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Abstract
We introduce acal culus describing the movement of processes and devices, in-
cluding movement through administrative domains.

1 Introduction

There are two distinct areas of work in mobility: mobil e computing, concerning com-
putation that is carried out in mobile devices (Iaptops, persona digital assstants, etc.),
and mohil e computation, concerning mobile code that moves between devices (applets,
agents, etc.). We amto describeall these aspects of mobil ity within asingle framework
that encompasses mobile agents, the ambientswhere aentsinteract andthe mobility of
the anbients themselves.

Theinspiration for thiswork comes from the potential for mobile computation over
the World-Wide Web. The geographic distribution of the Web naturaly call s for mo-
bility of computation, as a way of flexibly managing latency and bandwidth. Because
of recent advances in networking and language technology, the basic tenets of mobile
computation are now technologically reaizable. The high-level software achitecture
potential, however, is still largely unexplored.

The main difficulty with mobile computation on the Web isnot in mohility per se,
but in the handling of administrativedomains. In the early days of the Internet one could
rely on aflat name space given by IP addresses; knowing the IP address of a computer
would very likely alow oneto talk to that computer in someway. Thisisno longer the
case: firewalls partition the Internet into administrative domains that are isolated from
each other except for rigidly controll ed pathways. System administrators enforce poli-
cies abou what can move throughfirewall s and how.

Mobility requires more than the traditional notion of authorization to run or to ac-
cessinformation in certain damains: it involvesthe authorization to enter or exit certain
domains. In particular, as far as mobile computation is concerned, it is not redistic to
imaginethat an agent can migratefrom any pant A to any pant B onthe Internet. Rath-
er, an agent must first exit its administrative domain (obtaining permission to do so),
enter someone else’s administrative domain (again, obtaining permission to do so) and
then enter a protected area of some machine where it is allowed to run (after obtaining
permisson to do so). Accessto information is controlled a many levels, thus multiple
levels of authorization may be involved. Among these levelswe have: local computer,
local area network, regional area network, wide-areaintranet and internet. M obile pro-
grams must be equipped to navigate this hierarchy of administrative domains, at every
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step oltaining authorization to move further. Similarly, laptops must be equipped to ac-
cessresources depending ontheir locationin the administrative hierarchy. Therefore, at
the most fundamental level we need to capture notions of locations, of mobility and o
authorization to move.

With these motivations, we alopt aparadigm of mobility where computational am-
bients are hierarchicall y structured, where agents are confined to ambients and where
ambients move under the control of agents. A novelty of this approach isin allowing
the movement of self-contained nested environments that include data and live compu-
tation, as opposed to the more mwmmon techniques that move single agentsor individual
objects. Our goal isto make mohile cmputation scale-up to widely distributed, inter-
mittently connected and well administered computational environments.

This paper is organized as follows. In the rest of Section 1we introduce our basic
concepts and we compare them to previous and current work. In Section 2we describe
acalculus based exclusively onmohility primitives, and we useit to represent basic no-
tions such as numerals and Turing machines, and to code a firewall-crossing protocol.
In Section 3we extend our calculus with local communication, and we show how we
can represent more general communi cation mechanisms as well as the Tt-calculus.

1.1 Ambients

Ambients have the following main characteristics.

Anambient isabourded placed where computation happens. Theinteresting prop-
erty hereisthe eistence of aboundary around an ambient. If we want to move mompu-
tations easily we must be able to determine what should move; a boundary determines
what isinside and what is outside an ambient. Examples of ambients, in this nse, are:
a web page (bounded by afile), a virtual address ace (bounded by an addressng
range), a Unix file system (bounded within a physical volume), a single data object
(bourded by “self”) and a laptop (bounded by its case and data ports). Non-examples
are: threads (where the boundary of what is “reachable” is difficult to determine) and
logicaly related collections of objects. We @n already see that a boundary implies
some flexible addressing schemethat can denate entities acrossthe boundary; examples
are symbolic links, Uniform Resource Locators and Remote Procedure Call proxies.
Flexible addressngiswhat enables, or at least facilitates, mohility. It isalso, of course,
a cause of problems when the addressing links are “broken”.

An ambient can be nested within ather ambients. As we discussed, administrative
domains are (often) organized hierarchically. If we want to move arunning application
from work to home, the application must be removed from an enclosing (work) ambient
andinserted into ancther enclosing (home) ambient. A laptop may need aremoval pass
to leave aworkplace, and a government passto leave or enter acountry.

