
DivMCuts: Faster Training of Structural SVMs
with Diverse M-Best Cutting-Planes

Abner Guzman-Rivera Pushmeet Kohli Dhruv Batra
University of Illinois Microsoft Research Cambridge Virginia Tech

Abstract

Training of Structural SVMs involves solving
a large Quadratic Program (QP). One popular
method for solving this QP is a cutting-plane ap-
proach, where the most violated constraint is it-
eratively added to a working-set of constraints.
Unfortunately, training models with a large num-
ber of parameters remains a time consuming pro-
cess. This paper shows that significant computa-
tional savings can be achieved by adding mul-
tiple diverse and highly violated constraints at
every iteration of the cutting-plane algorithm.
We show that generation of such diverse cutting-
planes involves extracting diverse M-Best solu-
tions from the loss-augmented score of the train-
ing instances. To find these diverse M-Best so-
lutions, we employ a recently proposed algo-
rithm [4]. Our experiments on image segmenta-
tion and protein side-chain prediction show that
the proposed approach can lead to significant
computational savings, e.g., ∼28% reduction in
training time.

1 Introduction
A number of problems in Computer Vision, Natural Lan-
guage Processing and Computational Biology involve mak-
ing predictions over complex but structured interdepen-
dent outputs – e.g., the space of all possible segmenta-
tions of an image or all possible English translations of a
Chinese sentence. Formulations like Max-Margin Markov
Networks (M3N) [23] and Structural Support Vector Ma-
chines (SSVMs) [24] have provided principled techniques
for learning such structured-output models.

In all these settings, the learning algorithm has access to
n training (input-output) pairs: {(xi,yi) | xi ∈X ,yi ∈Y}

Appearing in Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale,
AZ, USA. Volume 31 of JMLR: W&CP 31. Copyright 2013 by
the authors.

and the goal is to learn a mapping f : X → Y from the
input space X to the output space Y , such that it minimizes
a (regularized) task-dependent loss function ` : Y × Y →
R+, where `(yi, ȳi) denotes the cost of predicting output
ȳi when the correct prediction is yi.

Cutting-Plane Training. This learning problem is gen-
erally formulated as a constrained Quadratic Program
(QP) [10, 24] with exponentially many constraints. For in-
stance, 1-slack SSVMs [10] involve |Y|n constraints, one
for each possible n-tuple of labels (ȳ1, . . . , ȳn)∈Yn. If
the most violated constraint can be identified efficiently, a
cutting-plane (CP) approach [11] may be used to solve this
QP. A CP algorithm maintains a small working-set of con-
straints and alternates between: 1) solving for the optimum
solution under the current working-set, and 2) adding the
most violated constraint to the working-set by calling the
max-violation-oracle. It can be shown [10, 24] that such
a procedure converges in O(1

ε) steps, where ε is the de-
sired precision. Finding the most violated constraint in-
volves maximizing the loss-augmented score [10] for each
training instance.

Unfortunately, models for many real world problems have
a large number of parameters and require many iterations
of the above procedure. At every iteration, inference must
be performed on the entire dataset and a large QP must be
solved. Thus, training such models becomes a time con-
suming process.

Contribution. This paper shows that significant computa-
tional savings can be achieved in training SSVMs by gener-
ating and adding a diverse set of highly violated constraints
(cutting-planes) at every training iteration. Fig. 1 illustrates
the idea. One key observation of our work is that for multi-
ple constraints to be useful and speed up convergence, they
should satisfy the following desiderata:

1. Marginal Relevance. Each constraint should be in-
formative w.r.t. the current approximation (i.e., be
highly violated) and also have marginal relevance
w.r.t. the constraints added at the current iteration (i.e.,
we need a diverse set of constraints).

2. Efficiently Computable. Finding a set of violated
constraints should be fast enough so as to not offset

DivMCuts: Faster Training of Structural SVMs with Diverse M-Best Cutting-Planes

−100 −50 0 50 1002500

3000

3500

4000

ξ

w

1

−100 −50 0 50 1002500

3000

3500

4000

ξ

w

1
2

−100 −50 0 50 1002500

3000

3500

4000

ξ

w

1
2
3

−100 −50 0 50 1002500

3000

3500

4000

ξ

w

1
2
3
4

−100 −50 0 50 1002500

3000

3500

4000

ξ

w

1
2
3
4
5

−100 −50 0 50 1002500

3000

3500

4000

ξ

w

1
2
3
4
5
6

(a) Standard Approach.Iterations

−100 −50 0 50 1002500

3000

3500

4000

ξ

w

1

−100 −50 0 50 1002500

3000

3500

4000

ξ

w

1
2

−100 −50 0 50 1002500

3000

3500

4000

ξ

w

1
2
3

−100 −50 0 50 1002500

3000

3500

4000

ξ

w

1
2
3
4

(b) Proposed Method. (c)

Figure 1: Illustration of the proposed approach with the feasibility region approximation at the current iteration in pink. (a) When adding
a single cutting-plane at every iteration, 6 iterations are necessary to approximate the feasibility region to the desired precision. (b) In
contrast, by adding 5 cutting-planes at every iteration only 4 iterations are necessary. (c) Depiction of the learning QP and approximated
feasibility region.

the savings resulting from the reduction in the number
of training iterations.

We show that generating sets of constraints satisfying the
above desiderata involves extracting diverse M-Best solu-
tions from the loss-augmented score – for this, we leverage
algorithm DivMBest of Batra et al. [4] for producing di-
verse maximum a posteriori (MAP) solutions in structured-
output models. We name our method DivMCuts and eval-
uate its performance on two applications of SSVMs: im-
age segmentation, and protein side-chain prediction. Our
results show that DivMCuts can lead to significant compu-
tational savings, e.g., ∼28% reduction in training time. Fi-
nally, our results suggest that even greater savings are pos-
sible for more expressive models involving a larger number
of parameters.

