

0

> (�n)D

0

. By Lemma 26, (�n)C

0

� (�n)D

0

. Part (2) follows by a symmetri


argument.

(Stru
t Par)In this 
ase, P = P

0

j R, Q = Q

0

j R, and P

0

� Q

0

. For (1), suppose

P

0

j R > (�~r)hP

1

iP

2

. This judgment must be derived from one of the following rules:

(Harden Par 1)Here P

0

> (�~r)hP

1

iP

0

2

with P

2

= P

0

2

j R and f~rg \ fn(R) = ?. By

indu
tion hypothesis, Q

0

> (�~r)hQ

1

iQ

0

2

with P

1

^

� Q

1

and P

0

2

� Q

0

2

. Let Q

2

=

Q

0

2

j R. By (Harden Par 1), Q = Q

0

j R > (�~r)hQ

1

iQ

2

. Moreover, P

0

2

j R � Q

0

2

j R,

that is, P

2

� Q

2

.

(Harden Par 2)Here R > (�~r)hP

1

iP

0

2

with P

2

= P

0

j P

0

2

and f~rg \ fn(P

0

) = ?. By

Lemma 20, fn(P

0

) = fn(Q

0

), so f~rg \ fn(Q

0

) = ?. Let Q

2

= Q

0

j P

0

2

. By (Harden

Par 2), Q

0

j R > (�~r)hP

1

iQ

2

. Moreover, P

0

j P

0

2

� Q

0

j P

0

2

, that is, P

2

� Q

2

.

Part (2) follows by a symmetri
 argument.

We omit the other 
ases.

Proof of Proposition 6. If P � Q and Q > (�~r)hQ

0

iQ

00

then there are P

0

and P

00

with P > (�~r)hP

0

iP

00

, P

0

� Q

0

, and P

00

� Q

00

.

Proof. Combine Lemma 25 and Lemma 31.
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Proof of Proposition 7. P # n if and only if there exist ~p, P

0

, P

00

su
h that P >

(�~p)hn[P

0

℄iP

00

and n =2 f~pg.

Proof. First, suppose P # n, that is, there are ~p, R

0

, R

00

with n =2 f~pg and P � R

where R = (�~p)(n[R

0

℄ j R

00

). Given (Stru
t Res Amb) and (Stru
t Res Par), we may

assume that f~pg � fn(R

0

) \ fn(R

00

). Therefore, we may derive R > (�~p)hn[R

0

℄i(0 j R

00

).

By Lemma 31, P � R implies there are P

0

, P

00

su
h that P > (�~p)hn[P

0

℄iP

00

, P

0

� R

0

,

and P

00

� R

00

.

Se
ond, suppose P > (�~p)hn[P

0

℄iP

00

and n =2 f~pg. By Lemma 5, P � (�~p)(n[P

0

℄ j P

00

).

Therefore, P # n.

We end this se
tion by exploring another 
onsequen
e of Lemma 31.

Proposition 32. For all primes P and Q, if P � Q, then P

^

� Q.

Proof. Sin
e P and Q are primes, their only hardenings are P > (�)hP i0 and Q >

(�)hQi0. By Lemma 31, P

^

� Q.

A 
orollary of Lemma 25 and Proposition 32 is that for all primes P and Q, P � Q if

and only if P

^

� Q. For example, it follows that m[P ℄ � n[Q℄ if and only if m = n and

P � Q.

A.3. Proofs Omitted From Se
tion 4.2

This se
tion provides a proof of Theorem 9, that P ! Q if and only if there is R with

P

�

�! R and R � Q. We prove ea
h dire
tion separately, starting with the right-to-left

impli
ation.

First, we need the following lemma:

Lemma 33. If P

M

�! P

0

then P � (�~p)(P

1

j M:P

2

) with P

0

� (�~p)(P

1

j P

2

) and

fn(M) \ f~pg = ?.

Proof. Only (Trans Cap) may derive the judgment P

M

�! P

0

. So we have P >

(�~p)hM:P

1

iP

2

, P

0

= (�~p)(P

1

j P

2

), M 2 fin n; out n; open ng, and n =2 f~pg. By Proposi-

tion 5, P � (�~p)(M:P

1

j P

2

). Moreover, fn(M) = fng, so the result follows.

We use the following to establish the right-to-left dire
tion of Theorem 9.

Proposition 34. If P

�

�! P

0

then P ! P

0

.

Proof. By indu
tion on the derivation of P

�

�! P

0

. We examine one 
ase:

(Trans In)We have P > (�~p)hn[Q℄iR, Q

in m

�! Q

0

, R > (�~r)hm[R

0

℄iR

00

, and P

0

=

(�~p;~r)(m[n[Q

0

℄ j R

0

℄ j R

00

) with f~rg\fn(n[Q℄) = ?. By Lemma 5, P � (�~p)(n[Q℄ j R).

By Lemma 33, Q � (�~q)(Q

1

j in m:Q

2

), with Q

0

� (�~q)(Q

1

j Q

2

) and n =2 f~qg. Sin
e

the names ~q are bound, we may assume that f~qg \ fn(m[R

0

℄) = ?. By Lemma 5,

R � (�~r)(m[R

0

℄ j R

00

). Hen
e, we have:

P � (�~p)(n[(�~q)(Q

1

j in n:Q

2

)℄ j (�~r)(m[R

0

℄ j R

00

))
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� (�~p;~r)((�~q)(n[Q

1

j in n:Q

2

℄ j m[R

0

℄) j R

00

)

! (�~p;~r)((�~q)(m[n[Q

1

j Q

2

℄ j R

0

℄) j R

00

)

� (�~p;~r)(m[n[Q

0

℄ j R

0

℄ j R

00

)

= P

0

The other 
ases follow similarly.

Next, we prove a 
ouple of lemmas needed for proving the left-to-right dire
tion of

Theorem 9.

Lemma 35. If P � Q and Q

�

�! Q

0

then there is P

0

su
h that P

�

�! P

0

and P

0

� Q

0

.

Proof. By indu
tion on the derivation of Q

�

�! Q

0

.

(Trans Cap)We have Q > (�~r)hM:Q

1

iQ

2

, Q

0

= (�~r)(Q

1

j Q

2

), and M 2 fin n; out n;

open ng, with n =2 f~rg. By Proposition 6, there are P

1

and P

2

with P > (�~r)hM:P

1

iP

2

,

P

1

� Q

1

, and P

2

� Q

2

. By (Trans Cap), P

M

�! (�~r)(P

1

j P

2

), and we have that

(�~r)(P

1

j P

2

) � Q

0

.

