Extracting and Verifying Cryptographic Models
from C Protocol Code by Symbolic Execution

Mihhail Aizatulin
The Open University

ABSTRACT

Consider the problem of verifying security properties of a
cryptographic protocol coded in C. We propose an automatic
solution that needs neither a pre-existing protocol descrip-
tion nor manual annotation of source code. First, symboli-
cally execute the C program to obtain symbolic descriptions
for the network messages sent by the protocol. Second, ap-
ply algebraic rewriting to obtain a process calculus descrip-
tion. Third, run an existing protocol analyser (ProVerif)
to prove security properties or find attacks. We formalise
our algorithm and appeal to existing results for ProVerif to
establish computational soundness under suitable circum-
stances. We analyse only a single execution path, so our
results are limited to protocols with no significant branch-
ing. The results in this paper provide the first computation-
ally sound verification of weak secrecy and authentication
for (single execution paths of) C code.

1. INTRODUCTION

Recent years have seen great progress in formal verifica-
tion of cryptographic protocols, as illustrated by powerful
tools like ProVerif [14], CryptoVerif [13] or AVISPA [4].
There remains, however, a large gap between what we verify
(formal descriptions of protocols, say, in the pi calculus) and
what we rely on (protocol implementations, often in low-
level languages like C). The need to start the verification
from C code has been recognised before and implemented
in tools like CSur [27] and ASPIER [19], but the methods
proposed there are still rather limited. Consider, for exam-
ple, the small piece of C code in fig. 1 that checks whether
a message received from the network matches a message au-
thentication code. Intuitively, if the key is honestly chosen
and kept secret from the attacker, then with overwhelming
probability the event will be triggered only if another honest
participant (with access to the key) generated the message.
Unfortunately, previous approaches cannot prove this prop-
erty: the analysis of CSur is too coarse to deal with authenti-
cation properties like this and ASPTER cannot directly deal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Andrew D. Gordon
Microsoft Research

Jan JUrjens
TU Dortmund & Fraunhofer ISST

void x key; size_t keylen;

readenv ("k”, &key, &keylen);

size_t len;

read(&len, sizeof(len));

if (len > 1000) exit ();

void * buf = malloc(len + 2 * MACLEN);

read (buf, len);

mac (buf, len, key, keylen, buf + len);

read (buf + len + MACLEN, MACLEN);

if (mememp(buf + len,
buf + len + MACLEN,
MAC.LEN) = 0)

event (7accept”, buf, len);

in(z1); in(x2); if 2 = mac(k, z1) then event accept(x1)

Figure 1: An example C fragment together with the
extracted model.

with code manipulating memory through pointers. Further-
more the previous works do not offer a definition of security
directly for C code, i.e. they do not formally state what it
means for a C program to satisfy a security property, which
makes it difficult to evaluate their overall soundness. The
goal of our work is to improve upon this situation by giv-
ing a formal definition of security straight for C code and
proposing a method that can verify secrecy and authentica-
tion for typical memory-manipulating implementations like
the one in fig. 1 in a fully automatic and scalable manner,
without relying on a pre-existing protocol specification.

Our method proceeds by extracting a high-level model
from the C code that can then be verified using existing
tools (we use ProVerif in our work). Currently we restrict
our analysis to code in which all network outputs happen on
a single execution path, but otherwise we do not require use
of any specific programming style, with the aim of applying
our methods to legacy implementations. In particular, we
do not assume memory safety, but instead explicitly verify
it during model extraction. The method still assumes that
the cryptographic primitives such as encryption or hashing
are implemented correctly—verification of these is difficult
even when done manually [3].

The two main contributions of our work are:

e formal definition of security properties for source code;
e an algorithm that computes a high-level model of the
protocol implemented by a C program.

We implement and evaluate the algorithm as well as give a
proof of its soundness with respect to our security definition.
Our definition of security for source code is given by linking
the semantics of a programming language, expressed as a

transition system, to a computational security definition in
the spirit of [16, 26, 42]. We allow an arbitrary number
of sessions. We restrict our definition to trace properties
(such as weak secrecy or authentication), but do not consider
observational equivalence (for strong secrecy, say).

Due to the complexity of the C language we give the
formal semantics for a simple assembler-like language into
which C code can be easily compiled, as in other symbolic
execution approaches such as [20]. The soundness of this
step can be obtained by using well-known methods, as out-
lined in section 3.

Our model-extraction algorithm produces a model in an
intermediate language without memory access or destruc-
tive updates, while still preserving our security definition.
The algorithm is based on symbolic execution [31] of the
C program, using symbolic expressions to over-approximate
the sets of values that may be stored in memory during
concrete execution. The main difference from existing sym-
bolic execution algorithms (such as [18] or [25]) is that our
variables represent bitstrings of potentially unknown length,
whereas in previous algorithms a single variable corresponds
to a single byte.

We show how the extracted models can be further sim-
plified into the form understood by ProVerif. We apply the
computational soundness result from [5] to obtain conditions
where the symbolic security definition checked by ProVerif
corresponds to our computational security definition. Com-
bined with the security-preserving property of the model
extraction algorithm this provides a computationally sound
verification of weak secrecy and authentication for C.

Outline of our Method. The verification proceeds in sev-
eral steps, as outlined in fig. 2. The method takes as input:

e the C implementations of the protocol participants,
containing calls to a special function event as in fig. 1,

e an environment process (in the modelling language)
which spawns the participants, distributes keys, etc.,

e symbolic models of cryptographic functions used by
the implementation,

e a property that event traces in the execution are sup-
posed to satisfy with overwhelming probability.

We start by compiling the program down to a simple
stack-based instruction language (CVM) using CIL [35] to
parse and simplify the C input. The syntax and semantics
of CVM are presented in section 2 and the translation from
C to CVM is informally described in section 3.

In the next step we symbolically execute CVM programs
to eliminate memory accesses and destructive updates, thus
obtaining an equivalent program in an intermediate model
language (IML)—a version of the applied pi calculus ex-
tended with bitstring manipulation primitives. For each al-
located memory area the symbolic execution stores an ex-
pression describing how the contents of the memory area
have been computed. For instance a certain memory area
might be associated with an expression hmac(01|z, k), where
x is known to originate from the network, k is known to be
an environment variable, and | denotes concatenation. The
symbolic execution does not enter the functions that imple-
ment the cryptographic primitives, it uses the provided sym-
bolic models instead. These models thus form the trusted
base of the verification. An example of the symbolic execu-
tion output is shown at the bottom of fig. 1. We define the

* CIL

’C virtual machine (CVM) ‘

* Symbolic execution

’Intermediate model language (IML) ‘

* Message format abstraction
Applied pi

* ProVerif + computational soundness

’ Verification Result ‘

Figure 2: An outline of the method

syntax and semantics of IML in section 4 and describe the
symbolic execution in section 6.

Our definition of security for source code is given in sec-
tion 5. The definition is generic in that it does not assume
a particular programming language. We simply require that
the semantics of a language is given as a set of transitions of
a certain form, and define a computational execution of the
resulting transition system in the presence of an attacker
and the corresponding notion of security. This allows one
to apply the same security definition to protocols expressed
both in the low-level implementation language and in the
high-level model-description language, and to formulate a
correspondence between the two.