The outline for the rest of this paper follows: Sec. 2 pro-
vides notation and revisits CP training of SSVMs; Sec. 3
presents the proposed generalization identifying key chal-
lenges; Sec. 4 presents experiments; and Sec. 5 concludes
with a discussion.

2 Preliminaries: Training SSVMs
This section establishes the notation used in the paper and
revisits CP training of Structural SVMs.

Notation. Let [n] be the shorthand for the set {1, 2, . . . , n}.
We use y to denote a structured-output, and Y =
(y1, . . . ,y|Y|) for a tuple of structured-outputs.

Given a training dataset of input-output pairs (examples)
S = {(x1,y1), . . . , (xn,yn) |xi ∈X ,yi ∈Y}, we are in-
terested in learning a mapping f : X → Y from an input
space X to a structured-output space Y , where |Y| is finite
but typically exponentially large (e.g., the set of all segmen-

tations of an image, or all English translations of a Chinese
sentence).

Structural Support Vector Machines (SSVMs). In
an SSVM setting, the mapping is defined as f(x) =
argmaxy∈Y wTΨ(x,y), where Ψ(x,y) is a joint feature
map: Ψ : X × Y → Rd. The quality of the prediction
ŷi = f(xi) is measured by a task-specific loss function
` : Y × Y → R+, where `(yi, ŷi) denotes the cost of pre-
dicting ŷi when the correct label is yi. Since the task-loss
` is non-continuous and non-convex in w, typically a con-
vex surrogate loss that upper bounds ` is optimized instead
(e.g., the hinge upper-bound [24]).

Optimization Problem 1 (OP1). The regularized hinge-
loss SSVM learning problem can be formulated as a QP
with exponentially many constraints. In this paper, we
work with the margin-rescaling variant of the 1-slack for-
mulation of Joachims et al. [10]:

min
w,ξ≥0

1

2
wTw + Cξ (1a)

s.t.
1

n
wT

n∑
i=1

[
Ψ(xi,yi)−Ψ(xi, ȳi)

]

≥ 1

n

n∑
i=1

`(yi, ȳi)− ξ ∀Ȳ ∈ Yn (1b)

Note that 1-slack SSVMs involve |Y|n constraints, one for
each possible n-tuple of labels Ȳ = (ȳ1, . . . , ȳn) ∈ Yn,
but there is a single slack variable ξ, shared across all con-
straints. The number of constraints is thus exponentially
larger than in n-slack SSVMs (which involve n|Y| con-
straints). However, Joachims et al. [10] showed that: 1) the
two formulations are equivalent, and, more importantly, 2)
1-slack leads to faster convergence, in theory and practice.

Abner Guzman-Rivera, Pushmeet Kohli, Dhruv Batra

Algorithm 1 Cutting-Plane Training of Structural SVMs
(margin-rescaling) via the 1-Slack Formulation OP1.

1: Input: S = {(x1,y1), . . . , (xn,yn)}, C, ε
2: W ← ∅
3: repeat
4: (w, ξ)← argminw,ξ≥0

1
2wTw + Cξ

s.t. 1
nwT

n∑
i=1

[
Ψ(xi,yi)−Ψ(xi, ȳi)

]
≥ 1

n

n∑
i=1

`(yi, ȳi)− ξi ∀Ȳ ∈ W

5: for i = 1, . . . , n do
6: ŷi ← argmaxy

{
`(yi,y) + wTΨ(xi,y)

}
7: end for
8: W ←W ∪ {(ŷ1, . . . , ŷn)}
9: until 1

n

n∑
i=1

`(yi, ŷi)

− 1
nwT

n∑
i=1

[
Ψ(xi,yi)−Ψ(xi, ŷi)

]
≤ ξ + ε

10: return (w, ξ)

Cutting-Plane Training of SSVMs. Algorithm 1 provides
a CP approach to solving OP1. At every iteration, the al-
gorithm computes the solution over the current working-
setW (Line 4) and then finds the most violated constraint
(Lines 5-7) to add toW (Line 8). The algorithm stops when
the most violated constraint is violated less than a desired
precision ε (Line 9). Unlike the n-slack setting, Algorithm
1 adds a single constraint at every iteration – a linear com-
bination of features coming from all examples.

Joachims et al. [10] showed that the number of iterations to
convergence for Algorithm 1 does not depend on the num-
ber of training instances and grows as O(1

ε). Specifically:

Theorem 1. Iteration Complexity of Algorithm 1. For any
0 < C, 0 < ε < 4R2C and any training sample S =
{(x1,y1), . . . , (xn,yn)}, Algorithm 1 terminates after at
most ⌈

log2(
`

4R2C
)

⌉
+ 2

⌈
8R2C

ε

⌉
iterations, where R2 = maxi,ȳ ||Ψ(xi,yi)−Ψ(xi, ȳ)||2,
` = maxi,ȳ `(yi, ȳ) and d.e is the integer ceiling function.

Proof. See proof of Theorem 5 in [10].

3 Proposed Approach
Algorithm 1 incrementally builds an approximation to the
constraint-set by adding a single linear inequality in each
iteration. An intuitive approach to speed up this process
is to instead add multiple constraints in each iteration. We
will show that significant computational savings are possi-
ble if the additional constraints are highly violated and di-
verse. Finding the most violated constraint is equivalent to

performing MAP inference on a loss-augmented score for
each training instance. Similarly, finding multiple violated
constraints involves generating multiple diverse solutions
to the loss-augmented score of the training instances.