(Trans In)We have Q > (�~q)hn[Q

1

℄iQ

2

, Q

1

in m

�! Q

0

1

, Q

2

> (�~r)hm[Q

0

2

℄iQ

00

2

, and Q

0

=

(�~q; ~r)(m[n[Q

0

1

℄ j Q

0

2

℄ j Q

00

2

) with f~rg \ fn(n[Q

1

℄) = ? and f~rg \ f~qg = ?. By

Proposition 6, we have P > (�~q)hn[P

1

℄iP

2

, with P

1

� Q

1

and P

2

� Q

2

. By in-

du
tion hypothesis, P

1

in m

�! P

0

1

with P

0

1

� Q

0

1

. By Proposition 6, P

2

> (�~r)hm[P

0

2

℄iP

00

2

,

with P

0

2

� Q

0

2

and P

00

2

� Q

00

2

. By Lemma 20, fn(n[P

1

℄) = fn(n[Q

1

℄), and therefore

f~rg \ fn(n[P

1

℄) = ?. Let P

0

= (�~q; ~r)(m[n[P

0

1

℄ j P

0

2

℄ j P

00

2

). By (Trans In), we have

P

�

�! P

0

. Moreover, P

0

� (�~q; ~r)(m[n[Q

0

1

℄ j Q

0

2

℄ j Q

00

2

), that is, P

0

� Q

0

.

(Trans Out)We have Q > (�~p)hn[Q

1

℄iQ

2

, Q

1

> (�~q)hm[Q

3

℄iQ

4

, and Q

3

out n

�! Q

0

3

,

with Q

0

= (�~p)(Q

2

j (�~q)(n[Q

4

℄ j m[Q

0

3

℄)) and n =2 f~qg. By Proposition 6, P >

(�~p)hn[P

1

℄iP

2

, with P

1

� Q

1

and P

2

� Q

2

. By Proposition 6, P

1

> (�~q)hm[P

3

℄iP

4

,

with P

3

� Q

3

and P

4

� Q

4

. By indu
tion hypothesis, P

3

out n

�! P

0

3

with P

0

3

� Q

0

3

. Let

P

0

= (�~p)(P

2

j (�~q)(n[P

4

℄ j m[P

0

3

℄)). By (Trans Out), we have P

�

�! P

0

. Moreover,

P

0

� (�~p)(Q

2

j (�~q)(n[Q

4

℄ j m[Q

0

3

℄)), that is, P

0

� Q

0

.

(Trans Amb)We have Q > (�~r)hn[Q

1

℄iQ

2

, Q

1

�

�! Q

0

1

, Q

0

= (�~r)(n[Q

0

1

℄ j Q

2

). By

Proposition 6, P > (�~r)hn[P

1

℄iP

2

with P

1

� Q

1

and P

2

� Q

2

. By indu
tion hypoth-

esis, P

1

�

�! P

0

1

with P

0

1

� Q

0

1

. Let P

0

= (�~r)(n[P

0

1

℄ j P

2

). By (Trans Amb), P

�

�! P

0

.

Moreover, P

0

� (�~r)(n[Q

0

1

℄ j Q

2

), that is, P

0

� Q

0

.

The other 
ases, (Trans Open) and (Trans I/O), follow similarly.

Lemma 36.

(1) If P

�

�! P

0

and n =2 fn(�) there is Q with (�n)P

�

�! Q and Q � (�n)P

0

.

(2) If (�n)P

�

�! Q and n =2 fn(�) there is P

0

with P

�

�! P

0

and Q � (�n)P

0

.

Proof. By indu
tions on the derivations of P

�

�! P

0

and (�n)P

�

�! Q respe
tively.

We omit the details.

The following establishes the left-to-right dire
tion of Theorem 9.

Proposition 37. If P ! Q then P

�

�!� Q.
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Proof. By indu
tion on the derivation of P ! Q. The only interesting 
ase is (Red �).

We omit the other 
ases, whi
h are routine.

(Red �)Here, P � P

0

, P

0

! Q

0

, and Q

0

� Q. By indu
tion hypothesis, P

0

�

�!� Q

0

.

By (Stru
t Trans), this and Q

0

� Q imply P

0

�

�!� Q. By Lemma 35, P � P

0

and

P

0

�

�!� Q imply that P

�

�!� Q.

Proof of Theorem 9. P ! Q if and only if P

�

�!� Q.

Proof. Combine Proposition 34, Proposition 37, and rule (Red �).

A.4. Proofs Omitted From Se
tion 4.4

We provide proofs for Lemma 13 and Theorem 15.

Proof of Lemma 13. If HfPg > (�~p)hP

1

iP

2

then either:

(1)H > (�~p)hn[H

0

℄iP

2

and P

1

= n[H

0

fPg℄, or

(2)H > (�~p)hP

1

iH

0

and P

2

= H

0

fPg, or

(3) P > (�~p)hP

1

iP

0

, H � � j R, P

2

� P

0

j R, and f~pg \ fn(R) = ?.

Proof. By indu
tion on the derivation of HfPg > (�~p)hP

1

iP

2

.

(Harden Par 1)Then HfPg = Q

1

j Q

2

, Q

1

> (�~p)hP

1

iP

3

, and P

2

= P

3

j Q

2

, with

f~pg \ fn(Q

2

) = ?. Given that HfPg = Q

1

j Q

2

, there are three 
ases to 
onsider:

| Here H = � and P = Q

1

j Q

2

. Case (3) of the lemma pertains, with R = 0.

| Here H = Q

1

j H

2

and Q

2

= H

2

fPg. By (Harden Par 1) and f~pg \ fn(Q

2

) = ?,

we may derive HfRg > (�~p)hP

1

i(P

3

j H

2

fRg) for all R with f~pg \ fn(R) = ?.

Let H

0

= P

3

j H

2

. We have H > (�~p)hP

1

iH

0

, and moreover, P

2

= P

3

j Q

2

= P

3

j

H

2

fPg = H

0

fPg. So 
ase (2) of the lemma pertains.

| Here H = H

1

j Q

2

and Q

1

= H

1

fPg. By indu
tion hypothesis, H

1

fPg >

(�~p)hP

1

iP

3

implies that one of three 
ases holds:

(1)H

1

> (�~p)hn[H

0

℄iP

3

and P

1

= n[H

0

fPg℄. We 
an derive H > (�~p)hn[H

0

℄i(P

3

j

Q

2

) sin
e f~pg \ fn(Q

2

) = ?. Therefore, H > (�~p)hn[H

0

℄iP

2

, as required to

establish 
ase (1) of the lemma.

(2)H

1

> (�~p)hP

1

iH

0

and P

3

= H

0

fPg. We have H > (�~p)hP

1

i(H

0

j Q

2

) sin
e

f~pg \ fn(Q

2

) = ?. Moreover, P

2

= P

3

j Q

2

= H

0

fPg j Q

2

. This establishes


ase (2) of the lemma.