An ambient can be moved as awhole. If we move alaptop to a diff erent network,
all the aldress spaces andfile systemswithin it move accordingly. If we move an agent
from one computer to ancther, itslocal data moves accordingly.

Each ambient has a name that is used to control accessto the ambient. A name is
something that can be created and passed around, and from which access capabilities
can be extracted. In arealistic situation the true name of an ambient would be guarded
very closely, and orly specific capabilities would be handed out.



1.2 Technical Context: Systems

Many software systems have explored and are exploring ndions of mobility.

Obliq [5] attacks the problems of distribution and mobility for intranet computing.
Obligworkswell for itsintended application, but is not really suitable for computation
and mobility over the Web (like other distributed paradigms based onthe remote pro-
cedure @l model) because of the fragility of network proxies over the Web.

Our ambient model is partialy inspired by Telescript [16], but is amost dud to it.
In Telescript, agents move whereas places gay put. Ambients, instead, move whereas
agents are confined to ambients. A Telescript agent, however, isitself alittle ambient,
sinceit contains a “suitcase” of data. Some nesting of placesisallowed in Telescript.

Java[11] providesaworking framework for mobile computation, aswell asawide-
ly available infrastructure on which to base more anbitious mobhility eff orts.

Linda[6] isa “coordinationlanguage” where multiple processesinteract in a mom-
mon space (called a tuple space) by exchanging tokens asynchronouwsly. Distributed
versions of Linda exist that use multiple tuple spaces and allow remote operations. A
diaect of Linda[7] alows nested tuple spaces, but not mokhility of the tuple spaces.

1.3 Technical Context: Formalisms

Many existing calculi have provided inspiration for our work.

The tcalculus[15] is a process calculus where channels can “move” along other
channédls. The movement of processes is represented as the movement of channels that
refer to processes. Therefore, there is no clear indication that processes themselves
move. For example, if a channel crosses a firewall (that is, if it iscommunicated to a
process meant to represent a firewall), there is no clear sense in which the process has
also crossed the firewall. In fact, the channel may cross gveral independent firewalls,
but a process could na bein all those places at once. Nonethel ess, many fundamental
1t-cal culus concepts and techniques underlie our work.

Thespi calculus[1] extendsthe r-calculuswith cryptographic primitives. The need
for such extensions does not seem to arise immediately within our ambient calculus.
Some of the motivationsfor the spi calculus extensionare dready covered bythe notion
of encapsulation within an ambient. However, we do na know yet how extensively we
can use our ambient primitives for cryptographic purposes.

The Chemical Abstract Machine[3] isasemantic framework, rather than a specific
formalism. Its basic nations of reactionin asolutionand o membranesthat isolate sub-
solutions, closely resemble anbient notions. However, membranes are not meant to
provide strong protection, andthereisno concern for mobil ity of subsolutions. Still, we
adopt a “chemical style” in presenting our calculus.

Thejoin-calculus [9] isareformulation d the t-calculus with a more explicit no-
tion of places of interadion; this greatly helpsin building dstributed implementations
of channel mechanisms. The distributed join-calculus [10] adds a notion o named lo-
cations, with essentially the same aims as ours, and a notion of distributed failure. Lo-
cations in the distributed join-calculus form atree, and subtrees can migrate from one
part of the tree to another. A main diff erence with our ambients is that movement may
happen directly from any active location to any other known location.

LLinda[8] isaformalization of Lindausing processcalculi techniques. Asin dis-



tributed versions of Linda, LLinda has multiple distributed tuple spaces. Multipletuple
spaces are very similar in spirit to multiple anbients, but Linda’s tuple spaces do nd
nest, and there ae no restrictions about accessing a tuple space from another one.

Finally, agrowing body d literature is concentrating on theidea of adding dscrete
locations to a process calculus and considering failure of those locations [2, 10]. Our
nation d locality is built into our basic calculus. It isinduced by a norttrivial and dy
namic topdogy d locations, in the sense that a location that is “far” from the airrent
one aan only bereached through multipleindividual moves. Failure of alocation can be
represented as becoming forever unreachable.