Given that the transition systems generated by different
languages are required to be of the same form, we can mix
them in the same execution. This allows us to use CVM to
specify a single executing participant, but at the same time
use IML to describe an environment process that spawns
multiple participants and allows them to interact. In par-
ticular, CVM need not be concerned with concurrency, thus
making symbolic execution easier. Given an environment
process Pg with n holes, we write Pg[P1, ..., P,] for a pro-
cess where the ith hole is filled with P;, which can be either a
CVM or an IML process. The soundness result for symbolic
execution (theorem 1) states that if Py, ..., P, are CVM pro-
cesses and P, ..., P, are IML models resulting from their
symbolic execution then for any environment process Pr the
security of Pg[P,..., P,] with respect to a trace property
p relates to the security of Pg[P1,..., P,] with respect to p.

To verify the security of an IML process, we replace its
bitstring-manipulating expressions by applications of con-
structor and destructor functions, thus obtaining a process
in the applied pi-calculus (the version proposed in [15] and
augmented with events). We can then apply a computa-
tional soundness result, such as the one from [5], to specify
conditions under which such a substitution is computation-
ally sound: if the resulting pi calculus process is secure in a
symbolic model (as can be checked by ProVerif) then it is
asymptotically secure with respect to our computational no-
tion of security. The correctness of translation from IML to
pi is captured by theorem 2 and the computational sound-
ness for resulting pi processes is captured by theorem 3. The
verification of IML (and these two theorems in particular)
is described in section 7.

Theoretical and Practical Evaluation. Theorems 1 to 3
establish the correctness of our approach. In a nutshell, their
significance is as follows: given implementations Py, ..., P,
of protocol participants in CVM, which are automatically
obtained from the corresponding C code, and an IML pro-
cess Pg that describes an execution environment, if Pi, ..., P,
are successfully symbolically executed with resulting models
Pi,...,P,, the IML process Pg[Pi,...,Py] is successfully
translated to a pi process Pr, and ProVerif successfully ver-
ifies P, against a trace property p then Pi,..., P, form a
secure protocol implementation with respect to the environ-
ment Pgr and property p.

We are aiming to apply our method to large legacy code
bases like OpenSSL. As a step towards this goal we evaluated
it on a range of protocol implementations, including recent
code for smart electricity meters [38]. We were able to find
bugs in preexisting implementations or to verify them with-
out having to modify the code. Section 8 provides details.

The current restriction of analysis to a single execution
path may seem prohibitive at first sight. In fact, a great
majority of protocols (such as those in the extensive SPORE
repository [37]) follow a fixed narration of messages between
participants, where any deviation from the expected message
leads to termination. For such protocols, our method allows
us to capture and analyse the fixed narration directly from
the C code. In the future we plan to extend the analysis to
more sophisticated control flow.

Related Work. We mention particularly relevant works here
and provide a broader survey in section 9. One of the first
attempts at cryptographic verification of C code is contained
in [27], where a C program is used to generate a set of Horn
clauses that are then solved using a theorem prover. The
method is implemented in the tool CSur. We improve upon
CSur in two ways in particular.

First, we have an explicit attacker model with a standard
computational attacker. The attacker in CSur is essentially
symbolic—it is allowed to apply cryptographic operations,
but cannot perform any arithmetic computations.

Second, we handle authentication properties in addition
to secrecy properties. Adding authentication to CSur would
be non-trivial, due to a rather coarse over-approximation of
C code. For instance, the order of instructions in CSur is ig-
nored, and writing a single byte into an array with unknown
length is treated the same as overwriting the whole array.
Authentication, however, crucially depends on the order of
events in the execution trace as well as making sure that the
authenticity of a whole message is preserved and not only of
a single byte of it.

ASPIER [19] uses model checking to verify implementa-
tions of cryptographic protocols. The model checking oper-
ates on a protocol description language, which is rather more
abstract than C; for instance, it does not contain pointers
and cannot express variable message lengths. The transla-
tion from C to the protocol language is not described in the
paper. Our method applies directly to C code with pointers,
so that we expect it to provide much greater automation.

Corin and Manzano [20] report an extension of the KLEE
test-generation tool [18] that allows KLEE to be applied to
cryptographic protocol implementations (but not to extract
models, as in our work). They do not extend the class of
properties that KLEE is able to test for; in particular, test-
ing for trace properties is not yet supported. Similarly to

our work, KLEE is based on symbolic execution; the main
difference is that [20] treats every byte in a memory buffer
separately and thus only supports buffers of fixed length.

Finally, an online technical report includes more details
and proofs of all results stated in this paper [2].

2. CVIRTUAL MACHINE (CVM)

This section describes our low-level source language CVM
(C Virtual Machine). The language is simple enough to
formalise, while at the same time the operations of CVM
are closely aligned with the operations performed by C pro-
grams, so that it is easy to translate from C to CVM. We
shall describe such a translation informally in section 3.

The model of execution of CVM is a stack-based machine
with random memory access. All operations with values
are performed on the stack, and values can be loaded from
memory and stored back to memory. The language con-
tains primitive operations that are necessary for implement-
ing security protocols: reading values from the network or
the execution environment, choosing random values, writ-
ing values to the network and signalling events. The only
kind of conditional that CVM supports is a testing opera-
tion that checks a boolean condition and aborts execution
immediately if it is not satisfied.

The fact that CVM permits no looping or recursion in the
program allows us to inline all function calls, so that we do
not need to add a call operation to the language itself. For
simplicity of presentation we omit some aspects of the C
language that are not essential for describing the approach,
such as global variable initialisation and structures. We also
restrict program variables to all be of the same size: for the
rest of the paper we choose a fixed but arbitrary N € N and
assume sizeof (v) = N for all program variables v. Our
implementation does not have these restrictions and deals
with the full C language.

Let BS = {0,1}" be the set of finite bitstrings with the
empty bitstring denoted by e. For a bitstring b let |b| be the
length of b in bits. Let Var be a countably infinite set of
variables. We write f: X — Y to denote a partial function
and write f(z) = L for x € X to indicate that f is not
defined on x.

Let Ops be a finite set of operation symbols such that
each op € Ops has an associated arity ar(op) and an ef-
ficiently computable partial function Aop: B§P) _ Bg.
The set Ops is meant to contain both the primitive opera-
tions of the language (such as the arithmetic or comparison
operators of C) and the cryptographic primitives that are
used by the implementation. The security definitions of this
paper (given later) assume an arbitrary security parameter.
Since real-life cryptographic protocols are typically designed
and implemented for a fixed value of the security parame-
ter, for the rest of the paper we let ko € N be the security
parameter with respect to which the operations in Ops are
chosen.

A CVM program is simply a sequence of instructions,
as shown in fig. 3. To define the semantics of CVM we
choose two functions that relate bitstrings to integer val-
ues, val: BS — N and bs: N — BS and require that for
n < 2 the value bs(n) is a bitstring of length N such that
val(bs(n)) = n. We allow bs to have arbitrary behaviour
for larger numbers. The functions val and bs encapsulate
architecture-specific details of integer representation such as
the endianness. Even though these functions capture an un-

be BS, v € Var, op € Ops

Src ::=read | rnd input source
Dest ::= write | event output destination
Instr ::= instruction
Const b constant value
Ref v pointer to variable
Malloc pointer to fresh memory
Load load from memory
In Src input
Env v environment variable
Apply op operation
Out Dest output
Test test a condition
Store write to memory
P € CVM == {Instr; }* program

Figure 3: The syntax of CVM.

signed interpretation of bitstrings, we only use them when
accessing memory cells and otherwise place no restriction
on how the bitstrings are interpreted by the program oper-
ations. For instance, the set Ops can contain both a signed
and an unsigned arithmetic and comparison operators. Bit-
string representations of integer constants shall be written
as i1, 120, etc, for instance, 10 = bs(10).