(3) P > (�~p)hP

1

iP

0

, H

1

� � j R, P

3

� P

0

j R, and f~pg \ fn(R) = ?. We have

H � � j R j Q

2

, P

2

� P

0

j R j Q

2

, and f~pg \ fn(R j Q

2

) = ?. This establishes


ase (3) of the lemma.

We omit the remaining 
ases.

For the purposes of proving Theorem 15, we adopt the following notation.

Intera
tion between a harness and a pro
ess: H � P ; R

Let H � P ; R if and only if there are H

0

and ~r with f~rg \ fn(P ) = ?,

and one of the following holds:
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(Inter In) H � (�~r)H

0

fm[� j R

0

℄ j n[R

00

℄g, P

in n

�! P

0

,

and R � (�~r)H

0

fn[m[P

0

j R

0

℄ j R

00

℄g

(Inter Out) H � (�~r)H

0

fn[m[� j R

0

℄ j R

00

℄g, P

out n

�! P

0

,

and R � (�~r)H

0

fm[P

0

j R

0

℄ j n[R

00

℄g

(Inter Open)H � (�~r)H

0

f� j n[R

0

℄g, P

open n

�! P

0

,

and R � (�~r)H

0

fP

0

j R

0

g

(Inter Input) H � (�~r)H

0

f� j hMig, P > (�~p)h(x):P

0

iP

00

,

and R � (�~r)H

0

f(�~p)(P

0

fx Mg j P

00

)g, with f~pg \ fn(M) = ?

(Inter Output) H � (�~r)H

0

f� j (x):R

0

g, P > (�~p)hhMiiP

0

,

and R � (�~r)H

0

f(�~p)(P

0

j R

0

fx Mg)g, with f~pg \ fn(R

0

) = ?

(Inter Amb) P > (�~p)hn[Q℄iP

0

and one of the following holds:

(1)Q

in m

�! Q

0

, H � (�~r)H

0

f� j m[R

0

℄g, f~pg \ fn(m[R

0

℄) = ?,

and R � (�~r)H

0

f(�~p)(P

0

j m[n[Q

0

℄ j R

0

℄)g

(2)Q

out m

�! Q

0

, H � (�~r)H

0

fm[� j R

0

℄g, f~pg \ fn(m[R

0

℄) = ?,

and R � (�~r)H

0

f(�~p)(n[Q

0

℄ j m[P

0

j R

0

℄)g

(3)H � (�~r)H

0

fm[R

0

j in n:R

00

℄ j �g, f~pg \ fn(m[R

0

j in n:R

00

℄) = ?,

and R � (�~r)H

0

f(�~p)(n[Q j m[R

0

j R

00

℄℄ j P

0

)g

(4)H � (�~r)H

0

f� j open n:R

0

g, n =2 f~pg,

and R � (�~r)H

0

f(�~p)(Q j P

0

) j R

0

g

The following lemmas about theH � P ; R notation may easily be 
he
ked. (Lemma 40

is not a simple 
onsequen
e of Lemma 39 sin
e n may o

ur free in H .)

Lemma 38. If H � P ; R and H � H

0

and R � R

0

then H

0

� P ; R

0

.

Lemma 39. If H � P ; R then H

0

fHg � P ; H

0

fRg.

Lemma 40. If H � P ; R and n =2 fn(P ) then (�n)H � P ; (�n)R.

The following lemma is a simple spe
ialization of Lemma 13:

Lemma 41. If HfPg > (�~p)hn[P

1

℄iP

2

then either:

(1)H � (�~p)(n[H

0

℄ j P

2

) and P

1

= H

0

fPg, or

(2)H � (�~p)(n[P

1

℄ j H

0

) and P

2

= H

0

fPg, or

(3) P > (�~p)hn[P

1

℄iP

0

, H � � j R, P

2

� P

0

j R, and f~pg \ fn(R) = ?.

The next two lemmas follow from the de�nition of the M -transitions in terms of hard-

ening.

Lemma 42. If HfPg

M

�! R for M 2 fin n; out n; open ng then either:

(1)H � (�~r)(M:R

0

j H

0

), R � (�~r)(R

0

j H

0

fPg), f~rg \ (fng [ fn(P )) = ?, or

(2)H � � j R

0

, P

M

�! P

0

, and R � P

0

j R

0

.

Lemma 43. If P j Q

M

�! R then either:

(1) P

M

�! P

0

and R � P

0

j Q, or

(2)Q

M

�! Q

0

and R � P j Q

0

.
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The following proposition is the main fa
t we need to prove in order to establish

Theorem 15.

Proposition 44. If HfPg

�

�! R then one of the following holds:

(1) there is a redu
tion P ! P

0

with R � HfP

0

g, or

(2) there is a redu
tion H ! H

0

with R � H

0

fPg, or

(3)H � P ; R.

Proof. By indu
tion on the derivation of HfPg

�

�! R.

(Trans Open)Here, HfPg > (�~q)hn[Q

1

℄iQ

2

, and Q

2

open n

�! Q

0

2

, and R = (�~q)(Q

1

j Q

0

2

).

We may assume that f~qg\ fn(P ) = ?. By Lemma 41, HfPg > (�~q)hn[Q

1

℄iQ

2

implies

there are three 
ases to 
onsider:

(1)H � (�~q)(n[H

0

℄ j Q

2

) and Q

1

= H

0

fPg. Let H

00

= (�~q)(H

0

j Q

0

2

). In this 
ase, we


an see, for all Q, that HfQg ! H

00

fQg, whi
h is to say that H ! H

00

. Moreover,

R � (�~q)(H

0

fPg j Q

0

2

) � H

00

fPg. Hen
e, 
ase (2) pertains.

(2)H � (�~q)(n[Q

1

℄ j H

1

) and Q

2

= H

1

fPg. By Lemma 42, H

1

fPg

open n

�! Q

0

2

implies

either:

(a)H

1

� (�~r)(open n:R

0

j H

2

), Q

0

2

� (�~r)(R

0

j H

2

fPg) and f~rg \ (fng[ fn(P )) =

?. Let H

0

= (�~q)(Q

1

j (�~r)(R

0

j H

2

)). We have that HfQg ! H

0

fQg for all

Q, that is, H ! H

0

. Moreover, R � (�~q)(Q

1

j (�~r)(R

0

j H

2

fPg)) � H

0

fPg.

Hen
e, 
ase (2) pertains.

(b)H

1

� � j R

0

, P

open n

�! P

0

, and Q

0

2

� P

0

j R

0

. From H � (�~q)(R

0

j � j n[Q

1

℄),

P

open n

�! P

0

, and R � (�~q)(Q

1

j P

0

j R

0

) � (�~q)(R

0

j P

0

j Q

1

) we may derive

H � P ; R using (Inter Open). Hen
e, 
ase (3) pertains.