Techniques for producing multiple solutions in probabilis-
tic models can be broadly characterized into two groups:
M-Best MAP algorithms [7, 16, 17, 26] that find the top M
most probable solutions and sampling-based algorithms [2,
18,25]. Both of these groups fall short for our task. M-Best
MAP algorithms do not place any emphasis on diversity
and tend to produce solutions that are minor perturbations
of each other. Thus, the resulting cutting-planes are un-
likely to be of much value in tightening the constraint-set
approximation and speeding up convergence. Sampling-
based approaches typically exhibit long wait-times to tran-
sition from one mode to another, which is required for ob-
taining diversity.

3.1 Generating Diverse M-Best Solutions
on Loss-Augmented Score

To explicitly enforce diversity, we leverage algorithm Div-
MBest of Batra et al. [4], which computes a set of di-
verse M-Best solutions in discrete probabilistic models. We
briefly describe their approach here.

The approach is applicable to general structured-output
models but for the sake of illustration let us consider a
discrete Markov Random Field (MRF). Specifically, let
y = {y1, . . . , yp} ∈ Y be a set of discrete random vari-
ables, each taking value in a finite label set, i.e., yu ∈ Yu.
Let G = (V, E) be a graph defined over the output vari-
ables, i.e., V = [p], E ⊆

(V
2

)
, and let yuv be shorthand

for the tuple (yu, yv). It is known that for decomposable
loss functions, the loss-augmented score for any configura-
tion y can be expressed as a sum of terms that decompose
along the graph-structure. Thus, loss-augmented inference
corresponds to a MAP inference problem:

max
y∈Y

S(y) = max
y∈Y

∑
u∈V

θu(yu) +
∑

(u,v)∈E

θuv(yuv). (2)

We assume availability of a function ∆(ỹ, ỹ′) quantifying
dissimilarity between solutions ỹ and ỹ′. Let ỹ(m) denote
the mth-best solution. Thus, ỹ(1) is the MAP, ỹ(2) is the
second DivMBest solution and so on. [4] proposed the fol-
lowing formulation for finding the mth solution:

ỹ(m) = argmax
y∈Y

∑
u∈V

θu(yu) +
∑

(u,v)∈E

θuv(yuv) (3a)

s.t. ∆(y, ỹ(m′)) ≥ km′ ∀m′ ∈ [m−1] (3b)

In order to solve this problem, [4] use the Lagrangian re-
laxation of (3), formed by dualizing the dissimilarity con-
straints ∆(y, ỹ(m′)) ≥ km′ :

f(λ) = max
y∈Y

S∆(y) = max
y∈Y

∑
A∈V∪E

θA(yA)

+

m−1∑
m′=1

λm′

(
∆(y, ỹ(m′))−km′

)
(4)

DivMCuts: Faster Training of Structural SVMs with Diverse M-Best Cutting-Planes

Here λ = {λm′ | m′ ∈ [m−1]} is the set of Lagrange
multipliers, which determine the weight of the penalty im-
posed for violating the constraints. Intuitively, we see
that the Lagrangian relaxation maximizes a ∆-augmented
score, i.e., a linear combination of the MRF score and the
dissimilarity w.r.t. the previous solutions, with the weight-
ing given by the Lagrange multipliers. For some classes of
∆-functions, we can solve the ∆-augmented score maxi-
mization problem using the same algorithms used for find-
ing the MAP. An illustrative example follows.

Hamming Dissimilarity. ∆(y, ỹ′) =
∑
u∈V [[yu 6=ỹ′u]].

This function counts the number of nodes labeled differ-
ently between two solutions. For this dissimilarity func-
tion, the ∆-augmented scoring function can be written as:

S∆(y) =
∑
u∈V

(
θu(yu) +

m−1∑
m′=1

λm′ [[yu 6=ỹ(m′)
u]]

)
︸ ︷︷ ︸

Perturbed Unary Score

+
∑

(u,v)∈E

θuv(yuv). (5)

Thus (5) can be maximized by feeding a perturbed unary
term to the MAP inference algorithm.

Practical Remarks. The computation of additional solu-
tions can and should be warm-started by using dynamic in-
ference techniques such as [12, 22]. The benefit of such
warm-start typically decreases as magnitude of the pertur-
bations λm′ increases. For certain models/tasks the pertur-
bations could be limited to certain regions of the model so
that dynamic inference is particularly effective.

3.2 Generating Diverse M-Best
Cutting-Planes

Our proposed approach, DivMCuts, is summarized in Al-
gorithm 2. It is parametrized by M , the number of con-
straints to add to the working-set at every iteration – note
that Algorithm 1 is a special case of Algorithm 2 with
M=1. Algorithm 2 finds M diverse loss-augmented so-
lutions for each example (Line 6) and uses these solu-
tions to generate M diverse cutting-planes to be added
to the working-set (Lines 9-10). In order to fully spec-
ify the algorithm, we need to describe two procedures: 1)
Updateλ (Line 8) which controls the amount of diversity
in the loss-augmented solutions; and 2) Combine (Line 9)
which produces a set ofM cutting-planes given theM loss-
augmented solutions from all n examples.

Diversity Requirements (Updateλ). The amount of di-
versity in the loss-augmented solutions is controlled by
parameters km in (3b) and the corresponding Lagrangian
multipliers λm in (4). However, the amount of diversity ap-
propriate for faster convergence will typically be problem
dependent and not known a priori. This is further compli-
cated by the fact that in practice the Lagrangian relaxation
may not be tight [4].

Algorithm 2 DivMCuts: Generalization of Algorithm 1
adding M constraints at every iteration.