We let Addr={1,...,2Y —1} be the set of valid memory
addresses. The reason we exclude 0 is to allow the length
of the memory to be represented in N bits. The seman-
tic configurations of CVM are of the form (A°, M S¢, P),
where

e M°: Addr — {0,1} is a partial function that rep-
resents concrete memory and is undefined for unini-
tialised cells,

e A° C Addr is the set of allocated memory addresses,

e S¢ is a list of bitstrings representing the execution
stack,

e P c CVM is the executing program.

The transitions between semantic configurations are labelled
with protocol actions such as reading or writing values from

the attacker or a random number generator, or raising events.

The executing program can also read values from an environ-
ment 7 (a mapping from variables to bitstrings). We give an
informal overview of the semantics of CVM; the details are
in the technical report [2]. Before the program is executed,
each referenced variable v is allocated an address addr(v)
in M€ such that all allocations are non-overlapping. If the
program contains too many variables to fit in memory, the
execution does not proceed. Next, the instructions in the
program are executed one by one as described below. For
a,b € N we define {a}, = {a,...,a+b—1}.

e Const b places b on the stack.

e Ref v places bs(addr(v)) on the stack.

e Malloc takes a value s from the stack, reads a value p
from the attacker, and if the range {val(p)},,,, does
not contain allocated cells, it becomes allocated and
the value p is placed on the stack. Thus the attacker
gets to choose the beginning of the allocated memory
area.

e Load takes values | and p from the stack. In case

{val(p)},.(;) is @ completely initialised range in mem-
ory, the contents of that range are placed on the stack.
In case some of the bits are not initialised, the value
for those bits is read from the attacker.

e In read or In rnd takes a value [from the stack.
In read reads a value of length val(l) from the attacker
and In rnd requests a random value of length val(l).
The value is then placed on the stack.

e Env v places n(v) and bs(|n(v)|) on the stack

e Apply op with ar(op) = n applies A,p to n values on
the stack, replacing them by the result.

e Out write sends the top of the stack to the attacker
and Out event raises an event with the top of the stack
as payload. Events with multiple arguments can be
represented using a suitable bitstring pairing opera-
tion. Both commands remove the top of the stack.

e Test takes the top of the stack and checks whether it
is i1. If yes, the execution proceeds, otherwise it stops.

e Store takes values p and b from the stack and writes
b into memory at position starting with val(p).

3. FROM CTO CVM

We describe how to translate from C to CVM programs.
We start with aspects of the translation that are particular
to our approach, after which we illustrate the translation by
applying it to the example program in fig. 1.

Proving correctness of C compilation is not the main focus
of our work, so we trust compilation for now. To prove
correctness formally one would need to show that a CVM
translation simulates the original C program; an appropriate
notion of simulation is defined in the technical report [2] and
is used to prove soundness of other verification steps. We
believe that work on proving correctness of the CompCert
compiler [32] can be reused in this context.

We require that the C program contains no form of looping
or function call cycles and that all actions of the program
(either network outputs or events) happen in the same path
(called main path in the following). We then prune all other
paths by replacing if-statements on the main path by test
statements: a statement if (cond) t_block else f_block
is replaced by test(cond); t_block in case the main path
continues in the t_block, and by test(!cond); f_block
otherwise. The test statements are then compiled to CVM
Test instructions. The main path can be easily identified
by static analysis; for now we simply identify the path to be
compiled by observing an execution of the program.

As mentioned in the introduction, we do not verify the
source code of cryptographic functions, but instead trust
that they implement the cryptographic algorithms correctly.
Similarly, we would not be able to translate the source code
of functions like memcmp into CVM directly, as these func-
tions contain loops. Thus for the purpose of CVM transla-
tion we provide an abstraction for these functions. We do so
by writing what we call a prozy function f_proxy for each
function f that needs to be abstracted. Whenever a call to
f is encountered during the translation, it is replaced by the
call to f_proxy. The proxy functions form the trusted base
of the verification.

Examples of proxy functions are shown in fig. 4. The func-
tions load_buf, apply and store_buf are treated specially
by the translation. For instance, assuming an architecture
with NV = 32, a call load_buf (buf, len) directly generates
the sequence of instructions:

void mac_proxy(void * buf, size_t buflen,
void x* key, size_t keylen,
void * mac){
load_buf(buf, buflen);
load_buf(key, keylen);
apply ("mac”, 2);
store_buf(mac);
}

int memcmp_proxy(void x a, void x b,
size_t len){

int ret;

load_buf(a, len);

load_buf(b, len);

apply ("cmp”, 2);

store_buf(&ret);

return ret;

Figure 4: Examples of proxy functions.

Ref buf; Const i32; Load;
Ref len; Const i32; Load; Load;

Similarly we provide proxies for all other special functions
in the example program, such as readenv, read, write or
event. The proxies essentially list the CVM instructions
that need to be generated.

Appendix A shows the CVM translation of our example
C program in fig. 1.

4. INTERMEDIATE MODEL LANGUAGE

This section presents the intermediate model language
(IML) that we use both to express the models extracted
from CVM programs and to describe the environment in
which the protocol participants execute. IML borrows most
of its structure from the pi calculus [1, 15]. In addition it
has access both to the set Ops of operations used by CVM
programs and to primitive operations on bitstrings: con-
catenation, substring extraction, and computing lengths of
bitstrings. Unlike CVM, IML does not access memory or
perform destructive updates.

The syntax of IML is presented in fig. 5. In contrast to
the standard pi calculus we do not include channel names,
but implicitly use a single public channel instead. This cor-
responds to our security model in which all communication
happens through the attacker. The nonce sampling opera-
tion (vzle]) takes an expression as a parameter that specifies
the length of the nonce to be sampled—this is necessary in
the computational setting in order to obtain a probability
distribution. We introduce a special abbreviation for pro-
grams that choose randomness of length equal to the secu-
rity parameter ko introduced in section 2: let (7z); P stand
for (vZ[kol); let © = nonce(Z) in P, where nonce € Ops.
Using nonce allows us to have tagged nonces, which will be
necessary to link to the pi calculus semantics from [5].

For a bitstring b let b[i] be the ith bit of b counting from
0. The concatenation of two bitstrings b; and by is written
as b1|bs.

Just as for CVM, the semantics of IML is parameterised
by functions bs and val. The semantics of expressions is
given by the partial function [-]: IEzp — BS described in
fig. 6. The partial function sub: BS x N x N — BS extracts
a substring of a given bitstring such that sub(b,0,!) is the

b€ BS, z € Var, op € Ops

e € [Exp ::= expression
b concrete bitstring
T variable
op(et,...,en) computation
e1lea concatenation
e{eo, e} substring extraction
len(e) length

P, Qe IML ::= process

0 nil
P replication
P|Q parallel composition
(vzxle]); P randomness
in(z); P input
out(e); P output
event(e); P event
if e then P [else Q)] conditional

let z = e in P [else Q] evaluation

Figure 5: The syntax of IML.

[o] = b, for b € BS,

[z] = L, for z € Var,

[op(er, ... en)] = Aop([e1], -, [en]),
leile2] = [er]|[e2],

lefeo, e1}] = sub([e], val([eo]), val([e:])),
[len(e)] = bs(|[e]])-

Figure 6: The evaluation of IML expressions,
whereby | propagates.

substring of b starting at offset o of length I:

b0 — {0t 11 it o1 <o,
T otherwise.

For a valuation n: Var — BS we denote with [e], the result
of substituting all variables v in e by n(v) (if defined) and
then applying [-].

The technical report [2] describes the detailed semantics
of IML, in our formalism of protocol transition systems, in-
troduced in the next section.