(3) P > (�~q)hn[Q

1

℄iP

0

, H � � j R

0

, Q

2

� P

0

j R

0

, and f~qg \ fn(R

0

) = ?. From

P > (�~q)hn[Q

1

℄iP

0

we get P � (�~q)(n[Q

1

℄ j P

0

). By Lemma 35, Q

2

� P

0

j R

0

and Q

2

open n

�! Q

0

2

imply there is Q

00

2

su
h that P

0

j R

0

open n

�! Q

00

2

and Q

00

2

� Q

0

2

. By

Lemma 43 there are two 
ases to 
onsider:

(a) P

0

open n

�! P

00

and Q

00

2

� P

00

j R

0

. We have P ! (�~q)(Q

1

j P

00

), H � � j R

0

and

R � (�~q)(Q

1

j Q

0

2

) � (�~q)(Q

1

j P

00

j R

0

) � (�~q)(Q

1

j P

00

) j R

0

. Hen
e, 
ase (1)

pertains.

(b)R

0

open n

�! R

00

and Q

00

2

� P

0

j R

00

. From R

0

open n

�! R

00

it follows that R

0

�

(�~r)(R

1

j open n:R

2

) with R

00

� (�~r)(R

1

j R

2

) and n =2 f~rg. We have:

H � (�~r)(R

1

j � j open n:R

2

)

R � (�~q)(Q

1

j Q

0

2

)

� (�~q)(Q

1

j P

0

j R

00

)

� (�~q)(Q

1

j P

0

j (�~r)(R

1

j R

2

))

� (�~r)(R

1

j (�~q)(Q

1

j P

0

) j R

2

)

sin
e we may assume that f~qg \ fn(R

1

j R

2

) = ? and f~rg \ fn(Q

1

j P

0

) = ?

and f~qg \ f~rg = ?. From f~qg \ fn(R

0

) = ? and R

0

open n

�! R

00

it follows that

n =2 f~qg. From P > (�~q)hn[Q

1

℄iP

0

, n =2 f~qg, and the two displayed equations,
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we may derive H � P ; R using 
lause (4) of (Inter Amb). Hen
e, 
ase (3)

pertains.

(Trans Amb)Here, HfPg > (�~q)hn[Q

1

℄iQ

2

, Q

1

�

�! Q

0

1

, and R = (�~q)(n[Q

0

1

℄ j Q

2

).

From HfPg > (�~q)hn[Q

1

℄iQ

2

it follows that f~qg \ fn(P ) = ?, sin
e fn(P ) �

fn(HfPg). By Lemma 13, HfPg > (�~q)hn[Q

1

℄iQ

2

implies there are three 
ases to


onsider:

(1)H > (�~q)hn[H

0

℄iQ

2

and Q

1

= H

0

fPg. By indu
tion hypothesis, Q

1

= H

0

fPg

�

�!

Q

0

1

implies one of the following:

(a) Here P ! P

0

with Q

0

1

� H

0

fP

0

g. We have R � (�~q)(n[H

0

fP

0

g℄ j Q

2

), and

H � (�~q)(n[H

0

℄ j Q

2

) so 
ase (1) pertains.

(b) Here H

0

! H

00

with Q

0

1

� H

00

fPg. From H > (�~q)hn[H

0

℄iQ

2

and H

0

! H

00

we 
an derive H ! (�~q)(n[H

00

℄ j Q

2

). We have R � (�~q)(n[H

00

fPg℄ j Q

2

), so


ase (2) pertains.

(
) Here H

0

� P ; Q

0

1

. From H > (�~q)hn[H

0

℄iQ

2

we get that H � (�~q)(n[H

0

℄ j

Q

2

). Also, R � (�~q)(n[Q

0

1

℄ j Q

2

). By Lemma 39, H

0

� P ; Q

0

1

implies that

n[H

0

℄ j Q

2

� P ; n[Q

0

1

℄ j Q

2

. By Lemma 40, f~qg \ fn(P ) = ? implies that

(�~q)(n[H

0

℄ j Q

2

) � P ; (�~q)(n[Q

0

1

℄ j Q

2

). By Lemma 38, H � P ; R. Hen
e


ase (3) pertains.

(2)H > (�~q)hn[Q

1

℄iH

1

and Q

2

= H

1

fPg. Let H

0

= (�~q)(n[Q

0

1

℄ j H

1

). Sin
e H �

(�~q)(n[Q

1

℄ j H

1

) and Q

1

�

�! Q

0

1

, we get that H ! H

0

. Moreover,R � (�~q)(n[Q

0

1

℄ j

H

1

fPg) � H

0

fPg. Hen
e 
ase (2) pertains.

(3) P > (�~q)hn[Q

1

℄iP

0

, H � � j R

0

, Q

2

� P

0

j R

0

, and f~qg \ fn(R

0

) = ?. Let

P

0

= (�~q)(n[Q

0

1

℄ j P

0

). From Q

1

�

�! Q

0

1

and P � (�~q)(n[Q

1

℄ j P

0

), we get that

P ! P

0

. Moreover, R � (�~q)(n[Q

0

1

℄ j P

0

j R

0

) � HfP

0

g. Hen
e 
ase (1) pertains.

The 
ases for the rules (Trans In), (Trans Out), and (Trans I/O) are proved by arguments

similar to that for (Trans Open). Sin
e the rule (Trans Cap) 
annot derive a � -transition,

this 
ompletes the analysis of all the rules that may derive HfPg

�

�! R.

We now prove Theorem 15, whi
h we restate in terms of the intera
tion predi
ate,

H � P ; R.

Proof of Theorem 15. HfPg ! R if and only if:

(A
t Pro
) P ! P

0

with R � HfP

0

g, or

(A
t Har) H ! H

0

with R � H

0

fPg, or

(A
t Inter) H � P ; R.

Proof. The right-to-left dire
tion is a routine 
al
ulation. For the left-to-right dire
tion,

suppose that HfPg ! R. By Theorem 9, there is Q with HfPg

�

�! Q and Q � R. By

Proposition 44, there are three 
ases to 
onsider:

(1) There is a redu
tion P ! P

0

with Q � HfP

0

g. From Q � R we get R � HfP

0

g, so

(A
t Pro
) applies.

(2) There is a redu
tion H ! H

0

with Q � H

0

fPg. From Q � R we get R � H

0

fPg, so

(A
t Har) applies.
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(3) We have H � P ; Q. By Lemma 38, Q � R implies that H � P ; R. Therefore,

(A
t Inter) applies.

A.5. Proofs About Repli
ation

In this se
tion, we prove a series of lemmas about repli
ated pro
esses. These lemmas are

needed in the next se
tion, in the proof of Proposition 61, that the equivalen
e impli
it

in the 
ontext lemma is a 
ongruen
e with respe
t to repli
ation.