1: Input: S = {(x1,y1), . . . , (xy,yn)}, C, ε, M , K, λ0

2: W ← ∅; λ← λ0

3: repeat
4: (w, ξ)← argminw,ξ≥0

1
2wTw + Cξ

s.t. 1
nwT

n∑
i=1

[
Ψ(xi,yi)−Ψ(xi, ȳi)

]
≥ 1

n

n∑
i=1

`(yi, ȳi)− ξi ∀Ȳ ∈ W

5: for i = 1, . . . , n do
6: Ỹi = (ỹ

(1)
i , . . . , ỹ

(M)
i)←

DivMBest(`(yi, ·) + wTΨ(xi, ·),M,λ)
7: end for
8: λ← Updateλ(M,K,λ, Ỹ1, . . . , Ỹn)

9: (Ŷ(1), . . . , Ŷ(M))← Combine(M, Ỹ1, . . . , Ỹn)

10: W ←W ∪
{

Ŷ(1), . . . , Ŷ(M)
}

11: until 1
n

n∑
i=1

`(yi, ŷ
(1)
i)

− 1
nwT

n∑
i=1

[
Ψ(xi,yi)−Ψ(xi, ŷ

(1)
i)

]
≤ ξ + ε

12: return (w, ξ)

To address both issues, Algorithm 2 uses a feedback loop
to control the amount of diversity in the solutions. Let K̄j

be the observed dataset-wide diversity,

K̄j =

n∑
i=1

∆
(
ỹ

(j)
i , ỹ

(j+1)
i

)
n∑
i=1

maxy ∆
(
ỹ

(j)
i ,y

) (6)

where ∆ is the dissimilarity function used by DivMBest.
For instance, in the case of Hamming distance, K̄j cor-
responds to the fraction of nodes labeled differently in all
(j+1)th solutions w.r.t. all jth solutions. Let also K =
(Kj | j ∈ [M−1]) be a vector of diversity setpoints. These
parameters specify the desired amount of dataset-wide di-
versity – this is preferred to specifying per-example diver-
sity as it leads to a better compromise between perturbation
minimization and amount of 1-slack diversity.

Then, at each iteration Updateλ compares the observed
dataset-wide diversity K̄j with setpoint Kj , and updates
λj to increase or decrease diversity at the next iteration.
We obtained good results with the following update rule:

λj ← λj

(
1 +

1

2

Kj − K̄j

max(Kj , K̄j)

)
. (7)

In Sec. 4 we will see that dataset-wide diversity of solutions
has a direct impact on the convergence rate of the algorithm
and will describe how to set parameter K.

Combining Solutions into Constraints (Combine).
Given (Ỹ1, . . . , Ỹn), the set of predictions computed in

Abner Guzman-Rivera, Pushmeet Kohli, Dhruv Batra

Line 6 of Algorithm 2, we must construct M 1-slack con-
straints – each of them a linear combination of features cor-
responding to solutions from all n training examples (thus,
there are Mn possibilities). Here, it is important to con-
sider the diversity of the resulting cutting-planes w.r.t. each
other – features appearing together in a constraint must be
such that their “diversities” do not cancel out.

DivMCuts ensures that Ŷ(1) corresponds to the standard
most violated constraint, i.e., the combination of MAP so-
lutions. This is sufficient to preserve the correctness and
convergence properties of the original algorithm. For the
the remaining M−1 additional cutting-planes, we explore
the following choices:

1. DivMBest−Ordering: Ŷ(j) ← (ỹ
(j)
1 , . . . , ỹ

(j)
n) for

j ∈ [M]. That is, we combine all mth solutions to-
gether to obtain the mth constraint.

2. DOP1−Heuristic: Informed by insight offered in the
proof of Theorem 1, this strategy involves an opti-
mization procedure that seeks to maximize the attain-
able increase (given the new constraints) in the objec-
tive of the Dual of OP1. The optimization procedure
is a binary Integer Quadratic Program (IQP) on “flag”
variables which select one solution from each example
for each constraint. This IQP is, however, too slow for
our purposes so we resort to, i) an approach based on
relaxing the IQP, and ii) an approach based on a sim-
plification of the IQP (by dropping quadratic terms)
which is efficiently solvable via binary Integer Linear
Programming (ILP). For lack of space, we relegate de-
tails to the supplementary materials.

We compare the effectiveness of the above strategies in the
experiments section.

4 Experiments
Setup. We tested DivMCuts (Algorithm 2) on two prob-
lems: 1) foreground-background segmentation in image
collections and 2) protein side-chain prediction.

For both problems we tuned parameter C on validation
data. For the K and λ0 vectors we use the same value
(scalars K and λ0) for each of the M−1 elements. We
performed grid-search on K and found the algorithm to be
fairly robust to the choice of λ0.

Our experiments show that the number of cutting-plane it-
erations can be reduced substantially, i.e., up to ∼ 62% in
the case of foreground-background segmentation. How-
ever, a reduction in the number of iterations will not nec-
essarily translate into a comparable reduction in training
time since the time taken for computing additional con-
straints increases with M and K. It is crucial to em-
ploy warm-starting (e.g., dynamic) techniques for infer-
ence and to compute feature vectors incrementally (i.e.,
Ψ(xi,y

(2)
i) = Ψ(xi,y

(1)
i) + δΨ(xi,y

(1)
i ,y

(2)
i)). The

greatest (time) speedup,∼ 28%, was obtained under a more
modest reduction in the number of iterations, ∼ 34%.