S. SECURITY OF PROTOCOLS

To define security for protocols implemented by CVM and
IML programs we need to specify what a protocol is and give
a mapping from programs to protocols. The notion of a pro-
tocol is formally captured by a protocol transition system
(PTS), which describes how processes evolve and interact
with the attacker. A PTS is essentially a set of transitions

of the form (n,s) EN {(m1,81)s- -, (M, sn)}, where n and
7; are environments (modelled as valuations), s and s; are
semantic configurations of the underlying programming lan-
guage, and [is an action label. Actions can include reading
values from the attacker, generating random values, sending
values to the attacker, or raising events. We call a pair (7, s)
an ezecuting process. Multiple processes on the right hand
side of the transitions capture replication. Full details are
in the technical report [2].

The semantics of CVM and IML are given in terms of the
PTS that are implemented by programs. For a CVM pro-
gram P we denote with [P]c the PTS that is implemented
by P. Similarly, for an IML process P the corresponding
PTS is denoted by [P];.

Given a PTS T and a probabilistic machine E (an at-
tacker) we can execute T in the presence of E. The state of
the executing protocol is essentially a multiset of executing
processes. At each step the attacker chooses a process from
the multiset which is then allowed to perform an action ac-
cording to T. The result of the execution is a sequence of
raised events. For a resource bound ¢t € N we denote with
Events(T, E, t) the sequence of events raised during the first
t steps of the execution. We shall be interested in the proba-
bility that this sequence of events belongs to a certain “safe”
set. This is formally captured by the following definition:

Definition 1 (Protocol security) We define a trace prop-
erty as a polynomially decidable prefiz-closed set of event
sequences. For a PTS T, a trace property p and a resource
bound t € N let insec(T, p,t) be the probability

sup {Pr[Events(T, E,t) ¢ p| | E attacker, |E| < t},

where |E| measures the size of the description of the at-
tacker.

Intuitively insec(T', p,t) measures the success probability
of the most successful attack against 7" and property p when
both the execution time of the attack and the size of the
attacker code are bounded by t.

Since the semantics of CVM and IML are in the same for-
malism, we may combine the sets of semantic rules and ob-
tain semantics [-Jcr for mixed programs, where a CVM pro-
gram can be a subprocess of a larger IML process. We add
an additional syntactic form [J; (a hole) with ¢ € N and no
reductions to IML. For an IML process Pg with n holes and
CVM or IML processes Pi,..., P, we write Pg[P,..., Pyl
to denote process Pr where each hole [|; is replaced by P;.

Being able to embed a CVM program within an IML pro-
cess is useful for modelling. As an example, let P; be the
CVM program resulting from the translation of the C code
in fig. 1 and let P> be a description of another participant
of the protocol, in either CVM or IML. Then we might be
interested in the security of the following process:

Pp[P, P] = 1((7 k); ((1P1)|(1P2)))-

A trace property p of interest might be, for instance, “Each
event of the form accept(x) is preceded by an event of the
form request(x)”, where request is an event possibly raised
in P». The goal is to obtain a statement about probability
insec([Pe[P1, P2]]cr, p,t) for various t. The next section
shows how we can relate the security of Pg[Pi, P2] to the
security of Pg [Pl, P,], where IML process P, is a model of
the CML process P, extracted by symbolic execution.

6. CVMTOIML: SYMBOLIC EXECUTION

We describe how to automatically extract an IML model
from a CVM program while preserving security properties.
The key idea is to execute a CVM program in a symbolic
semantics, where, instead of concrete bitstrings, memory lo-
cations contain IML expressions representing the set of all
possible concrete values at a given execution point.

v e Var, i €N
pb € PBase ::= pointer base
stack v stack pointer to variable v
heap i heap pointer with id 4
e € SExp := symbolic expression
ptr(pb, e) pointer

same as [Ezp in fig. 5
Figure 7: Symbolic expressions.

To track the values used as pointers during CVM exe-
cution, we extend IML expressions with an additional con-
struct, resulting in the class of symbolic expressions shown
in fig. 7. An expression of the form ptr(pb,e,) represents a
pointer into the memory location identified by the pointer
base pb with an offset e, relative to the beginning of the
location. We require that e, € IEzp, so that pointer offsets
do not contain pointers themselves. Pointer bases are of two
kinds: a base of the form stack v represents a pointer to the
program variable v and a base of the form heap ¢ represents
the result of a Malloc.

Symbolic execution makes certain assumptions about the
arithmetic operations that are available in Ops. We as-
sume that programs use operators for bitwise addition and
subtraction (with overflow) that we shall write as +; and
—p. We also make use of addition and subtraction without
overflow—the addition operator (written as +n) is expected
to widen its result as necessary and the negation operator
(written as —y) returns L instead of a negative result. We
assume that Ops contains comparison operators =, <, and
< such that A=(a,b) returns i1 if val(a) = val(b) and 0 oth-
erwise, similarly for the other operators. This way < and
< capture unsigned comparisons on bitstring values. We
assume Ops contains logical connectives = and V that in-
terpret ¢0 as false value and ¢1 as true value. These operators
may or may not be the ones used by the program itself.

To evaluate symbolic expressions concretely, we need con-
crete values for pointer bases as well as concrete values for
variables. Given an extended valuation n: Var U PBase —
BS, we extend the function [-], from fig. 6 by the rule:

[ptr(pd, e0)]n = n(pb) +b [eo]l-

When applying arithmetic operations to pointers, we need
to make sure that the operation is applied to the pointer
offset and the base is kept intact. This behaviour is encoded
by the function apply, defined as follows:

apply (+s, ptr(pb, €0), €) = ptr(pb, o +v €),
for e € IExp,

apply(—s, ptr(pb, €,), ptr(pb, €,)) = e, — €5,
apply(op, e1,...,en) = op(er, ..., en),

for e1,...,en € IExp,

apply(...) = L, otherwise.

The function receives an operation identifier and a number
of expressions and decides how to apply the operation sym-
bolically.

As well as tracking the expressions stored in memory, we
also track logical facts discovered during symbolic execu-
tion. To record these facts, we use symbolic expressions
themselves, interpreted as logical formulas with =, <, and

(Init, P) — (Zop, {stack v+ bs(N) | v € var(P)}, {stack v+ ¢ | v € var(P)}, [], P)

, (S-Init)

) S-Const
(3, A5, M=, 8%, Const b; P) — (3, A, M®, b= 8%, P) (S-Const)
) S-Ref
(%, A3, M3, 83, Ref v; P) — (3, A3, M3, ptr(stack v, i0) :: S5, P) (S-Ref)
e; € IExp, i€ N minimal s.t. pb = heap i ¢ def(M?*) (S-Malloc)
, -Malloc
(X, As, M5, ¢ :: 8%, Malloc; P) — (X, AS{pb— ¢}, Ms{pb — ¢}, ptr(pb,i0) :: S5, P)
pb € def(M?*), e = simplifys,(M*(pb){eo,€e1}), X F (eo+ne; < getLen(M*(pb))) (S-Load)
(X, As, M5, e; :: ptr(pb, eo) :: 8%, Load; P) — (X, AS, M5, e :: 8%, P) ’
e; € IEzp, « fresh, [= (if src = read then in(z); else (vz[e]);) (S-In)
) -11n
(3, A5, M3, e :: 85, In src; P) 4 (XU {len(z) = ¢}, A5, M3,z :: S5, P)
) S-E
(%, A8, M3, 83, Env v; P) — (3, A5, M3, len(v) :: v :: 8%, P) (S-Env)
e =apply(op,e1,...,en) # L (S-Apply)
(2, As, MS, eq 2 ...t epn 2 S5, Apply op; P) — (2, AS, M5, len(e) :: e :: S5, P)’
e € IEzp, 1= (if dest = write then out(e); else event(e);) (S-Out)
) -Ou
(3, A5, M3, e :: S5, Out dest; P) LN (2, As, Ms, S5, P)
IE
‘ Gf tip) (S-Test)
(X, As, M3, e :: S5, Test; P) Letaen, (X u{e}, A3, M3, S5, P)
en = M®(pb) # L, es=A%(pb) # L, e, =getLen(ey), e = getLen(e),
either &+ (eo +n € < ejp,) and e), = simplifys, (er, {10, €0 }elen{eo +n €1, e1n —n (eo +n€r)})
or Bk (eo +ner > emn) Aleo < ern) Aleo +r e < es) and e, = simplifys; (e, {10, eo }|e) (S-Store)

(2, A°, M®, ptr(pb, eo) :: € :: S, Store; P) — (X, A%, M*{pb s e}, }, S°, P)

Figure 8: The symbolic execution of CVM.