We use the notation P

k

as an abbreviation for k 
opies of P running in parallel: we

indu
tively de�ne P

0

�

= 0, and P

k+1

�

= P j P

k

.

Lemma 45. If !P > (�~p)hQiR then there is P

0

su
h that P > (�~p)hQiP

0

with R = P

0

j

!P and f~pg \ fn(P ) = ?.

Proof. The judgment !P > (�~p)hQiR 
an only be derived using the rule (Harden Repl),

from a judgment P > (�~p)hQiP

0

su
h that R = P

0

j !P . By Lemma 22, P > (�~p)hQiP

0

implies that fn(P ) = fn((�~p)hQiP

0

), and therefore that f~pg \ fn(P ) = ?.

Lemma 46. If !P

M

�! Q then there is R su
h that P

M

�! R and Q � R j !P .

Proof. The judgment !P

M

�! Q 
an only be derived using (Trans Cap) from a judgment

!P > (�~p)hM:P

0

iP

00

with fn(M)\ f~pg = ? and Q = (�~p)(P

0

j P

00

). By Lemma 45, there

is P

000

with P > (�~p)hM:P

0

iP

000

, P

00

= P

000

j !P , and f~pg \ fn(P ) = ?. Let R = (�~p)(P

0

j

P

000

). By (Trans Cap), we have P

M

�! R. Moreover, Q = (�~p)(P

0

j P

000

j !P ) � R j !P .

Lemma 47. If !P

�

�! Q then there is R with P j P

�

�! R and Q � R j !P .

Proof. By a 
ase analysis of the derivation of !P

�

�! Q.

(Trans Amb)Here, !P

�

�! (�~p)(n[Q

0

℄ j P

0

) derives from !P > (�~p)hn[Q℄iP

0

and Q

�

�!

Q

0

. By Lemma 45, !P > (�~p)hn[Q℄iP

0

implies there is R

0

su
h that P > (�~p)hn[Q℄iR

0

,

P

0

= R

0

j !P , and fn(P ) \ f~pg = ?. By (Harden Par 1), P > (�~p)hn[Q℄iR

0

and

f~pg \ fn(P ) = ? imply that P j P > (�~p)hn[Q℄i(R

0

j P ). By (Trans Amb), this and

Q

�

�! Q

0

imply that P j P

�

�! R, where R = (�~p)(n[Q

0

℄ j R

0

j P ). Finally, we may


al
ulate: (�~p)(n[Q

0

℄ j P

0

) = (�~p)(n[Q

0

℄ j R

0

j !P ) � (�~p)(n[Q

0

℄ j R

0

j P j !P ) � R j !P .

(Trans In)Here, !P

�

�! (�~p;~r)(m[n[Q

0

℄ j R

1

℄ j R

2

) derives from the judgments !P >

(�~p)hn[Q℄iR, Q

in m

�! Q

0

, and R > (�~r)hm[R

1

℄iR

2

, with f~rg \ fn(n[Q℄) = ? and

f~rg \ f~pg = ?. By Lemma 45, !P > (�~p)hn[Q℄iR implies there is R

0

su
h that

P > (�~p)hn[Q℄iR

0

and R � R

0

j !P with f~pg \ fn(P ) = ?.

By Proposition 6 and (Stru
t Symm), R > (�~r)hm[R

1

℄iR

2

and R � R

0

j !P imply

there are R

0

1

and R

0

2

su
h that R

0

j !P > (�~r)hm[R

0

1

℄iR

0

2

, R

1

� R

0

1

, and R

2

� R

0

2

.

Only two rules may derive the judgment R

0

j !P > (�~r)hm[R

0

1

℄iR

0

2

:

(Harden Par 1)In this 
ase, R

0

> (�~r)hm[R

0

1

℄iR

00

with R

0

2

= R

00

j !P and f~rg \

fn(!P ) = ?. By (Harden Par 1), P > (�~p)hn[Q℄iR

0

and f~pg \ fn(P ) = ? imply

that P j P > (�~p)hn[Q℄i(R

0

j P ). By (Harden Par 1), R

0

> (�~r)hm[R

0

1

℄iR

00

and

f~rg \ fn(P ) = ? imply that R

0

j P > (�~r)hm[R

0

1

℄i(R

00

j P ). By (Trans In),

P j P > (�~p)hn[Q℄i(R

0

j P ), Q

in m

�! Q

0

, and R

0

j P > (�~r)hm[R

0

1

℄i(R

00

j P ) imply
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that P j P

�

�! (�~p;~r)(m[n[Q

0

℄ j R

0

1

℄ j R

00

j P ). We know that fn(P ) \ f~p;~rg = ?,

and hen
e we may 
al
ulate:

(�~p;~r)(m[n[Q

0

℄ j R

1

℄ j R

2

) � (�~p;~r)(m[n[Q

0

℄ j R

0

1

℄ j R

0

2

)

= (�~p;~r)(m[n[Q

0

℄ j R

0

1

℄ j R

00

j !P )

� (�~p;~r)(m[n[Q

0

℄ j R

0

1

℄ j R

00

j P ) j !P

(Harden Par 2)In this 
ase, !P > (�~r)hm[R

0

1

℄iR

00

with R

0

2

= R

0

j R

00

and f~rg \

fn(R

0

) = ?. By Lemma 45, !P > (�~r)hm[R

0

1

℄iR

00

implies there is R

000

su
h that

P > (�~r)hm[R

0

1

℄iR

000

with R

00

= R

000

j !P and f~rg\ fn(P ) = ?. By (Harden Par 1),

P > (�~p)hn[Q℄iR

0

and f~pg\fn(P ) = ? imply that P j P > (�~p)hn[Q℄i(R

0

j P ). By

(Harden Par 2), f~rg \ fn(R

0

) = ? and P > (�~r)hm[R

0

1

℄iR

000

imply that R

0

j P >

(�~r)hm[R

0

1

℄i(R

0

j R

000

). By (Trans In), P j P > (�~p)hn[Q℄i(R

0

j P ), Q

in m

�! Q

0

, and

R

0

j P > (�~r)hm[R

0

1

℄i(R

0

j R

000

) imply P j P

�

�! (�~p;~r)(m[n[Q

0

℄ j R

0

1

℄ j R

0

j R

000

).

We know that fn(P ) \ f~p;~rg = ?, and hen
e we may 
al
ulate:

(�~p;~r)(m[n[Q

0

℄ j R

1

℄ j R

2

) � (�~p;~r)(m[n[Q

0

℄ j R

0

1

℄ j R

0

j R

00

)

= (�~p;~r)(m[n[Q

0

℄ j R

0

1

℄ j R

0

j (R

000

j !P ))

� (�~p;~r)(m[n[Q

0

℄ j R

0

1

℄ j R

0

j R

000

) j !P

The other 
ases|(Trans Out), (Trans Open), and (Trans I/O)|follow by similar argu-

ments.