Practical Consideration. All QP solvers we used were
slowed down by the additional constraints. As observed
by [10], constraints that become inactive as optimization
proceeds may be removed without affecting the theoreti-
cal guarantees. Thus, we discard constraints that have not
been active in the last 50 QP solutions. For some problem
instances, this strategy made a significant difference. We
report results obtained with solver QPC.1

Baselines. We compare against three baselines obtained by
replacing the oracle call (line 6) in Algorithm 2 as follows:

1. MAP inference. Since we obtain single solutions this
becomes the special case of Algorithm 1.

2. MBest MAP inference. In the case of foreground-
background segmentation we implemented BMMF
[26] using Dynamic Graph-Cuts [12].

3. Rand: Nodes for relabeling are chosen at random so
that the resulting diversity is as specified by parameter
K. To relabel a node the procedure computes a multi-
nomial distribution from the unary potential (exclud-
ing the current label) and samples a new label from
this distribution.

Caching Constraints. While techniques like caching (and
warm-starting) are useful for speeding up CP training, they
are orthogonal to the contributions of this paper. Both Al-
gorithms 1 and 2 may benefit from such techniques. We
performed experiments with caching and confirmed that the
results in this paper apply directly to all iterations not con-
structing constraints from the cache. The effect of caching
has large variance across applications: major savings on
segmentation but negligible on side-chain prediction (also,
e.g., in [10], Fig. 3 and 6, somewhat different trends on the
effect of caching are reported on three applications).

Finally, DivMCuts can be combined with caching to pro-
vide additional benefits: 1) If one were to cache the state of
the separation-oracle, one could apply our method on iter-
ations constructing constraints from the cache. 2) Caching
the additional constraints produced with our method should
enable constructing constraints from the cache more often.
We leave such extensions for future work.

4.1 Foreground-Background Segmentation
Dataset. We used the co-segmentation dataset, iCoseg, of
Batra et al. [3]. iCoseg consists of 37 groups of related im-
ages mimicking typical consumer photograph collections.
Each group may be thought of as an “event” (e.g., images
from a baseball game, a safari, etc.). The dataset provides
pixel-level ground-truth foreground-background (f-b) seg-
mentation for each image.

Model and Features. The segmentation task is modeled as
1http://sigpromu.org/quadprog/

http://sigpromu.org/quadprog/

DivMCuts: Faster Training of Structural SVMs with Diverse M-Best Cutting-Planes

0 500 1000 1500

100

101

102

103

104
γ

Iteration

γ : MAP
γ : DivMCuts(M=2, K=0.0128)
γ : DivMCuts(M=3, K=0.0128)
γ : DivMCuts(M=4, K=0.0128)
γ : DivMCuts(M=5, K=0.0128)
γ : DivMCuts(M=6, K=0.0096)
γ : DivMCuts(M=7, K=0.0096)
γ : DivMCuts(M=8, K=0.0064)
γ : DivMCuts(M=9, K=0.0096)
γ : DivMCuts(M=10, K=0.0080)
γ : DivMCuts(M=11, K=0.0080)
γ : DivMCuts(M=12, K=0.0080)

Incre
asing

	
 M

(a) γ vs iters. @ multiple M .

0 500 1000 1500
100

101

102

103

104

γ

Iteration

γ : DivMCuts(M=4, K=0.0004)
γ : DivMCuts(M=4, K=0.0016)
γ : DivMCuts(M=4, K=0.0064)
γ : DivMCuts(M=4, K=0.0256)
γ : DivMCuts(M=4, K=0.1024)

γ : DivMCuts∗(M=4, K=0.0004)
γ : DivMCuts∗(M=4, K=0.0016)
γ : DivMCuts∗(M=4, K=0.0064)
γ : DivMCuts∗(M=4, K=0.0256)
γ : DivMCuts∗(M=4, K=0.1024)

DivMBest
Ordering	

DOP1
(ILP)	

Combine	
 strategy:	

(b) γ vs iters. @ multiple K.

297− 238sec
297sec
=19.87%

0 500 1000 15000

50

100

150

200

250

300

T
im

e
(s
ec
s)

Iteration

Train: MAP
Inf.
Feat.
QP
Train: DivMCuts(M=2, K=0.0128)
Train: DivMCuts(M=4, K=0.0128)
Train: DivMCuts(M=8, K=0.0064)
Train: DivMCuts∗(M=4, K=0.0128)

(c) Time vs iters. @ multiple M .

Figure 2: Violation of most violated constraint, γ, and execution times vs iterations to convergence for Alg. 2 on f-b segmentation.

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

1600

1800

I
t
e
r
a
t
io
n
s
t
o
t
e
r
m
in
a
t
io
n

M

|w| = 6

|w| = 10

|w| = 16

|w| = 28

|w| = 56

|w| = 106

(a) Effect of M @ multiple |w|.
0 200 400 600 800

10
−2

10
−1

10
0

10
1

10
2

10
3

γ

Iteration

γ1
γ2
γ3
γ4
γ5
γ6
γ7
γ8

(b) Seq. γ vs iters.

0 200 400 600 800
10

−2

10
0

10
2

10
4

∆
O
b
j
Iteration

∆Obj @1

∆Obj @2

∆Obj @3

∆Obj @4

∆Obj @5

∆Obj @6

∆Obj @7

∆Obj @8

(c) Seq. ∆-obj. vs iters.

Figure 3: (a) Effect of M on number of iterations to termination for different problem dimensionalities; (b) Marginal relevance of
additional constraints; and (c) objective improvement when additional constraints (M=8) are added sequentially.

a binary pairwise MRF where each node corresponds to a
superpixel [1] in the image. We extracted up to 51 features
at each superpixel. Edge features were computed for each
pair of adjacent superpixels. These correspond to a stan-
dard Potts model and a contrast-sensitive Potts model. The
weights at each edge were constrained to be positive so that
the resulting supermodular potentials could be maximized
via Graph-Cuts [5, 14].