< as relations and — and V as connectives. We allow quanti-
fiers in formulas, with straightforward interpretation. Given
a set X of formulas and a formula ¢ we write ¥ F ¢ iff for
each X-consistent valuation 7 (that is, a valuation such that
[¥]n =41 for all ¢ € X) we also have [¢], = ¢1.

To check the entailment relation, our implementation re-
lies on the SMT solver Yices [22], by replacing unsupported
operations, such as string concatenation or substring extrac-
tion, with uninterpreted functions. This works well for our
purpose—the conditions that we need to check during the
symbolic execution are purely arithmetic and are supported
by Yices’ theory.

The function getLen returns for each symbolic expression
an expression representing its length:

getLen(ptr(...)) = bs(N),

getLen(len(...)) = bs(N),

getLen(b) = bs(|b]), for b € BS,

getLen(z) = len(z), for z € Var,

,en)) = len(op(es, ..., en)),
getLen(eq|e2) = getLen(e1) +n getLen(ez),

getLen(op(eq, . ..

getLen(e{eo, e1}) = ey.

We assume that the knowledge about the return lengths of
operation applications is encoded in a fact set ¥op. As an

example, ¥, might contain the facts:

Vz,y,a: len(z) = a Alen(y) = a = len(z ++ y) = a,
Vz: len(shal(z)) = i20.

We assume that X, is consistent:) - ¢ for all ¢ € X,,.

The transformations prescribed by the symbolic semantic
rules would quickly lead to very large expressions. Thus
the symbolic execution is parametrised by a simplification
function simplify that is allowed to make use of the collected
fact set . We demand that the simplification function is
sound in the following sense: for each fact set X, expression
e and a X-consistent valuation n we have

le]n # L = [simplifys ()] = [e]s-

The simplifications employed in our algorithm are described
in the technical report [2].

For a partial function f we write def(f) to denote the
set of all x such that f(z) # L and write f{z — a} to
update functions. The algorithm for symbolic execution is
determined by the set of semantic rules presented in fig. 8.
A semantic configuration has the form (3, A°, M?®, §°, P),
where

e Y is a fact set,

e A°: PBase — SExp is the symbolic allocation table
that for each memory location stores its allocated size,

e M?®: PBase — SExp is the symbolic memory. We re-
quire that def(M?®) = def(A°),

Line no. C line symbolic memory updates new facts generated IML line
1. readenv("k", &key, &keylen); stack key = ptr(heap 1, i0)
heap 1 =k
stack keylen = len(k)
2. read(&len, sizeof(len)); stack len =1 len(l) = iN read(l)
3. if(len > 1000) exit(); (1 > i1000)
4. void * buf = malloc(len + 2 * MAC_LEN); stack buf = ptr(heap 2, i0)
heap 2 = ¢
read(buf, len); heap 2 = x1 len(z1) =1 read(z1)

mac (buf, len, key, keylen, buf + len);
read(buf + len + MAC_LEN, MAC_LEN);

if (memcmp(...) == 0)

event ("accept", buf, len);

©XNP >

heap 2 = z1|mac(k, z1)
heap 2 = z1|mac(k, z1)|x2

len(z2) =420 read(z2)
if mac(k,z1) = z2 then
event accept(z1)

Figure 9: Symbolic execution of the example in fig. 1.

e S° is a list of symbolic expressions representing the
execution stack,
e P € CVM is the executing program.

The crucial rules are (S-Load) and (S-Store) that reflect
the effect of storing and loading memory values on the sym-
bolic level. The rule (S-Load) is quite simple—it tries to de-
duce from 3 that the extraction is performed from a defined
memory range, after which it represents the result of the ex-
traction using an IML range expression. The rule (S-Store)
distinguishes between two cases depending on how the ex-
pression e to be stored is aligned with the expression e, that
is already present in memory. If e needs to be stored com-
pletely within the bounds of e, then we replace the contents
of the memory location by en{...}|eler{...} where the first
and the second range expression represent the pieces of ey
that are not covered by e. In case e needs to be stored past
the end of ep, the new expression is of the form ex{...}|e.
The rule still requires that the beginning of e is positioned
before the end of e, and hence it is impossible to write in
the middle of an uninitialised memory location. This is for
simplicity of presentation—the rule used in our implemen-
tation does not have this limitation (it creates an explicit
“undefined” expression in these cases).

Since all semantic rules are deterministic there is only one
symbolic execution trace. Some semantic transition rules are
labelled with parts of IML syntax. The sequence of these
labels produces an IML process that simulates the behaviour
of the original CVM program. Formally, for a CVM program
P, let L be the symbolic execution trace starting from the
state (Init, P). If L ends in a state with an empty program,
let l1,...,l, be the sequence of labels of L and set [P]s =
li...1,0 € IML, otherwise set [P]s = L.

We shall say that a polynomial is fized iff it is independent
of the arbitrary values assumed in this paper, such as N or
the properties of the set Ops. Our main result relates the
security of P to the security of [P]s.

Theorem 1 (Symbolic Execution is Sound) There ez-
ists a fized polynomial p such that if P1,..., P, are CVM
processes and for each i P; := [P;]s # L then for any IML
process Pg, any trace property p, and resource bound t € N:

insec([Pr[P1,. .., Pal]cr, p,t)
< insec([Pg[P,. .., P.]]r, p, p(t)).

The condition that p is fixed is important—otherwise p
could be large enough to give the attacker the time to enu-

N
merate all the 22" ~! memory configurations. For practical

use the actual shape of p can be recovered from the proof of
the theorem given in the technical report [2].

Fig. 9 illustrates our method by showing how the symbolic
execution proceeds for our example in fig. 1. For each line
of the C program we show updates to the symbolic mem-
ory, the set of new facts, and the generated IML code if
any. In our example MAC_LEN is assumed to be 20 and N
is equal to sizeof (size_t). Below we mention details for
some particularly interesting steps (numbers correspond to
line numbers in fig. 9).

1. The call to readenv redirects to a proxy function that
generates CVM instructions for retrieving the environ-
ment variable k and storing it in memory.

4. A new empty memory location is created and the pointer
to it is stored in buf. We make an entry in the allo-
cation table A° with the length of the new memory
location (I 44 42 * 20).

5. We check that the stored value fits within the allocated
memory area, that is, [< [4432%320. This is in general
not true due to possibility of integer overflow, but in
this case succeeds due to the condition —(I > ¢1000)
recorded before (assuming that the maximum integer
value 2V — 1 is much larger than 1000). Similar checks
are performed for all subsequent writes to memory.

7. The memory update is performed through an interme-
diate pointer value of the form ptr(heap 2, [+; 720).
The set of collected facts is enough to deduce that this
pointer points exactly at the end of z1|mac(k, z1).