Lemma 48. If Hf!Pg ! R then there is H

0

su
h that R � H

0

f!Pg and for all k,

HfP

k+2

g ! H

0

fP

k

g.

Proof. The proof is a 
ase analysis indu
ed by Theorem 15. We omit the details.

Lemma 49. If Hf!Pg + n then there is k su
h that HfP

k

g + n.

Proof. By indu
tion on the derivation of Hf!Pg + n.

(Conv Exh)Here, Hf!Pg # n. By Proposition 14, this implies that either (1) HfQg # n

for all Q, or (2) !P # n, and for all Q, Q # n implies that HfQg # n. In 
ase (1), let k =

1 and we have HfPg # n. In 
ase (2), Proposition 7 implies that !P > (�~p)hn[P

0

℄iP

00

with n =2 f~pg, for some names ~p and pro
esses P

0

and P

00

. By Lemma 45, it follows that

there is P

000

su
h that P > (�~p)hn[P

0

℄iP

000

with P

00

= P

000

j !P and f~pg \ fn(P ) = ?.

Proposition 7 now yields that P # n. Let k = 1 and we get that HfPg # n.

(Conv Red)Here, Hf!Pg ! Q and Q + n. By Lemma 48, Hf!Pg ! Q implies there is

H

0

su
h that Q � H

0

f!Pg and, for all j, HfP

j+2

g ! H

0

fP

j

g. By Lemma 2, there

is a derivation of H

0

f!Pg + n with the same depth of inferen
e as the derivation

of Q + n. By indu
tion hypothesis, there is k su
h that H

0

fP

k

g + n. Now, we

have that HfP

k+2

g ! H

0

fP

k

g. By (Conv Red), this and H

0

fP

k

g + n imply that

HfP

k+2

g + n.
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A.6. Proofs Omitted From Se
tion 4.3

The purpose of this se
tion is to prove our 
ontext lemma, Theorem 12. Roughly speaking,

the 
ontext lemma asserts that the distin
tions made by all 
ontexts are the same as

the distin
tions made by harnesses. To prove the 
ontext lemma, it is 
onvenient to

introdu
e the following auxiliary equivalen
e, de�ned in terms of harnesses. Re
all that a

substitution, �, be a list x

1

 M

1

; : : : ; x

k

 M

k

, where the variables x

1

, . . . , x

k

are pairwise

distin
t, and fv (M

i

) = ? for ea
h i 2 1::k.

The Equivalen
e Impli
it in the Context Lemma: P � Q

Let P � Q if and only if for all substitutions � with dom(�) = fv (P ) [ fv (Q),

and for all 
losed harnesses H and names n, that HfP�g + n, HfQ�g + n.

Next, we prove a series of lemmas, whi
h taken together imply Proposition 64, that

the auxiliary equivalen
e P � Q is a 
ongruen
e. The 
ontext lemma then follows easily.

Proposition 50. The relation P � Q is an equivalen
e, that is, re
exive, transitive, and

symmetri
. Moreover, if P � Q then P � Q.

Proof. That P � Q is an equivalen
e follows easily from its de�nition. Suppose that

P � Q. Consider any substitution � su
h that fv (P ) [ fv(Q) = dom(�). Stru
tural


ongruen
e is preserved by substitutions, so P� � Q�. Moreover, stru
tural 
ongruen
e

is a 
ongruen
e, so HfP�g � HfQ�g. By Lemma 2, it follows that for all n, HfP�g +

n, HfQ�g + n. Therefore, P � Q.

Proposition 51. If P � P

0

then P j Q � P

0

j Q.

Proof. Consider any substitution � with dom(�) = fv (P j Q) [ fv(P

0

j Q), and any


losed harness H and any name n. Let H

0

= Hf� j Q�g. Sin
e fv (Q) � dom(�), the

harness H

0

is 
losed. Let �

0

be the restri
tion of � to the domain fv (P )[ fv(P

0

). We have

that:

Hf(P j Q)�g = H

0

fP�

0

g

Hf(P

0

j Q)�g = H

0

fP

0

�

0

g

Now, suppose Hf(P j Q)�g + n, that is, H

0

fP�

0

g + n. This and P � P

0

imply that

H

0

fP

0

�

0

g + n, whi
h is to say, Hf(P

0

j Q)�g + n. A symmetri
 argument establishes

that Hf(P

0

j Q)�g + n implies Hf(P j Q)�g + n. Therefore, P j Q � P

0

j Q.

Lemma 52. If m 6= n, then (�n)P + m, P + m.

Proof. An indu
tion on the derivation of P + m establishes that (�n)P + m, using

(Harden Res) and Proposition 7. On the other hand, an indu
tion on the derivation of

(�n)P + m establishes that P + m, using Lemma 2, Theorem 9, and Lemma 36.

Proposition 53. If P � P

0

then (�n)P � (�n)P

0

.

Proof. Consider any substitution � with dom(�) = fv ((�n)P ) [ fv((�n)P

0

), that is,

dom(�) = fv (P ) [ fv (P

0

). Consider any 
losed harness H and any name m. Sin
e the
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name n is bound, we may assume that n =2 fn(�(x)) for all x 2 dom(�), that n =2 fn(H)

and that m 6= n. We have that:

Hf((�n)P )�g = (�n)(HfP�g)

Hf((�n)P

0

)�g = (�n)(HfP

0

�g)

By de�nition of P � P

0

, it follows thatHfP�g + m, HfP

0

�g + m. By Lemma 52, it fol-

lows that (�n)(HfP�g) + m, (�n)(HfP

0

�g) + m, whi
h is to say that Hf((�n)P )�g +

m, Hf((�n)P

0

)�g + m. It follows that (�n)P � (�n)P

0

.

Lemma 54. If M is not a name and HfM [P ℄g + m then Hf0g + m.

Proof. By indu
tion on the derivation ofHfM [P ℄g + m, with appeal to Proposition 14,

and the a
tivity lemma, Theorem 15. An ambient M [P ℄, where M is not a name, 
annot

parti
ipate in any transitions.

Proposition 55. If P � P

0

then M [P ℄ �M [P

0

℄.

Proof. Consider any substitution � with dom(�) = fv(M [P ℄) [ fv (M [P

0

℄), that is,

dom(�) = fv (M) [ fv(P ) [ fv (P

0

). Consider any 
losed harness H and any name m.

Either M� is a name n, or not. If not, we get that Hf(M [P ℄)�g + m , Hf0g + m ,

Hf(M [P

0

℄)�g + m from Lemma 18 and Lemma 54. On the other hand, suppose that

M� is the name n. Let H

0

= Hfn[�℄g. Given that H is 
losed, so is H

0

. We have that:

Hf(M [P ℄)�g = H

0

fP�g

Hf(M [P

0

℄)�g = H

0

fP

0

�g

Now, suppose Hf(M [P ℄)�g + m, that is, H

0

fP�g + m. This and P � P

0

imply that

H

0

fP

0

�g + m, whi
h is to say, Hf(M [P

0

℄)�g + m. A symmetri
 argument establishes

that Hf(M [P

0

℄)�g + m implies Hf(M [P ℄)�g + m. Therefore, whether or not M is a

name, M [P ℄ �M [P

0

℄.