2 Mobility

We begin by describing a minimal calculus of ambients that includes only mobility
primitives. Still, we shall see that this calculusis quite expressve. In Section 3wethen
add communication primitives.

2.1 Mobility Primitives

The syntax of the @lculusis defined in the following table. The main syntactic catego-
ries are processes (including ambients and agentsthat execute actions) and capabil ities.

M obility Primitives

PQ:= processes n names
(vn)P restriction
0 inactivity M = capabilities
P|Q compaosition inn can enter n
IP replication outn can exitn
n[P] ambient openn can openn
M.P action

L |
Syntactic conventions

(vmP Q= ((vn)P)|Q (Vni...n)P - £ (vny)...(vny)P
PIQ = ('P)|Q n(] 2 n[0]
MP|Q = (MP)|Q M 2 M.0 (whereappropriate)

The first four process primitives (restriction, inactivity, composition and replica-
tion) have the same meaning as in the T-cal culus (see Section 2.3), namely: restriction
is used to introduce new names and limit their scope; 0 has no behavior; P | Q is the
parallel composition o P and Q; and!P isan unboundd number of parallel replicas of
P. The main diff erence with respect to the Tecalculus is that names are used to name
ambientsinstead of channels. To these standard primitives we add ambients, n[P], and
the exercise of capabilities, M.P. Next we discussthese new primitives in detail.

2.2 Explanations

We begin by introducing the semantics of ambients informally. A reduction relation
P—Q describes the evolution d aprocessP into anew processQ.



Ambients

An ambient is written n[P], where n is the name of the ambient, and P is the process
running inside the ambient. In n[P], it is understoodthat P is actively running, and that
P can be the parallel composition d several processes. We emphasize that P is running
even when the surrounding ambient is moving. Running while moving may or may not
be redi stic, depending onthe nature of the ambient and of the @mmunication medium
through which the ambient moves, but it is consistent to think in those terms. We ex-
pressthe fact that P is running by a rule that says that any reduction of P becomes a
reduction d n[P]:

P—Q O n[P]—n[Q]

In general, an ambient exhibits a tree structure induced by the nesting o ambient
brackets. Each noce of thistree structure may contain acollection o (non-ambient) pro-
cesses running in parallel, in addition to subambients. We say that these processes are
runningin the anbient, in contrast to the ones runring in subambients.

Nothing preventsthe existence of two or more anbients with the same name, either
nested or at the same level. Once anameis created, it can be used to name multiple am-
bients. Moreover, 'n[P] generates multiple ambients with the same name. Thisway, for
example, one can easily model the replication d services.

Actions and Capabilities

Operationsthat change the hierarchical structure of ambients are sensitive. In particular
such operationscan beinterpreted asthe aossng of firewalls or the decoding o cipher-
texts. Hence these operations are restricted by capabilities. Thanks to capabilities, an
ambient can allow other ambients to perform certain operations withou having to re-
ved itstrue name. With the communication primitives of Section 3, capabilities can be
transmitted as values.

The processM. P executes an action regulated by the capability M, and then con-
tinues asthe process P. The processP doesnat start running until the actionis executed.
Thereductionrulesfor M. P depend onthe capability M, and are described below case
by case.

We consider three kinds of capabilities: onefor enteringan ambient, onefor exiting
an ambient and ore for opening up an ambient. Capabilities are obtained from names;
given a name n, the apability in nallows entry into n, the capability out n allows exit
out of n and the capability open nalowsthe opening of n. Implicitly, the possession o
one or al of these capabilitiesfor nisinsufficient to reconstruct the origina name n.

An entry capability, in m, can be used in the actionin m. P, which instructs the am-
bient surrounding in m. P to enter a sibling ambient named m. If no sibling m can be
found the operation blocks until atime when such a sibling exists. If more than one m
sibling exists, any one of them can be thosen. Thereductionruleis:

nfinm. P [ Q] | m[R] — m[n[P | Q] |R]

If successful, this reduction transforms a sibling n of an ambient m into a child of m.
After the execution, the processin m. P continues with P, and bah P and Q find them-
selves at alower level in the tree of ambients.



An exit capability, out m, can be used in the action out m. P, which instructs the
ambient surrounding out m. P to exit its parent ambient named m. If the parent is not
named m, the operation Hocks until atime when such aparent exists. Thereductionrule
is:

m{nfout m. P | Q] |R] — n[P | Q] |M[R]

If successful, this reduction transforms a child n of an ambient minto a sibling of m.
After the execution, the processin m. P continues with P, and bah P and Q find them-
selves at a higher level in the tree of ambients.