8. The proxy function for memcmp extracts values e; =
e{l,i20} and ez = e{l +4 920,420}, where e is the con-
tents of memory at heap 2, and puts cmp(e1,e2) on
the stack. With the facts collected so far e; simplifies
to mac(k,z1) and ez simplifies to xz. With some spe-
cial comprehension for the meaning of cmp we generate
IML if e; = e3 then.

7. VERIFICATION OF IML

The symbolic model extracted in fig. 9 does not con-
tain any bitstring operations, so it can readily be given to
ProVerif for verification. In general this is not the case and
some further simplifications are required. In a nutshell, the
simplifications are based on the observation that the bit-
string expressions (concatenation and substring extraction)
are meant to represent pairing and projection operations, so
we can replace them by new symbolic operations that behave
as pairing constructs in ProVerif. We then check that the
expressions indeed satisfy the algebraic properties expected
of such operations.

We outline the main results regarding the translation to
ProVerif. The technical report [2] contains the details. The
pi calculus used by ProVerif can be described as a subset of
IML from which the bitstring operations have been removed.
Unlike CVM and IML, the semantics of pi is given with
respect to an arbitrary security parameter: we write [[P]]fT for
the semantics of a pi process P with respect to the parameter
k € N. In contrast, we consider IML as executing with
respect to a fixed security parameter ko € N. We define a
translation function «(P) from IML to pi processes and call
a process P translatable when o(P) # L.

Theorem 2 (Soundness of the translation)

There exists a fixed polynomial p such that for any trans-
latable process P € IML, any trace property p and resource
bound t € N: insec([P]r, p,t) < insec([a(P)]%, p, p(t)).

Backes et al. [5] provide an example of a set of operations
Ops® and a set of soundness conditions restricting their
implementations that are sufficient for establishing compu-
tational soundness. The set Ops® contains a public key
encryption operation that is required to be IND-CCA se-
cure. The soundness result is established for the class of the
so-called key-safe processes that always use fresh random-
ness for encryption and key generation, only use honestly
generated decryption keys and never send decryption keys
around.

Theorem 3 (Computational soundness) Let P be a pi
process using only operations in Ops® such that the sound-
ness conditions are satisfied. If P is key-safe and symboli-
cally secure with respect to a trace property p (as checked by
ProVerif) then for every polynomial p the following function
is negligible in k: insec([P]%, p, p(k)).

Overall, theorems 1 to 3 can be interpreted as follows: let
Pi,..., P, be implementations of protocol participants in
CVM and let Pg be an IML process that describes an execu-
tion environment. Assume that Pi,..., P, are succe§sfully
symbolically executed with resulting models P, ..., Py, the
IML process Pg[Pi, ..., Py] is successfully translated to a
pi process Py, and ProVerif successfully verifies P, against
a trace property p. Then we know by theorem 3 that Pr
is a pi protocol model that is (asymptotically) secure with
respect to p. By theorems 1 and 2 we know that Py,..., P,
form a secure implementation of the protocol described by
P, for the security parameter ko.

8. IMPLEMENTATION & EXPERIMENTS

We have implemented our approach and successfully tested
it on several examples. Our implementation performs the
conversion from C to CVM at runtime—the C program is
instrumented using CIL so that it outputs its own CVM rep-
resentation when run. This allows us to identify and compile
the main path of the protocol easily. Apart from information
about the path taken we do not use any runtime informa-
tion and we plan to make the analysis fully static in future.
The idea of instrumenting a program to emit a low-level set
of instructions for symbolic execution at runtime as well as
some initial implementation code were borrowed from the
CREST symbolic execution tool [17].

Currently we omit certain memory safety checks and as-
sume that there are no integer overflows. This allows us
to use the more efficient theory of mathematical integers in

C LOC IML LOC outcome result type time
simple mac ~ 250 12 verified symbolic 4s
RPC ~ 600 35 verified symbolic 5s
NSL ~ 450 40 verified computat. 5s
CSur ~ 600 20 flaw: fig. 11 — 5s
minexplib ~ 1000 51 flaw: fig. 12 — 15s

Figure 10: Summary of analysed implementations.

read (conn_fd , temp,
// BN_hex2bn ezpects
temp[128] = 0;

BN_hex2bn(&cipher_2 ,
// decrypt and parse
// to obtain message

128);
zero—terminated string

temp) ;
cipher_2
fields

Figure 11: A flaw in the CSur example: input may
be too short.

Yices, but we are planning to move to exact bitvector treat-
ment in future.

Fig. 10 shows a list of protocol implementations on which
we tested our method. Some of the verified programs did not
satisfy the conditions of computational soundness (mostly
because they use cryptographic primitives other than public
key encryption and signatures supported by the result that
we rely on [5]), so we list the verification type as “symbolic”.

The “simple mac” is an implementation of a protocol sim-
ilar to the example in fig. 1. RPC is an implementation of
the remote procedure call protocol in [9] that authenticates
a server response to a client using a message authentication
code. It was written by a colleague without being intended
for verification using our method, but we were still able to
verify it without any further modifications to the code.

The NSL example is an implementation of the Needham-
Schroeder-Lowe protocol written by us to obtain a fully com-
putationally sound verification result (modulo the assump-
tion that the encryption used is indeed IND-CCA). The im-
plementation is designed to satisfy the soundness conditions
of the computational soundness result outlined in the tech-
nical report [2]. Masking the second participant’s identity
check triggers Lowe’s attack [33] as expected.

The CSur example is the code analysed in a predecessor
paper on C verification [27]. It is an implementation of a
protocol similar to Needham-Schroeder-Lowe. During our
verification attempt we discovered a flaw, shown in fig. 11:
the received message in buffer temp is being converted to
a BIGNUM structure cipher_2 without checking that enough
bytes were received. Later a BIGNUM structure derived from
cipher_2 is converted to a bitstring without checking that
the length of the bitstring is sufficient to fill the message
buffer. In both cases the code does not make sure that the
information in memory actually comes from the network,
which makes it impossible to prove authentication proper-
ties. The CSur example has been verified in [27], but only for
secrecy, and secrecy is not affected by the flaw we discovered.
The code reinterprets network messages as C structures (an
unsafe practise due to architecture dependence), which is
not yet supported by our analysis and so we were not able
to verify a fixed version of it.

The minexplib example is an implementation of a privacy-
friendly protocol for smart electricity meters [38] developed
at Microsoft Research. The model that we obtained uncov-
ered a flaw shown in fig. 12: incorrect use of pointer derefer-
encing results in three bytes of each four-byte reading being

unsigned char session_key[256 / 8];

// Use the 4 first bytes as a pad
// to encrypt the reading
encrypted_reading =

((unsigned int) *session_key) xreading ;

Figure 12: A flaw in the minexplib code: only one
byte of the pad is used.

sent unencrypted. We found two further flaws: one could
lead to contents of uninitialised memory being sent on the
network, the other resulted in 0 being sent (and accepted)
in place of the actual number of readings. All flaws have
been acknowledged and fixed. An F# implementation of
the protocol has been previously verified [39], which high-
lights the fact that C implementations can be tricky and can
easily introduce new bugs, even for correctly specified and
proven protocols. The protocol uses low-level cryptographic
operations such as XOR and modular exponentiation. In
general it is impossible to model XOR symbolically [41], so
we could not use ProVerif to verify the protocol, but we are
investigating the use of CryptoVerif for this purpose.