The relation M > � in the following lemma is as de�ned in Appendix A.2.

Lemma 56. M:P ! Q if and only if M > � and P ! Q.

Proof. The right-to-left dire
tion follows from the fa
t thatM > � implies thatM:P �

P . For the other dire
tion, M:P ! Q implies, by Theorem 9 that there is R with

M:P

�

�! R and R � Q. An inspe
tion of the rules for deriving � -transitions reveals that

the �rst step in deriving M:P

�

�! R is a hardening M:P > C, where the prime of the


on
retion C is either an ambient or an output. Therefore, the se
ond 
ase of Lemma 28

must hold, and we have that M > � and P > C. It follows that P

�

�! R, and therefore

that P ! Q.

Lemma 57. If M:P

N

�! P

0

then either:

(1)M > N:N

0

and P

0

� N

0

:P , or

(2)M > � and P

N

�! P

0

.
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Proof. By de�nition, M:P

N

�! P

0

implies that M:P > (�~p)hN:P

1

iP

2

with P

0

=

(�~p)(P

1

j P

2

) and fn(N) \ f~pg = ?. By Lemma 28, one of two 
ases arises. In the �rst


ase, M > N:N

0

, (�~p)hN:P

1

iP

2

= (�)hN:Ri0, and R � N

0

:P . So ~p = ?, P

1

= R, and

P

2

= 0. Therefore, P

0

� R j 0 � N

0

:P . In the se
ond 
ase,M > � and P > (�~p)hN:P

1

iP

2

.

By (Trans Cap), P

N

�! (�~p)(P

1

j P

2

) = P

0

.

Lemma 58. Consider any 
losed P and P

0

su
h that P � P

0

. If HfM:Pg + n then

HfM:P

0

g + n.

Proof. By indu
tion on the derivation of HfM:Pg + n.

(Conv Exh)Here HfM:Pg # n, and we are to show that HfM:P

0

g + n. By Proposi-

tion 14, either (1) HfQg # n for all Q, or (2) M:P # n, and for all Q, Q # n im-

plies that HfQg # n. In 
ase (1), we immediately get that HfM:P

0

g # n, and hen
e

HfM:P

0

g + n by (Conv Exh). In 
ase (2),M:P # n implies thatM:P > (�~r)hn[R

1

℄iR

2

with n =2 f~rg by Proposition 7. By Lemma 28, M:P > (�~r)hn[R

1

℄iR

2

implies that

M > � and P > (�~r)hn[R

1

℄iR

2

. (The �rst 
lause of Lemma 28 
annot apply sin
e the

prime of the 
on
retion (�~r)hn[R

1

℄iR

2

is an ambient and not an a
tion.) By Propo-

sition 7 and (Conv Exh), we get that P + n. Sin
e P � P

0

, it follows that P

0

+ n.

So there is P

00

su
h that P

0

!

�

P

00

and P

00

# n. We have HfM:P

0

g � HfP

0

g from

M > �, and HfP

0

g !

�

HfP

00

g, and HfP

00

g # n, by the property of H obtained from

Proposition 14 above. These three fa
ts imply that HfM:P

0

g + n.

(Conv Red)Here HfM:Pg ! R and R + n. By Theorem 15, one of the following 
ases

must hold:

(A
t Pro
)Then M:P ! R

0

with R � HfR

0

g. By Lemma 56, we have that M > �

and P ! R

0

. If M > �, then HfM:Pg � HfPg, so HfPg + n. Sin
e P � P

0

,

HfPg + n implies that HfP

0

g + n. FromM > �, we get that HfM:P

0

g � HfP

0

g,

and therefore that HfM:P

0

g + n.

(A
t Har)Then H ! H

0

with R � H

0

fM:Pg. By Lemma 2, R � H

0

fM:Pg implies

that H

0

fM:Pg + n with the same depth of inferen
e as R + n. By indu
tion

hypothesis, we get H

0

fM:P

0

g + n too. From H ! H

0

we get that HfM:P

0

g !

H

0

fM:P

0

g, and hen
e that HfM:P

0

g + n.

(A
t Inter)Then there are H

0

and ~r with f~rg \ fn(M:P ) = ?, and one of several


ases holds. We 
onsider just one; the others follow by similar arguments.

(Inter In)Here we have H � (�~r)H

0

fm[� j R

0

℄ j n[R

00

℄g, M:P

in n

�! P

00

, and

R � (�~r)H

0

fn[m[P

00

j R

0

℄ j R

00

℄g. By Lemma 57, M:P

in n

�! P

00

implies that

one of two 
ases must hold.

In the �rst 
ase, M > in n:N

0

and P

00

� N

0

:P . Here, M:P

0

in n

�! N

0

:P

0

, and

therefore we have:

HfM:P

0

g

�

�! (�~r)H

0

fn[m[N

0

:P

0

j R

0

℄ j R

00

℄g

R � (�~r)H

0

fn[m[N

0

:P j R

0

℄ j R

00

℄g

By indu
tion hypothesis, R + n and Lemma 2 imply that

(�~r)H

0

fn[m[N

0

:P

0

j R

0

℄ j R

00

℄g + n
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and therefore that HfM:P

0

g + n.

In the se
ond 
ase, M > � and P

in n

�! P

00

. In this 
ase, HfM:Pg � HfPg,

and HfM:P

0

g � HfP

0

g. Therefore HfM:Pg + n and P � P

0

imply that

HfM:P

0

g + n.

Proposition 59. If P � P

0

then M:P �M:P

0

.

Proof. Consider any substitution � with dom(�) = fv(M:P )[fv (M:P

0

), and any 
losed

harness H and any name m. By Lemma 58, we get that HfM�:P�)g + m if and only if

HfM�:P

0

�)g + m. Hen
e, M:P �M:P

0

.

Lemma 60. If HfPg + n then HfP j Qg + n.

Proof. Suppose HfPg + n. Let H

0

= HfP j �g. We have that HfPg � HfP j 0g =

H

0

f0g. Hen
e, by Lemma 2, HfPg + n implies H

0

f0g + n. By Lemma 18, this implies

H

0

fQg + n, whi
h is to say that HfP j Qg + n.

Proposition 61. If P � P

0

then !P � !P

0

.