Effect of M on convergence. Let γ be the amount by
which the most-violated-constraint is violated at the cur-
rent iteration. The algorithm stops when γ ≤ ε. Fig. 2a
plots γ vs iterations for a range of values of M . We ob-
serve that the greatest reduction in the number of iterations,
1836−705

1836 ≈ 61.60%, was achieved for M=10 and that a
further increase in M resulted in a slight reversal of gains.

Effect of K on convergence. Fig. 2b shows the effect of
the desired diversity parameter K on convergence. We ob-
serve that a mid-range value leads to fastest convergence.

This plot also compares two of the feature combination
strategies suggested before. We note that the simple
DivMBest−Ordering strategy is not significantly outper-
formed by the more complex DOP1−ILP strategy (de-

tailed in the supplementary materials).

A close look at Fig. 2b also reveals that higher levels of
diversity are beneficial in earlier iterations of the learning
algorithm but actually hurt convergence in later iterations.
This suggests it would be beneficial to “anneal” the desired
diversity as the algorithm progresses.

Convergence time. Fig. 2c compares execution times for
different values of M . We plot total train time as well
as the time contributions of inference (e.g., DivMBest),
feature computation, and QP optimization. An annealed
execution, which lowers K and M during execution, is
also included in the plot (starred curve). This curve ob-
tained the greatest speedup with an iteration reduction of
1836−1023

1836 ≈ 44.28% and a running time reduction of
297−238 secs

297 secs ≈ 19.87%.

Effect of Problem Dimensionality |w|. We investigate the
behavior of the proposed approach as the number of fea-
tures in the learning problem is varied. The unary features
we used are: mean RGB; mean HSV; 5 bin Hue histogram
and histogram entropy; 3 bin Saturation histogram and his-
togram entropy; 10 bin HOG histogram and 25 bin SIFT
histogram. The edge features are as detailed earlier. The

Abner Guzman-Rivera, Pushmeet Kohli, Dhruv Batra

0 500 1000 1500

10
0

10
1

10
2

10
3

10
4

γ

Iteration

γ : MAP
γ : DivMCuts∗(M=4, K=0.0128)
γ : MBest(M=4)
γ : Rand(M=4, K=0.0128)
γ : DivMCuts(M=8, K=0.0064)
γ : MBest(M=8)
γ : Rand(M=8, K=0.0064)

(a) γ vs iters. @ baselines.

0 500 1000 1500

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
(s
ec
s)

Iteration

Train: MAP
Train: DivMCuts∗(M=4, K=0.0128)
Train: MBest(M=4)
Train: Rand(M=4, K=0.0128)
Train: DivMCuts(M=8, K=0.0064)
Train: MBest(M=8)
Train: Rand(M=8, K=0.0064)

(b) Time vs iters. @ baselines.

0 100 200 300 400 500

10
0

10
1

10
2

10
3

10
4

γ

Time (secs)

γ : MAP
γ : DivMCuts∗(M=4, K=0.0128)
γ : MBest(M=4)
γ : Rand(M=4, K=0.0128)
γ : DivMCuts(M=8, K=0.0064)
γ : MBest(M=8)
γ : Rand(M=8, K=0.0064)

(c) γ vs time @ baselines.

Figure 4: (a,b) Convergence and execution time vs iterations; and (c) Convergence vs time against baselines on f-b segmentation.

N
o

ca
ch

e
M

=
1

N
o

ca
ch

e
M

=
4

C
ac

he
M

=
1

C
ac

he
M

=
4

Total iterations 1836 1015 4048 3687
Iterations from cache 0 0 3974 3622
Time (secs) 297 245 104 97

Table 1: DivMCuts with caching on f-b segmentation.

model has a parameter for each feature-label combination,
i.e., 2 parameters for each unary feature and 4 parameters
for each edge feature.

We dropped different subsets of the features and re-tested
the effect of M on convergence. The plots in Fig. 3a show
that as the dimensionality |w| of the problem increases,
higher values of M lead to greater (percental) iteration re-
ductions. This suggest we may expect greater computa-
tional savings on problems of higher dimensionality.

Value of additional constraints. In Fig. 3b, 3c we confirm
that the cutting-planes generated by DivMCuts do posses
marginal relevance throughout the training process. Specif-
ically, we add each of the M constraints sequentially to the
working-set. For every addition, we solve the intermediate
QP and show: 1) Fig. 3b, the violation of each constraint
just before it is added to the working-set; and 2) Fig. 3c, the
improvement in the objective after the QP is solved. We see
that the M constraints are in fact, i) violated, and ii) con-
tinue to improve the QP objective even in the presence of
the previous constraints. This behavior precisely explains
the observed reductions in training iterations.

Comparison against Baselines. In Fig. 4a we observe that
the Rand baseline produced an increase in the number of
iterations to convergence (w.r.t. MAP). MBest obtained
about half the decrease in the number of iterations obtained
by DivMCuts, but as shown in Fig. 4b, MBest is close to
three orders of magnitude slower than the other algorithms.
Fig. 4c compares the algorithms’ convergence vs time per-
formance.

Caching Constraints. We experimented with the caching
methodology implemented in SVM-Struct [10] using de-
fault parameters (e.g., cache size). When combining
caching with DivMCuts, multiple constraints are added
only when constructing a constraint from the cache fails.
We cache only most violated constraints to be consis-
tent with SVM-Struct. Table 1 shows results for a few
combinations of caching and M . For this application,
caching works very well and reduces the speedup due to
our method. However, caching has negligible effect on the
experiments in the next section.