An opening capability, open n, can be used inthe actionopen n. P. Thisaction pro-
videsaway of dissolvingthe boundary of an ambient named nlocated at the same level
as open, accordingto therule:

openn.P|n[Q] —P|Q

If no ambient n can be found, the operation Hocks until a time when such an ambient
exists. If more than ore ambient n exists, any ore of them can be chosen.

An open operation may be upsettingto bah P and Q above. From the point of view
of P, thereisnotelingin general what Q might do when urleashed. From the point of
view of Q, itsenvironment is being ripped open. Still, this operationis relatively well -
behaved because: (1) the dissolution isinitiated by the agent open n. P, so that the ap-
pearance of Q at the sameleve asP isnot totally unexpected; (2) open nisa capability
that is given ou by n, so n[Q] cannat be diswlved if it does not wish to be.

Movement from the I nside or the Outside: Subjective vs. Objective

There aetwo natural kinds of movement primitives for ambients. The distinctionis be-
tween “1 makeyoumove” from the outside (objective move) or “| move” fromtheinside
(subjective move). Subjective moves have been described above. Objective moves (in-
dicated by an mv prefix), obey the rules:

mvinm. P|mR] — mP|R] mmvout m.P|R] — P|m[R]

These two kinds of move operations are not trivialy interdefinable. The objective
moves have simpler rules. However, they operate only on ambients that are not active;,
they provide no way of moving an existing running ambient. The subjective moves, in
contrast, cause ative ambients to move and, together with open, can approximate the
eff ect of objective moves (as we discusslater).

In evaluating these alternative operations, one should consider who hasthe author-
ity to move whom. In general, the authority to move rests in the top-level agents of an
ambient, which naturally act ascontrol agents. Control agentscannat beinjected puely
by subjective moves, since these moves handle whole anbients. With olj ective moves,
instead, a control agent can be injected into an ambient simply by pcssessng an entry
capability for it. Asa mnsequence, objective moves and entry capabilities together pro-
vide the unexpected power of entrapping an ambient into alocationit can never exit:

entrapm 2 (vKk) (K[] |mvinm.ink. Q)
entrap m | m[P] —* (vk) K[m[P]]



The open capability confers the right to dislve an ambient from the outside and
reveal its contents. It is interesting to consider an operation that dislves an ambient
form the inside, call ed acid:

m[acid. P |Q] — P |Q
Acid givesasimple encoding of objective moves:

mvinnP £ (vqg) qfinn. acid. P]
mvoutn.P 2 (vqg) glout n. acid. P]]

Therefore, acid is as dangerous as objective moves, providing the power to entrap am-
bients. We shall see that open can be used to define a capability-restricted version o
acid that does not lead to entrapment.

2.3 Operational Semantics

We now give an operational semantics of the calculus of section 2.1, based ona struc-
tural congruence between processes, =, andareductionrelation—. Thisisasemantics
in the style of Milner’'s reaction relation [14] for the T-calculus, which was itself in-
spired by the Chemica Abstract Machine of Berry and Boudd [3].

Structural Congruence
[ 1

P=p PIQ=Q|P
P=Q U Q=P (PIQIR=PIQIR
P=Q,Q=R 0O P=R IP=P|IP
_ _ (vn)(vm)P = (vm)(vn)P
o O piReoin WP |Q) =PI ()Q ifn ¢ (P
P=Q O IP=1Q (v)(M[P]) = m[(vn)P] if n#m
P=Q O n[P]=n[qQ] P|oO=P
P=Q 0 MP=MQ (vm0=0

10=0

L |

Processes of the calculus are grouped into equivalence classes by the relation =,
which denotes structural congruence (that is, equivalence upto trivia syntadic restruc-
turing). In addition, we identify processes up to renaming of bound names: (vn)P =
(vm)P{n-m} if m ¢ fn(P). By this we mean that these processes are understoodto be
identical (for example, by choosing an appropriate representation), as opposed to struc-
turally equivalent.

