
 1 

HIDDEN-ARTICULATOR MARKOV MODELS FOR SPEECH 

RECOGNITION 

 
Matthew Richardson, Jeff Bilmes and Chris Diorio 

 
University of Washington 

{ mattr@cs, bilmes@ee, diorio@cs} .washington.edu  
 
 
 
Correspondence: 
Matthew Richardson 
Department of Computer Science 
Box 352350 
University of Washington 
Seattle, WA 98195-2350 
U.S.A. 
 
mattr@cs.washington.edu 
(206)616-1842 
 



 2 

 
Number of pages: 28 + title page + this page 
Number of Tables: 10 + Appendix 
Number of Figures: 8 
 
Keywords: speech recognition, articulatory models, noise robustness, factorial HMM 
 
 
 
 
 



 3 

 

ABSTRACT 

 
Most existing automatic speech recognition systems today do not explicitly use knowledge about human 

speech production. We show that the incorporation of articulatory knowledge into these systems is a promising 

direction for speech recognition, with the potential for lower error rates and more robust performance. To this 

end, we introduce the Hidden-Articulator Markov Model (HAMM), a model which directly integrates 

articulatory information into speech recognition. 

The HAMM is an extension of the articulatory-feature model introduced by Erler in 1996. We extend the 

model by using diphone units, developing a new technique for model initialization, and constructing a novel 

articulatory feature mapping. We also introduce a method to decrease the number of parameters, making the 

HAMM comparable in size to standard HMMs. We demonstrate that the HAMM can reasonably predict the 

movement of articulators, which results in a decreased word error rate. The articulatory knowledge also proves 

useful in noisy acoustic conditions. When combined with a standard model, the HAMM reduces word error rate 

28-35% relative to the standard model alone. 

 

1 INTRODUCTION 

Hidden Markov Models (HMMs) are the most successful technique used in automatic speech-recognition 

(ASR) systems. At the hidden level, however, ASR systems most commonly represent only phonetic 

information about the underlying speech signal. Although there has been much success using this methodology, 

the approach does not explicitly incorporate knowledge of certain important aspects of human speech 

production. 

We know, for example, that speech is formed by the glottal excitement of a human vocal tract comprised of 

articulators, which shape and modify the sound in complex ways. These articulators, being part of a physical 

system, are limited by certain physical constraints, both statically and temporally.  Our hypothesis, for which we 

find support in this paper, is that we can improve ASR by using a statistical model with characteristics and 

constraints that are analogous to the true human articulatory system. 
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Explicitly incorporating articulatory information into an ASR system provides a number of potential 

advantages.  For example, an articulatory system should be better able to predict coarticulatory effects. This is 

because coarticulation is due to physical limitations and anticipatory and residual energy-saving shortcuts in 

articulator movement (Hardcastle 1999).  Furthermore, by modeling articulators explicitly, an ASR system can 

exploit the inherent asynchrony that exists among (quasi-dependent) articulatory features. This, in turn, might 

more accurately model the production of speech (Deng 1994). Although speech production does not necessarily 

have a strong influence on speech recognition, our belief is that exploring articulatory-based ASR in tandem 

with other statistical methodologies will ultimately lead to better ASR technology.   

Finally, articulatory models allow using articulatory states in multiple contexts. Most speech recognition 

systems are based on phoneme recognition, which allows them to share phoneme training across multiple 

contexts (i.e. the same phone appearing in different words). Similarly, the articulatory model is even finer-

grained than phonemes, allowing the same articulatory state to be used across multiple contexts (i.e. the same 

mouth position being used as part of the production of two different phonemes). 

There has been much interest in incorporating articulatory knowledge into speech recognition. In (Kirchhoff 

1998) Kirchhoff demonstrates a system that uses artificial neural networks to estimate articulatory features from 

acoustic features. When used in combination with an acoustic-based HMM, the system achieves a lower word 

error rate in both clean and noisy speech. Frankel (Frankel 2000) (Frankel 2001) also uses neural networks to 

estimate articulatory motion, which is then incorporated into a speech recognition system. Some early work on 

incorporating articulatory knowledge can be found in (Schmidbauer 1989), (Blomberg 1991), (Elenius 1992), 

and (Eide 1993). Other cases of articulatory based speech recognition are included in the following: (Blackburn 

1995), (Deng 1997b), (Rose 1997), and (Picone, 1999). 

One well-known difficulty with articulatory based systems is the inverse mapping problem, which is that many 

different articulatory configurations can produce an identical acoustic realization; this difficulty is commonly 

referred to as the "many-to-one" problem. Although this limits its effectiveness, inverse mapping may still be 

used to provide additional constraints to an ASR system, increasing the system’s accuracy. A detailed 

discussion of the inverse mapping problem can be found in (Bailly 1992). 
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We incorporate articulatory information into an ASR system in a number of ways. We extend the articulatory 

feature model introduced by Erler (Erler 1996) by using diphone units, developing a new technique for model 

initialization, and constructing a novel articulatory feature mapping. We provide the model with articulatory 

information in the form of mappings from phonemes to articulatory configurations, and in static and temporal 

constraints designed to inform the system about the limitations of the human vocal apparatus. The resulting 

model yields a reduction in word error rate and estimates articulator motion. 

We organize the rest of the paper as follows: Section 2 presents our model in detail, describing the phonetic 

mapping and constraints we used. Section 3 describes how we initialize and train the model.  