4.2 Protein Side-Chain Prediction
Model and Dataset. Given a protein backbone structure,
the task here is to predict the amino acid side-chain con-
figurations. This problem has been traditionally formu-
lated as a pairwise MRF with node labels corresponding to
(discretized) side-chain configurations (rotamers). These
models include pairwise interactions between nearby side-
chains, and between side-chains and backbone. We use
the dataset of [6] which consists of 276 proteins (up to
700 residues long).2 The energy function is defined as
a weighted sum of eight known energy terms where the
weights are to be learned.

To speedup inference and feature computation we carried
both tasks in parallel (4 workers). We continue to report
total train time below – times reported are wall-clock times
and not CPU times. Note that parallelization has no effect
in the number of cutting-plane iterations and minimal ef-
fect on training time ratios (due to non-zero overhead). For
inference we used TRW-S [13].

Effect of M on convergence. In Fig. 5a, 5b and 5c we ob-
serve that the greatest speedup was obtained forM=4 with
an iteration reduction of 102−67

102 ≈ 34.31% and a running
time reduction of 14749−10585 secs

14749 secs ≈ 28.23%.

Interestingly, DivMCuts achieved greater time savings for

2Dataset available from: http://cyanover.fhcrc.org/recomb-
2007/

DivMCuts: Faster Training of Structural SVMs with Diverse M-Best Cutting-Planes

0 20 40 60 80 100 120

10
−3

10
−2

10
−1

10
0

10
1

γ

Iteration

γ : MAP
γ : DivMCuts(M=2, K=0.128)
γ : DivMCuts(M=4, K=0.128)
γ : DivMCuts(M=6, K=0.256)
γ : DivMCuts(M=8, K=0.256)
γ : DivMCuts(M=10, K=0.128)
γ : Rand(M=2, K=0.256)
γ : Rand(M=4, K=0.256)
γ : Rand(M=6, K=0.256)
γ : Rand(M=8, K=0.256)
γ : Rand(M=10, K=0.256)

(a) γ vs iters. @ multiple M .

14749−10585sec
14749sec
= 28.23%

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

x 104

T
im

e
(s
ec
s
×
10

4
)

Iteration

Train: MAP
Train: DivMCuts(M=2, K=0.128)
Train: DivMCuts(M=4, K=0.128)
Train: DivMCuts(M=6, K=0.256)
Train: DivMCuts(M=8, K=0.256)
Train: DivMCuts(M=10, K=0.128)
Train: Rand(M=2, K=0.256)
Train: Rand(M=4, K=0.256)
Train: Rand(M=6, K=0.256)
Train: Rand(M=8, K=0.256)
Train: Rand(M=10, K=0.256)

(b) Time vs iters. @ multiple M .

0 0.5 1 1.5 2 2.5
10

−4

10
−3

10
−2

10
−1

10
0

10
1

γ

Time (secs ×104)

γ : MAP
γ : DivMCuts(M=2, K=0.1280)
γ : DivMCuts(M=4, K=0.1280)
γ : DivMCuts(M=6, K=0.2560)
γ : DivMCuts(M=8, K=0.2560)
γ : DivMCuts(M=10, K=0.1280)
γ : Rand(M=2, K=0.2560)
γ : Rand(M=4, K=0.2560)
γ : Rand(M=6, K=0.2560)
γ : Rand(M=8, K=0.2560)
γ : Rand(M=10, K=0.2560)

(c) γ vs time @ multiple M .

Figure 5: (a,b) Convergence and execution time vs iterations; and (c) Convergence vs time on protein side-chain prediction (Rand
baseline also plotted).

N
o

ca
ch

e
M

=
1

N
o

ca
ch

e
M

=
4

C
ac

he
M

=
1

C
ac

he
M

=
4

Total iterations 102 67 120 76
Iterations from cache 0 0 4 2
Time (secs) 16299 11468 18399 12668

Table 2: DivMCuts with caching on protein side-chain prediction.

this application than for the previous one – especially con-
sidering a smaller reduction in the number of iterations.
The reason for this is that inference and feature compu-
tation are much more expensive here. This translates into
greater savings arising from dynamic inference and incre-
mental feature computation.

Comparison against Baselines. Here, we do not report
performance of the MBest baseline as it is prohibitively
expensive. The Rand baseline is at best useless and often
detrimental while DivMCuts always leads to iteration and
time reductions, Fig. 5a, 5b and 5c.

Caching Constraints. We ran caching experiments analo-
gous to those in the previous section. In this case, as shown
in Table 2, caching has negligible effect on training iter-
ations (i.e., very few constraints are constructed from the
cache). Hence, DivMCuts is able to provide essentially the
same benefit as when caching is not used. 3

5 Discussion and Conclusions
We investigated the effect of adding multiple highly vio-
lated constraints in the context of cutting-plane training of
Structural SVMs. We noted that significant improvements
in the convergence of the training algorithm are possible
if the added constraints are: 1) highly violated, 2) diverse,
and 3) efficiently computable. We presented an an efficient

3The time results for “No cache” in Table 2 differ from those
in Fig. 5b, 5c due to machine loading variations at the times the
experiments were conducted.

algorithm, DivMCuts, for generating such constraints and
showed experimentally that our method leads to significant
savings: > 60% reduction in the number of iterations and
∼28% reduction in training time. Moreover, our results
suggest that greater speedups are possible in applications
with higher feature dimensionality.

The idea of adding multiple violated inequalities in CP op-
timization of SSVMs was mentioned in passing in [21]. In
the operations research and mathematical programming lit-
erature, there is a line of work [8, 9, 27] analyzing the iter-
ation complexity when the oracle returns multiple violated
inequalities. However, this line of work assumes a general
multiple-violation oracle which may return the same con-
straint M times. Thus, the resulting bounds on run-time
are pessimistic and often increasing with M . Our setting is
different in that we are able to guarantee the constraints re-
turned are both highly violated and diverse. To our knowl-
edge, no bounds specific to this setting exist and providing
such bounds remains an interesting future direction.