Note that the followingtermsarein general distinct:

I(vn)P # (vn)!P replication creates new names
n[P] | n[Q] # n[P|Q] multiple n ambients have separate identity

The behavior of processsis given by the following reduction relations. The first
three rules are the one-step reductions for in, out and open. The next three rules propa-
gate reductions across scopes, ambient nesting and parallel composition. The final rule
allows the use of equivalence during reduction. Finally, —* isthe reflexive andtransi-
tive dosure of —.



Reduction
[

nlinm. P | Q] | MRl — m[n[P | Q] |R] P—Q O (vnP—(vn)Q
minfoutm. P | Q] |[R] — n[P | Q] |m[R] P—Q O n[P]— n[Q]
openn.P|n[Q] —P|Q P—Q O PIR—QIR

P=PP—-QQ=Q 0 P —Q

2.4 Example: Locks
We @n use open to encode locks that are released and acquired:

acquiren.P £ openn P rleasen.P 2 n[] |P

Thisway, two agents can “ shake hands’ before proceeding with their execution:

acquiren. releasem. P | release n. acquire m. Q

2.5 Example: Firewall Access

In this example, an agent crosses afirewall by means of previously arranged passwords
k, k', andk”. The ggent exhibitsthe passvord k' by using awrapper ambient that has k’
asitsname. Thefirewall , which has a secret name w, sends out a pilot ambient, k[out w.
ink'. inw], to guide the agent inside. The pilot ambient enters an agent by performing
in k' (therefore verifying that the agent knows the password), and is given control by
being opened. Then, in w transports the aent inside the firewall, where the password
wrapper is discarded. The third name, k", is needed to confine the cntents Q of the
agent and to prevent Q from interfering with the protocol.

Thefinal eff ectisthat the agent physically crossesinto thefirewall; thiscan be seen
below by the fact that Q isfinally placed inside w. (For simplicity, this example iswrit-
tento alow asingle gent to enter.) Asaume (fn(P) O fn(Q)) n {k, K, K’} =g andw ¢
fn(Q):

Firewall 2 (vw) wlk[out w. ink'.inw] |open K. openk” . P]
Agent £ K[openk. k' [Q]]

There is no guarantee here that any particular agent will make it inside the firewall.
Rather, the intended guarantee is that if any agent crosses the firewall, it must be one
that knows the passwvords.

To express the security property of thefirewall weintroduce a notion of contextual
equivaence, =. Let a mntext C[] be a processcontaining zero or more holes, and for
any processP, let C[P] bethe process obtained byfilling each holein C with a copy o
P (names freein P may become bound). Then define:

Pln 2 P=(vmu..m)([P]|P") wheren ¢ { my...m;}
Pln 2 P—*QandQln
P~Q 2 fordlnandC[],C[P]Yn < C[Q]In

If (fn(P) O fn(Q)) n {k, K, K"} =g and w ¢ fn(Q), then we @n show that theinter-
action of the ggent with the firewall produces the desired result up to contextual equiv-
alence.



(VKK K") (Agent | Firewall) = (vw)w[Q|P]

Since mntextual equivalence takesinto account al possible contexts, the equation
above states that the firewall crossng protocol works correctly in the presence of any
possible atacker (that does not know the passwords) that may try to disrupt it.

2.6 Example: Objective Moves and Dissolution

Objective moves are not directly encodable. However, specific ambients can explicitly
allow objective moves by using open:

allown 2 lopenn

mvinnP £ (vk) k[inn. in[out k. open k. P]]

mvoutn.P 2 (vk) kjout n. out[out k. open k. P]

n[P] 2 n[P|alowin] (n' allows mvin)
nr[P] £ n[P] | allow out (nrallowsmvout)
n”[P] 2 n[P|allowin] | allow out (n”allowsboth mv in and mv out)

These definitions are to be used, for example, as follows:

mvinnP|n''[Q] —* n''[P|Q]
n'lmvoutnP|Q] —* P|n'[Q]

Similarly, theacid primitive discussed previously is not encodabl e via open. How-
ever, we can code aform of planned dissolution:

acidn.P £ acidlout n. open n. P]
to be used with a hel per processopen acid as follows:
nfacidn.P | Q] | open acid —* P|Q

Thisform of acid is sufficient for uses in many encodings where it is necessary to
dislve anbients. Encodings are caefully planned, so it is easy to add the necessary
open instructions. The main diff erence with the liberal form of acidisthat acid n must
name the ambient it is dissolving. More precisely, the encoding d acid n requires both
an exit and an open capability for n.