9. RELATED WORK

[27] presents the tool Csur for verifying C implementations
of crypto-protocols by transforming them into a decidable
subset of first-order logic. It only supports secrecy proper-
ties and relies on a Dolev-Yao attacker model. It was applied
to a self-made implementation of the Needham-Schroeder
protocol. [19] presents the verification framework ASPIER
using predicate abstraction and model-checking which op-
erates on a protocol description language where certain C
concepts such as pointers and variable message lengths are
abstracted away. Also, significant parts of the code are ab-
stracted away manually. In comparison, our method applies
directly to C code including pointers and thus requires less
manual effort. [29] presents the C API “DYC” which can
be used to generate executable protocol implementations of
Dolev-Yao type cryptographic protocol messages. By gen-
erating constraints from those messages, one can use a con-
straint solver to search for attacks. The approach presents
significant limitations on the C code. [40] reports on the
Pistachio approach which verifies the conformance of an im-
plementation with a specification of the communication pro-
tocol. It does not directly support the verification of secu-
rity properties. To prepare the ground for symbolic analy-
sis of cryptographic protocol implementations, [20] reports
an extension of the KLEE symbolic execution tool. Cryp-
tographic primitives can be treated as symbolic functions
whose execution analysis is avoided. A security analysis is
not yet supported. The main difference from our work is
that [20] treats every byte in a memory buffer separately
and thus only supports buffers of fixed length. [21] shows
how to adapt a general-purpose verifier to security verifica-
tion of C code. This approach does not have our restriction
to non-branching code, on the other hand, it requires the
code to be annotated (with about one line of annotation per
line of code) and works in the symbolic model, requiring the
pairing and projection operations to be properly encapsu-
lated.

There is also work on verifying implementations of secu-
rity protocols in other high-level languages. These do not

10

compare directly to the work presented here, since our aim
is in particular to be able to deal with the intricacies of a
low-level language like C. The tools FS2PV [11] and FS2CV
translate F# to the process calculi which can be verified by
the tools ProVerif [12] and CryptoVerif [13] versus symbolic
and computational models, respectively. They have been
applied to an implementation of TLS [10]. The refinement-
type checker F7 [9] verifies security properties of F# pro-
grams versus a Dolev-Yao attacker. Under certain condi-
tions, this has been shown to be provably computationally
sound [7, 24]. [34] reports on a formal verification of a ref-
erence implementation of the TPM’s authorization and en-
crypted transport session protocols in F#. It also provides
a translator from programs into the functional fragment of
F# into executable C code. [7] gives results on computa-
tional soundness of symbolic analysis of programs in the
concurrent lambda calculus RCF. [6] reports on a type sys-
tem for verifying crypto-protocol implementations in RCF.
With respect to Java, [30] presents an approach which pro-
vides a Dolev-Yao formalization in FOL starting from the
program’s control-flow graph, which can then be verified for
security properties with automated theorem provers for FOL
(such as SPASS). [36] provides an approach for translat-
ing Java implementations into formal models in the LySa
process calculus in order to perform a security verification.
[28] presents an application of the ESC/Java2 static veri-
fier to check conformance of JavaCard applications to pro-
tocol models. [23] describes verification of cryptographic
primitives implemented in a functional language Cryptol.
CertiCrypt [8] is a framework for writing machine-checked
cryptographic proofs.

10. CONCLUSION

We presented methods and tools for the automated veri-
fication of cryptographic security properties of protocol im-
plementations in C. More specifically, we provided a com-
putationally sound verification of weak secrecy and authen-
tication for (single execution paths of) C code. Despite the
limitation of analysing single execution paths, the method
often suffices to prove security of authentication protocols,
many of which are non-branching. We plan to extend the
analysis to more sophisticated control flow.

In future, we aim to provide better feedback in case ver-
ification fails. In our case this is rather easy to do as sym-
bolic execution proceeds line by line. If a condition check
fails for a certain symbolic expression, it is straightforward
to print out a computation tree for the expression together
with source code locations in which every node of the tree
was computed. We plan to implement this feature in the
future, although so far we found that manual inspection of
the symbolic execution trace lets us identify problems easily.

Acknowledgements. Discussions with Bruno Blanchet,
Francois Dupressoir, Bashar Nuseibeh, and Dominique Un-
ruh were useful. We also thank George Danezis, Frangois
Dupressoir, and Jean Goubault-Larrecq for giving us access
to the code of minexplib, RPC, and CSur, respectively. Ri-
cardo Corin and Francgois Dupressoir commented on a draft.

11. REFERENCES

[1] M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. In ACM POPL, pages
104-115, 2001.

2]

[10]

[11]

[12]

[13]

[16]

M. Aizatulin, A. D. Gordon, and J. Jiirjens.
Extracting and verifying cryptographic models from C
protocol code by symbolic execution (long version).
Available at http://users.mct.open.ac.uk/ma4962/
files/paper-full.pdf, 2011.

J. B. Almeida, M. Barbosa, J. S. Pinto, and B. Vieira.
Deductive verification of cryptographic software. In
NASA Formal Methods Symposium 2009, 2009.

A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier,
L. Compagna, J. Cuéllar, P. H. Drielsma, P.-C. Héam,
O. Kouchnarenko, J. Mantovani, S. M6dersheim,

D. von Oheimb, M. Rusinowitch, J. Santiago,

M. Turuani, L. Vigano, and L. Vigneron. The AVISPA
tool for the automated validation of internet security
protocols and applications. In CAV, volume 3576 of
Lecture Notes in Computer Science, pages 281-285.
Springer, 2005.

M. Backes, D. Hoftheinz, and D. Unruh. CoSP: A
general framework for computational soundness
proofs. In ACM CCS 2009, pages 6678, November
2009. Preprint on TACR, ePrint 2009/080.

M. Backes, C. Hritcu, and M. Maffei. Union and
intersection types for secure protocol implementations.
In Theory of Security and Applications (TOSCA’11),
2011.

M. Backes, M. Maffei, and D. Unruh. Computationally
sound verification of source code. In CCS, 2010.

G. Barthe, B. Grégoire, and S. Zanella Béguelin.
Formal certification of code-based cryptographic
proofs. In Proceedings of the 36th annual ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’09, pages 90-101, New
York, NY, USA, 2009. ACM.

J. Bengtson, K. Bhargavan, C. Fournet, A. D.
Gordon, and S. Maffeis. Refinement types for secure
implementations. In CSF ’08: Proceedings of the 2008
21st IEEE Computer Security Foundations
Symposium, pages 17-32. IEEE Computer Society,
2008.

K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu.
Cryptographically verified implementations for TLS.
Alexandria, VA, Oct. 2008. ACM.

K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse.
Verified interoperable implementations of security
protocols. In CSFW ’06: Proceedings of the 19th IEEE
workshop on Computer Security Foundations, pages
139-152. IEEE Computer Society, 2006.

B. Blanchet. An efficient cryptographic protocol
verifier based on prolog rules. In CSFW, pages 82-96.
IEEE Computer Society, 2001.

B. Blanchet. A computationally sound mechanized
prover for security protocols. In IEEE Symposium on
Security and Privacy, pages 140-154. IEEE Computer
Society, 2006.

B. Blanchet. Automatic verification of
correspondences for security protocols. Journal of
Computer Security, 17(4):363-434, 2009.

B. Blanchet, M. Abadi, and C. Fournet. Automated
verification of selected equivalences for security
protocols. Journal of Logic and Algebraic
Programming, 75(1):3-51, Feb.—Mar. 2008.

M. Blum and S. Micali. How to generate

11

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

(30]

cryptographically strong sequences of pseudo-random
bits. SIAM J. Comput., 13(4):850-864, 1984.

J. Burnim and K. Sen. Heuristics for scalable dynamic
test generation. In ASE ’08: Proceedings of the 2008
28rd IEEE/ACM International Conference on
Automated Software Engineering, pages 443-446.
IEEE Computer Society, 2008.