Proof. Consider any substitution � with dom(�) = fv (!P )[ fv (!P

0

), that is, dom(�) =

fv (P )[fv(P

0

). Consider any 
losed harnessH and any name n. Suppose that Hf(!P )�g +

n. By Lemma 49, there is k su
h that Hf(P�)

k

g + n, whi
h is to say HfP

k

�g + n.

By Proposition 51, P

k

� P

0k

. Therefore, HfP

k

�g + n implies HfP

0k

�g + n, whi
h

is to say Hf(P

0

�)

k

g + n. By Lemma 60, this implies Hf(P

0

�)

k

j !(P

0

�)g + n. Sin
e

Hf!P

0

�g � Hf(P

0

�)

k

j !(P

0

�)g, it follows that Hf!P

0

�g + n, that is, Hf(!P

0

)�g + n. By

symmetri
 reasoning, Hf(!P

0

)�g + n implies Hf(!P )�g + n.

Lemma 62. Consider any P and P

0

su
h that P � P

0

and fv (P ) [ fv (P

0

) � fxg. If

Hf(x):Pg + n then Hf(x):P

0

g + n.

Proof. By indu
tion on the derivation of Hf(x):Pg + n.

(Conv Exh)Here Hf(x):Pg # n. By Proposition 14, either HfQg # n for all Q, or

(x):P # n. In the �rst 
ase, we get Hf(x):P

0

g # n. In the se
ond 
ase, Proposi-

tion 7 implies that (x):P hardens to a 
on
retion whose prime is an ambient. This is

impossible, so the se
ond 
ase 
annot arise.

(Conv Red)Here Hf(x):Pg ! R and R + n. By Theorem 15, one of the following 
ases

must hold:

(A
t Pro
)Then (x):P ! R

0

with R � HfR

0

g. This 
ase 
annot arise, sin
e (x):P

has no � -transitions.

(A
t Har)Then H ! H

0

with R � H

0

f(x):Pg. By Lemma 2, R � H

0

f(x):Pg

implies that H

0

f(x):Pg + n with the same depth of inferen
e as R + n. By

indu
tion hypothesis, we get H

0

f(x):P

0

g + n too. From H ! H

0

we get that

Hf(x):P

0

g ! H

0

f(x):P

0

g, and hen
e that Hf(x):P

0

g + n.

(A
t Inter)ThenH � (x):P ; R. By analysing the rules of intera
tion,H � (x):P ;

R 
an only be derived using (Inter Input) given that H � (�~r)H

0

f� j hMig,

(x):P > (�~p)h(x):P

1

iP

2

, and R � (�~r)H

0

f(�~p)(P

1

fx Mg j P

2

)g, with f~pg \

fn(M) = ? and f~rg \ fn(P ) = ?. From (x):P > (�~p)h(x):P

1

iP

2

, it follows that
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~p = ?, P

1

= P , P

2

= 0. Therefore, R � (�~r)H

0

fPfx Mgg. We have that

(�~r)H

0

fPfx Mgg + n. By assumption, this implies that (�~r)H

0

fP

0

fx Mgg +

n. Now, Hf(x):P

0

g � (�~r)H

0

f(x):P

0

j hMig ! (�~r)H

0

fP

0

fx Mgg. Therefore,

Hf(x):P

0

g + n.

Proposition 63. If P � P

0

then (x):P � (x):P

0

.

Proof. Consider any substitution � with dom(�) = fv((x):P ) [ fv ((x):P

0

), that is,

dom(�) = (fv (P ) [ fv(P

0

)) � fxg. From P � P

0

it follows that P� � P

0

� and that

fv (P�)[ fv (P

0

�) � fxg. Consider any 
losed harness H and any name n. By Lemma 62,

we get Hf(x):P�)g + n if and only if Hf(x):P

0

�)g + n. Hen
e, (x):P � (x):P

0

.

Proposition 64. If P � P

0

then C(P ) � C(Q).

Proof. Combine Proposition 50, Proposition 51, Proposition 53, Proposition 55, Propo-

sition 59, Proposition 61, and Proposition 63.

We end by proving that the relations P � Q and P ' Q are one.

Proposition 65. If P � Q then P ' Q.

Proof. We must show for all names n and 
ontexts C with C(P ) and C(Q) 
losed,

that C(P ) + n , C(Q) + n, assuming that P � Q. By Proposition 64, P � Q implies

that C(P ) � C(Q). Therefore C(P ) + n , C(Q) + n follows from the de�nition of

C(P ) � C(Q), given that C(P ) and C(Q) are 
losed.

To show the 
onverse impli
ation, we need the following 
ombinator.

A substitution 
ombinator: subst xM P

subst xM P

�

= (�m)(�n)(open n j m[hMi j (x):n[out m:open m:P ℄℄)

for fm;ng \ fn(M:P ) = ?

Lemma 66. For all P and M , subst xM P � Pfx Mg.

Proof. Consider the pro
esses de�ned by the following, where fm;ng \ fn(M:P ) = ?.

R

1

�

= (�m)(�n)(open n j m[hMi j (x):n[out m:open m:P ℄℄)

R

2

�

= (�m)(�n)(open n j m[n[out m:open m:Pfx Mg℄℄)

R

3

�

= (�m)(�n)(open n j n[open m:Pfx Mg℄ j m[℄)

R

4

�

= (�m)(open m:Pfx Mg j m[℄)

R

5

�

= Pfx Mg

We omit the details, but using the a
tivity lemma we 
an show that R

i

� R

i+1

for

i 2 1::4, mu
h as in the proof of Lemma 19. By transitivity, we obtain R

1

� R

5

, that is,

subst xM P � Pfx Mg.

Lemma 67. If P ' Q then Pfx Mg ' Qfx Mg.
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Proof. From P ' Q it follows that subst x M P ' subst x M Q. By Lemma 66 and

Proposition 65, we get that subst x M P ' Pfx Mg and subst x M Q ' Qfx Mg.

Combining these equations yields Pfx Mg ' Qfx Mg.

Proposition 68. If P ' Q then P � Q.

Proof. Suppose P ' Q. Consider any substitution � with dom(�) = fv (P ) [ fv (Q),

and any 
losed harness H and name n. By Lemma 67, P ' Q implies that P� ' Q�.

Sin
e ' is a 
ongruen
e, Proposition 1, we get that HfP�g ' HfQ�g. By de�nition of

HfP�g ' HfQ�g, the fa
t that HfP�g and HfQ�g are 
losed implies that HfP�g +

n, HfQ�g + n. Therefore P � Q.

Proof of Theorem 12. For all pro
esses P and Q, P ' Q if and only if for all

substitutions � with dom(�) = fv(P ) [ fv (Q), and for all 
losed harnesses H and names

n, that HfP�g + n, HfQ�g + n.

Proof. By de�nition of P � Q, this is equivalent to showing that P ' Q if and only if

P � Q, for all P and Q, whi
h follows from Proposition 65 and Proposition 68.
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