2.7 Example: External Choice

A mgjor feature of CCS[13] isthe presence of a non-deterministic choice operator (+).
Wedo ot take + asa primitive, in the spirit of the asynchronous t-cal culus, but we can
approximate some aspects of it by the following definitions. The intent isthat nO P +
mO Q reducesto P in the presence of an n ambient, and reducesto Q in the presence of
an m ambient.

NOP+mOQ £ (vpqr)(
p[inn. out n. glout p. openr. P]] |

plin m. out m. gqfout p. openr. Q]] |
openq|r[])

For example, assuming{p, q, r} n fn(R) = g, we have:



(MOP+mOQ) |nR] —*= P|n[R]
where the relation —* =~ istherelational composition o —* and =.

2.8 Example: Numerals

Werepresent the number i by astack of nested ambients of depthi. For any natural num-
ber i, let i be the numera for i:

0 £ zeq] i+1 £ succ[openop]i]

The open op processis needed to allow ambients named op to enter the stack of ambi-
ents to operate on it. To show that arithmetic may be programmed on these numerals,
we begin with an ifzero operation to tell whether anumeral represents O or not.
ifzZz’]cPQ £ zero P+ succ Q
Q|ifzzeoPQ —*=~ Q|P
i+l |iffroPQ —*= i+1|Q
Next, we can encode increment and decrement operations.

inc.P £ ifzero (inczero.P) (incsucc.P)

inczero.P £ openzero. (1| P)

incsucc.P £ (v p ) (p[succlopen of] | open g.open p. P |
op[in succ. in p. in succ. (g[out succ. out succ. out p] |
open op)])

dec.P £ (v p) (opin succ. p[out succ]] | open p. open succ. P)

These definitions stisfy:
iJincP —*=~ +1]|P i+l|dec.P —*= ||P
Given that iterative computations can be programmed with replication, any arith-
metic operation can be programmed with inc, dec andiszro.
2.9 Example: Turing Machines

We amulate Turing machines in a“mechanical” style. A tape onsists of a nested se-
guence of squares, each initially containing the flag ff[]. The first square has a distin-
guished name to indicate the end d the tape to the left:

end"[f[] | s [ff[] | sa'"[ff00 | sa'" [0 [ ... 1711

The head of the machine is an ambient that inhabits a square. The head moves right by
entering the next nested square and moves | eft by exiting the current square. The head
contains the program of the machine and it can read and write the flag in the current
square. The trickiest part of the definition concerns extending the tape. Two tape-
stretchers are placed at the beginning and end d the tape and continuously add squares.

ifttP,ifffQ £ tt0 opentt. P+ff0 openff.Q

head £
head[! open S;. state #1 (example)

10



mv out head. jump out to read flag

if tt (] | mvin head. insq. §[]), head right, state #2
if ff (tt[] | mvin head. out sg. S5[]) | head left, state #3
o | more state transitions
S initial state
stretchRht £ stretch tape right
(vr) rtopenit. mvout r. (sq'[ff[]] | mvinr.insq.it[]) |it[]]
stretchLft 2 stretch tape left

lopen it. mvin end.
(mv out end. end'"[sq'!] | (1] |
in end. in sq. mv out end. open end. mv out sq. mv out end. it[])

|it[]
machine 2 stretchLft | end!'[ff[] | head | stretchRht]

3 Communication

Althoughthe pure mobility calculus is powerful enoughto be Turing-complete, it has
no communication a variable-binding operators. Such operators seem necessary, for
example, to comfortably encode other formalisms such as the e-cal cul us.

Therefore, we now have to choose a communication mechanism to be used to ex-
change messages between ambients. The dhoice of aparticular mechanismis osmewhat
orthogoral to the mohility primitives. However, we shoud try nat to defeat with com-
munication the restrictionsimposed by capabilities. This suggests that a primitive form
of communication shoud be purely local, and that the transmission d norntloca mes-
sages shoud be restricted by capabilities.

3.1 Communication Primitives

To focus our attention, we pose asagod the aility to encode the asynchronous t-cal-
culus. For thisit issufficient to introduce asimple aynchronous communication mech-
anism that works locally within asingle anbient.