C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 2008), San Diego, CA, Dec. 2008.

S. Chaki and A. Datta. Aspier: An automated
framework for verifying security protocol
implementations. In Computer Security Foundations
Workshop, pages 172-185, 2009.

R. Corin and F. A. Manzano. Efficient symbolic
execution for analysing cryptographic protocol
implementations. In International Symposium on
Engineering Secure Software and Systems
(ESSOS’11), LNCS. Springer, 2011.

F. Dupressoir, A. D. Gordon, J. Jiirjens, and D. A.
Naumann. Guiding a general-purpose C verifier to
prove cryptographic protocols. In 24th IEEE
Computer Security Foundations Symposium, 2011.

B. Dutertre and L. D. Moura. The Yices SMT Solver.
Technical report, 2006.

L. Erkok, M. Carlsson, and A. Wick.
Hardware/software co-verification of cryptographic
algorithms using cryptol. In FMCAD, 2009.

C. Fournet. Cryptographic soundness for program
verification by typing. Unpublished draft, 2011.

P. Godefroid, M. Y. Levin, and D. A. Molnar.
Automated whitebox fuzz testing. In Proceedings of
the Network and Distributed System Security
Symposium, NDSS 2008, San Diego, California, USA,
10th February - 13th February 2008. The Internet
Society, 2008.

S. Goldwasser and S. Micali. Probabilistic encryption.
Journal of Computer and System Sciences,
28:270-299, 1984.

J. Goubault-Larrecq and F. Parrennes. Cryptographic
protocol analysis on real C code. In Proceedings of the
6th International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI'05),
volume 3385 of Lecture Notes in Computer Science,
pages 363-379. Springer, 2005.

E. Hubbers, M. Oostdijk, and E. Poll. Implementing a
formally verifiable security protocol in Java card. In
Security in Pervasive Computing, First International
Conference, Revised Papers, volume 2802 of Lecture
Notes in Computer Science, pages 213-226. Springer,
2004.

A. Jeffrey and R. Ley-Wild. Dynamic model checking
of C cryptographic protocol implementations. In
Proceedings of Workshop on Foundations of Computer
Security and Automated Reasoning for Security
Protocol Analysis, 2006.

J. Jiirjens. Security analysis of crypto-based Java
programs using automated theorem provers. In ASE
"06: Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, pages

http://users.mct.open.ac.uk/ma4962/files/paper-full.pdf
http://users.mct.open.ac.uk/ma4962/files/paper-full.pdf

167-176. IEEE Computer Society, 2006.

[31] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385-394, 1976.

[32] X. Leroy. A formally verified compiler back-end. J.
Autom. Reason., 43:363—-446, December 2009.

[33] G. Lowe. An attack on the Needham-Schroeder
public-key authentication protocol. Inf. Process. Lett.,
56:131-133, November 1995.

//void x key; size_t keylen;
[34] A. Mukhamed.ov7 A.D. Gordon, and M. Ryan. Y readens ("k”, Ghey. Eheylen)
Towards a verified reference implementation of the Env k: Ref keylen; Store:
trusted platform module. In 17th International Ref k:sylen : Varsize : Loaé; Malloc ;
Workshop on Security Protocols (2009), LNCS. Ref key; Store;
Springer, 2011. To appear. Ref key; Varsize; Load; Store;
[35] G. C. Necula, S. McPeak, S. P. Rahul, and //Sws—él len; l _
W. Weimer. CIL: Intermediate Language and Tools [/read(Blen, sizeof(len));

Varsize; In read; Ref len; Store;

for Analysis and Transformation of C Programs. In J/ if(len > 1000) exit ();
Proceedings of the 11th International Conference on Const i1000; Ref len; Varsize; Load;
Compiler Construction, CC ’02, pages 213228, Apply’ >/2; Apply’ —/1; Test;
London, UK, 2002. Springer-Verlag. //void x buf = malloc (len + 2 % 20);
[36] N. O’Shea. Using Elyjah to analyse Java gef len; Varsize; Load;
. . . onst i2; Const i20;
implementations of cryptographic protocols. In Apply’ #/2; Apply’ +/2;
FCS-ARSPA-WITS 08, pages 211-223, 2008. Malloc; Ref buf; Store;
[37] Project EVA. Security protocols open repository, //read (buf, len);
2007. http://www.lsv.ens-cachan.fr/spore/. Ref len; Varsize; Load; In read;

Ref buf; Varsize; Load; Store;

[38] A. Rial and G. Danezis. Privacy-friendly smart .
metering. Technical Report MSR—TR~-2010-150, 2010. é/eyfnalfgf;tf\y/aies?z’e ;keﬁ/oédlfeylen , buf + len);
[39] N. Swamy, J. Chen, C. Fournet, K. Bharagavan, and Ref len; Varsize; Load; Load;
J. Yang. Security programming with refinement types Ref key; Varsize; Load;
and mobile proofs. Technical Report Ref kfylen ; Varsize; Load; Load;
MSR-TR-2010-149, 2010. Apply” mac/2i .
[40] O. Udrea, C. Lumezanu, and J. S. Foster. Rule-Based Ref len . Varsiiez Load :
static analysis of network protocol implementations. Apply’ i /2; Store ; 7
IN PROCEEDINGS OF THE 15TH USENIX J/read (buf + len + 20, 20);
SECURITY SYMPOSIUM, pages 193-208, 2006. Const i20; In read;
[41] D. Unruh. The impossibility of computationally sound Eij ?eurff ngizg : Iﬂgzgf
XOR, July 2010. Preprint on TACR ePrint 2010/389. Const 120 : ’ ’
[42] A. C. Yao. Theory and application of trapdoor Apply’ +/2; Apply’ +/2; Store;
functions. In SFCS ’82: Proceedings of the 23rd // if (mememp(buf + len,
Annual Symposium on Foundations of Computer buf + len + 20,
Science, pages 80-91. IEEE Computer Society, 1982. // 20) == 0)

Ref buf; Varsize; Load;
Ref len; Varsize; Load; Apply’ +/2;

APPENDIX Const i20; Load;
Ref buf; Varsize; Load;
A. CTO CYM—EXAMPLE Ref len; Varsize; Load;

Const i20; Apply’ +/2; Apply’ +/2;
Const i20; Load;
Apply’ cmp/2;

Fig. 13 shows the CVM translation of the example pro-
gram from fig. 1. We use abbreviations for some useful in-

struction sequences: we write Clear as an abbreviation for Const 0; Apply’ ==/2; Test;

Store dummy that stores a value into an otherwise unused // event(”accept”, buf, len);

dummy variable. The effect of Clear is thus to remove one Ref buf; Varsize; Load;

value from the stack. Often we do not need the length of the Ref len; Varsize; Load; Load;

result that the instructions Env and Apply place on the stack, Event;

so we introduce the versions Env’ and Apply’ that discard

the length: Env’ v is an abbreviation for Env v; Clear and Figure 13: Translation of the example C program
Apply’ v is an abbreviation for Apply v; Clear. The ab- (fig. 1) into CVM.

breviation Varsize is supposed to load the variable width N
onto the stack, for instance, on an architecture with N = 32
the meaning of Varsize would be Const i32. For conve-
nience we write operation arguments of Apply together with
their arities.

12

http://www.lsv.ens-cachan.fr/spore/

	Introduction
	C Virtual Machine (CVM)
	From C to CVM
	Intermediate Model Language
	Security of Protocols
	CVM to IML: Symbolic Execution
	Verification of IML
	Implementation & Experiments
	Related Work
	Conclusion
	References
	C to CVM—Example