Stochastic Subgradient (SSG) methods [19, 20] are pop-
ular because they achieve the same convergence rate of
CP training while requiring a single call to the separation-
oracle at every iteration. However, as noted in [10], CP
methods have some benefits over SSG: 1) SSG is very
sensitive to the choice of step-size rule. 2) While for CP
the theory provides a practically effective stopping crite-
rion based on duality gap, it is less clear when to stop pri-
mal SSG methods. Moreover, there are regimes (e.g., low
regularization) where CP outperforms SSG (e.g., Fig. 1
in [15]). Recently, [15] proposed a method that combines
the strengths of SSG and CP methods (i.e., same conver-
gence rate; single separation-oracle call per iteration; no
step-size selection; and duality gap guarantee). We believe
the ideas in this paper can be applied to this new online
algorithm and leave this as a direction for future work.

Acknowledgments: AGR was supported by the C2S2 Fo-
cus Center (under SRC’s Focus Center Research Program).

Abner Guzman-Rivera, Pushmeet Kohli, Dhruv Batra

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Susstrunk. SLIC Superpixels Compared to State-of-the-
art Superpixel Methods. PAMI, 34(11):2274–2281, 2012.
6

[2] A. Barbu and S.-C. Zhu. Generalizing Swendsen-Wang to
Sampling Arbitrary Posterior Probabilities. PAMI, 27:1239–
1253, August 2005. 3

[3] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. iCoseg:
Interactive Co-segmentation with Intelligent Scribble Guid-
ance. In CVPR, 2010. 5

[4] D. Batra, P. Yadollahpour, A. Guzman-Rivera, and
G. Shakhnarovich. Diverse M-Best Solutions in Markov
Random Fields. In ECCV, 2012. 1, 2, 3, 4

[5] Y. Boykov, O. Veksler, and R. Zabih. Efficient Approximate
Energy Minimization via Graph Cuts. PAMI, 20(12):1222–
1239, 2001. 6

[6] O. S.-F. Chen Yanover and Y. Weiss. Minimizing and Learn-
ing Energy Functions for Side-Chain Prediction. Journal of
Computational Biology, 15(7):899–911, 2008. 7

[7] M. Fromer and A. Globerson. An LP View of the M-best
MAP problem. In NIPS, 2009. 3

[8] J.-L. Goffin and J.-P. Vial. Multiple Cuts in the Analytic
Center Cutting Plane Method. SIAM J. on Optimization,
11(1):266–288, Jan. 2000. 8

[9] J.-L. Goffin and J.-P. Vial. Convex Nondifferentiable Opti-
mization: A Survey Focussed On The Analytic Center Cut-
ting Plane Method. Optimization Methods and Software,
17(5):805–867, 2002. 8

[10] T. Joachims, T. Finley, and C.-N. Yu. Cutting-Plane Training
of Structural SVMs. Machine Learning, 77(1):27–59, 2009.
1, 2, 3, 5, 7, 8

[11] J. E. Kelley Jr. The Cutting-Plane Method for Solving Con-
vex Programs. Journal of the Society for Industrial and Ap-
plied Mathematics, 8(4):pp. 703–712, 1960. 1

[12] P. Kohli and P. H. S. Torr. Effciently Solving Dynamic
Markov Random Fields Using Graph Cuts. In ICCV, pages
922–929, 2005. 4, 5

[13] V. Kolmogorov. Convergent Tree-Reweighted Message
Passing for Energy Minimization. PAMI, 28(10):1568–
1583, 2006. 7

[14] V. Kolmogorov and R. Zabih. What Energy Functions can
be Minimized via Graph Cuts? PAMI, 26(2):147–159, 2004.
6

[15] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher.
Block-Coordinate Frank-Wolfe Optimization for Structural
SVMs. In ICML, 2013. 8

[16] E. R. Natalia Flerova and R. Dechter. Bucket and mini-
bucket Schemes for M Best Solutions over Graphical Mod-
els. In IJCAI Workshop on Graph Structures for KRR, 2011.
3

[17] D. Nilsson. An efficient algorithm for finding the M
most probable configurations in probabilistic expert sys-
tems. Statistics and Computing, 8:159–173, 1998. 3

[18] J. Porway and S.-C. Zhu. C4: Exploring Multiple Solu-
tions in Graphical Models by Cluster Sampling. PAMI,
33(9):1713–1727, 2011. 3

[19] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. (Online)
Subgradient Methods for Structured Prediction. In AISTATS,
2007. 8

[20] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pe-
gasos: Primal Estimated sub-GrAdient SOlver for SVM.
Mathematical Programming, 127(1):3–30, 2011. 8

[21] M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs Using
Graph Cuts. In ECCV, 2008. 8

[22] D. Tarlow, D. Batra, P. Kohli, and V. Kolmogorov. Dynamic
Tree Block Coordinate Ascent. In ICML, 2011. 4

[23] B. Taskar, C. Guestrin, and D. Koller. Max-Margin Markov
Networks. In NIPS, 2003. 1

[24] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large Margin Methods for Structured and Interdependent
Output Variables. JMLR, 6:1453–1484, 2005. 1, 2

[25] Z. Tu and S.-C. Zhu. Image Segmentation by Data-Driven
Markov Chain Monte Carlo. PAMI, 24:657–673, May 2002.
3

[26] C. Yanover and Y. Weiss. Finding the M Most Probable
Configurations Using Loopy Belief Propagation. In NIPS,
2003. 3, 5

[27] Y. Ye. Complexity analysis of the analytic center cutting
plane method that uses multiple cuts. Math. Program.,
78(1):85–104, July 1997. 8