M obility and Communication Primitives

| P,Q:= processes M ::= capabilities
(vn)P restriction X variable
0 inactivity n name
P|Q compaosition inM can enter intoM
P replication outM can exit out of M
MI[P] ambient open M can open M
M.P capability action € null
x).P input action M.M’ path
(M) async output action

We a@ain start by displaying the syntax of a whole alculus. The mohility primi-
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tives are essentially those of section 2 but the addition d communication variables
changes some of the details. More interestingly, we ad inpu ((x).P) and output ((M))
primitives and we enrich the capabilitiesto include paths. We identify capabilities up to
thefollowing equations. L.(M.N) = (L.M).N and M.€ = M =&.M. Asanew syntactic con-
vention, we have that (xX).P | Q = ((X).P) | Q.

3.2 Explanations

Communicable Values

The entities that can be communicated are either names or capabilities. In redistic sit-
uations, communication d names should be rather rare, since knowing the name of an
ambient gives alot of control over it. Instead, it should be commonto communicate re-
stricted capabilities to allow controlled interactions between ambients.

It now becomes useful to combine multiple capabilitiesinto paths, especially when
one or more of those capabilities are represented byinput variables. To thisendwe in-
troduce apath-formation operation on capabilities (M. M”). For example, (in n.inm). P
isinterpreted asin n.inm. P.

We distinguish between v-bourd names and input-bourd variables. Variables can
be instantiated with names or capabilities. In practice, we do rot need to distinguish
thesetwo sortslexically, but we often usen, m, p, g for namesandw, x, y, zfor variables.

Ambient [/O

The simplest communication mechanism that we can imagineisloca anonymous com-
munication within an ambient (ambient /O, for short):

(x).P  inpu adion (M) async output action

An output action releases a @pability (possibly a name) into the loca ether of the sur-
roundng ambient. An input action captures a capabil ity from the local ether and binds
it to avariable within a scope. We have the reduction:

(%)-P [{M) — P{x M}

Thislocal communication mechanism fits well with the ambient intuitions. In par-
ticular, long-range communication, like long-range movement, shoud na happen au-
tomatically because messages may haveto crossfirewalls. Still, this simple mechanism
is sufficient, aswe shall see, to emulate communication over named channels, and more
generdly to provide an encoding o the asynchronous Tt-calculus.

Remark

To alow both names and capabilities to be output and inpu, there is asingle syntactic
sort that includes both. Then, a meaninglessterm of the form n. P can then arise, for
instance, from the process((x). x. P) |{n). Thisanomaly is caused by the desireto denote
movement capabilities by variables, asin (x). x. P, and from the desire to denote names
by variables, asin (x). x[P]. We permit n. P to be formed, syntactically, in order to make
substitution always well defined. A simple type system distinguishing names from
movement capabilities would avoid this anomaly.
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3.3 Operational Semantics

The structural congruencerelation is defined asin section 2.3, with the understanding
that Pand M range now over larger classes, and with the addition of the following
equivalences:

Structural Congruence
'P=Q O M[P]=MQ] eP=P
P=Q O (®¥.P=(X.Q (MM).P=MM P

We now identify processes up to renaming o bourd variables: (X).P = (y).P{x <y} if
y ¢ fv(P). Finally, we have anew reductionrule:

Reduction
[

(¥).P (M) — P{x M}
L

3.4 Example: Cells

A cell cell cw storesavaluew at alocation ¢, where avalue is acapability. Thecell is
set to output its current contents destructively, andis st to be “refreshed” with either
the old contents (by get) or anew contents (by set). Note that set isessentially an ouput
operation, but it isa synchronous one: its squel P runs only after the cell has been set.
Parall el get and set operations do not interfere.

cdlcw & c”[(w)]
getc(x). P mvinc. (X). ((x) | mvout c. P)
set c(w). P mvin c. (X). ((w) | mv out c. P)

A
A

It is possible to code an atomic get-and-set primitive:
get-andsetc () (W). P 2 mvinc. (X). ((w)| mvoutc. P)

Named cells can be asembled into ambients that act as record data structures.

3.5 Example: Routable Packetsand Active Networks

We define packet pkt as an empty packet of hame pkt that can be routed repeatedly to
various destinations. We dso defineroute pkt with P to M as the act of placing P inside
the packet pkt and sending the packet to M; thisisto be used in parallel with packet pkt.
Note that M can be a @mpound capability, representing a path to foll ow. Finaly, for-
ward pkt to M is an abbreviation that forwards any packet named pkt that passes by to
M. Here we asaume that P does not interfere with routing.

packet pkt £ pkt[!(x). x | !open route]
route pkt withPtoM £ route[in pkt. (M) | P]
forward pkt toM £ route pkt with 0 to M
Since our packets are ambients, they may contain behavior that becomes active

within the intermediate routers. Therefore we aan naturally mode active networks,
which are tharacterized by routersthat execute wde carried by peckets.
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3.6 Communication Between Ambients

Our basic communication grimitives operate only within a given ambient. We now dis-
cussone example of communication across ambients. In addition, in section 37 wetreat
the specific case of channel-based communication acrossambients.

Itisnot realistic to assume direct long-range communication. Communication, like
movement, is subject to accessrestrictions due to the existence of administrative do-
mains. Therefore, it is convenient to model long-range communication as the move-
ment of “messenger” agents that must cross administrative boundaries. Assume, for
simplicity, that the location M al ows /O by lopenio. By M~ weindicate agiven return
path from M.

@M(a) £ io[M.{a)] remote output at M
@MXM™L P 2 (vn)(io[M. (x). ([M~L. P]] |openn)  remoteinpu at M
To avoid transmitting P all the way there and back, we can write inpu as:
@MXM™L P 2 (vn) (io[M. (x). ([M~L. (x)]] | open n) | (x). P
To emulate Remote Procedure Call we write (assuming res contains the result):
@M arg(a) res(x) M. P 2
(vn) (io[M. (@) | openrres. (x). (M~ (x])] | open ) | (x). P
Thisis essentially an implementation of a synchronous communication (RPC) by two
asynchronous communications ((a) and (x)).
3.7 Encoding the T-calculus

The encoding d the asynchronous t-calculus is moderately easy, given ou 1/O primi-
tives. A channel is sSmply represented by an ambient: the name of the channel is the
name of the anbient. Thisis very similar in spirit to the join-calculus [9] where chan-
nels arerooted at alocation. Communication ona channel is represented by local com-
municationinside an ambient. The basic technique isavariation on olpective moves. A
conventional name, io, is used to transport input and output requests into the channel.
The dhannel opensall such requests and lets them interact.

chn 2 n['openio] a dhannel

(chnP 2 (vn)(chn|P) anew channel
n(x).P 2 (vp) (ig[inn. (X). plout n. P]] |openp) channel input

n{M) 2 io[inn. (M)] async channel output

These definitions satisfy the expected reduction n(x).P | (M) —* P{x— M} inthe pres-
ence of achannel ch n. Therefore, we can write the following encoding of the T=calcu-
lus:

Encoding of the Asynchronous tecalculus

IVn)PY 2 (vn) (nl!openid] | (PY) PIQ) £ (PIIIQY
in(x).Py £ (vp) (io[in n. (X). p[out n. {P}]] |openp) {'P) o )
gnimy) £ io[inn.(m)]
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Thisencodingincludesthe choice-free synchronaus te-calculus, sinceit canitself be en-
coded within the asynchronous tecalculus [4, 12].

We can fairly conveniently use these definitions to embed communication m
named channels within the ambient calculus (provided the nameioisnot used for other
purposes). Communication onthese named channels, though, only works within asin-
gleambient. In other words, from our point of view, aTt-calculus processalwaysinhab-
itsasingle anbient. Therefore, the notion of mokility in the 1-cd culus (communication
of names over named channdls) is diff erent from our notion o mohility.

4 Conclusions and Future Work

We have introduced the informal notion of mobile ambients, and we have discussed
how this notion captures the structure of complex networks and the behavior of mohile
computation. We have then investigated an ambient cal culusthat formalizesthis notion
simply and powerfully. Our calculus is no more complex than common process calculi,
but suppats reasoning about mobility and, at least to some degree, security.

This paper concentrates mostly on examplesand intuition. In ongoingwork we ae
developing theories of equivalences for the anbient calculus, drawing onearlier work
on the Tecalculus. These euivalences will alow us to reason about mobile mmputa-
tion, as briefly illustrated in the firewall crossng example.

On this foundation, we can envision rew programming methodologies, program-
ming libraries and programming languages for global computation.
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