Section 4 presents experimental results showing that, when the model uses articulatory knowledge, 

improvements in speech recognition performance are obtained. We also show in Section 4 that the articulatory 

sequences estimated by the model correlate well with real-world articulatory sequences. 

2 THE MODEL 

To incorporate articulatory knowledge into speech recognition, we use a Hidden-Articulator Markov Model 

(HAMM). A HAMM is simply an HMM in which each state represents an articulatory configuration.  The state 

transition matrix is governed by constraints on articulator motion. Therefore, this model makes the assumption 

that the probability distribution of articulatory features is determined by the previous articulatory configuration, 

and is independent of any earlier articulatory configuration. 

The Hidden-Articulator Markov Model (HAMM) is based on the articulatory feature model presented in (Erler 

1996). We introduced the HAMM in (Richardson 2000a) and extended it in (Richardson 2000b). In a HAMM, 

each articulator, i, can be in one of  Mi positions. An articulatory configuration is an N-element vector 

C={ c1,c2,…,cN} , where ci is an integer 0≤ci<Mi and N is the number of articulators in the model. 

We can cast the HAMM as a factorial HMM (Saul 1999), with additional dependencies between separate 

Markov chains (see Figure 1). The dependency from one time slice to another is governed by the dynamic 

constraints and the dependencies within a time slice are governed by the static constraints (see Section 2.2). 

Factorial HMMs have been applied to speech recognition (Logan 1998) but without the use of an articulatory 

feature space. The HAMM is an instance of a more general family of models called dynamic Bayesian networks 
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(Ghahramani 98), which, in turn, are a specific case of graphical models (Lauritzen 96). (Zweig 98) is an 

excellent example of using dynamic Bayesian networks for speech recognition that shows how they can be 

modified to allow the addition of information such as articulatory context. There are standard algorithms for 

inference and training on graphical models, but we chose to implement the HAMM as an HMM with a large 

state space which is the Cartesian product of the components; each state is associated with an articulatory 

configuration. This approach allows us to use the comparatively efficient standard HMM algorithms.  

There are many potential advantages of a HAMM over a traditional HMM for speech recognition. The 

HAMM has prior knowledge about speech production, incorporated via its state space, transition matrices, and 

phoneme-to-articulator mappings. By using a representation that has a physical basis, we can more easily 

incorporate knowledge such as co-articulation effects. For example, the production of the English phoneme /k/ 

depends on the tongue position of the subsequent vowel; the tongue is further forward when followed by a front 

vowel (“key”), and is further back when followed by a back vowel (“caw”) (Hardcastle 1999). Our model 

allows explicit representation of this knowledge, in this case by adjusting the forward/backward position of the 

tongue when mapping the phoneme /k/ into the articulatory space, based on the placement of the subsequent 

vowel. We have not yet incorporated coarticulation knowledge into our model, but this shows promise for future 

work. 

The following subsections provide more detail about how we construct the HAMM, and how we use mappings 

and constraints to provide the model with articulatory knowledge.  

 
2.1 Phoneme Mapping 

To use the HAMM, we must first define how a spoken word traverses through the articulatory state space. We 

consider a word to be defined by a sequence of articulator targets; in producing the word, the mouth traces out a 

continuous path through the articulatory state space, reaching each target in sequence. To map words to a 

sequence of articulator configuration targets, we make the simplifying assumption that we can model words as a 

sequence of phonemes, each of which is mapped to one or more articulatory configurations. 

Using Edwards (Edwards 1997) as a guide to phonetics and speech production, we devised an articulatory 

feature space that is described by eight features – the position of the jaw, the separation of the lips, positioning 
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of the tongue, etc… (see  Figure 2). Each feature can be in one of a number of discrete positions. For example, 

in our model we have quantized the separation of the lips (“Lip Sep”) into four possible positions, ranging from 

“closed”  to “wide apart” . We manually examined each phoneme’s articulatory characteristics to determine the 

best mapping into our articulatory feature space. This mapping is given in the Appendix.  

For some phonemes, an articulator may be in one of multiple configurations. In such a case, the phoneme is 

mapped into a vector of articulator ranges; each articulator can be in any of the positions specified by the range. 

For example, when pronouncing the phoneme /h/, we allow a lip separation of either “apart”  or “wide apart” , 

but do not allow the lips to be “closed”  or “slightly apart” .  

Some phonemes require a specification of articulator motion rather than static positioning.  This occurs with 

the stops (/t/, /b/, etc..) and diphthongs (such as the /ay/ in “bite”).  In these cases, a phoneme is produced by the 

movement from one articulatory state to another. Thus, we constructed the model to allow phonemes to be 

mapped to a sequence of articulatory configurations. 

Our model calculates on the state space formed by the Cartesian product of the articulatory state space (hence, 

each state in the model is a particular articulatory configuration). For the features we chose, this state space is 

enormous (over 25,000 states), resulting in slow runtimes and the potential for severe under-training. Thus, we 

reduce this space a prori by imposing both static and dynamic constraints on the set of possible hidden 

articulatory configurations; static constraints eliminate unlikely articulatory configurations, and dynamic 

constraints restrict the transitions between states. These are described further in the next section. 

 
2.2 Constraints 

 
The static constraints limit the possible set of articulatory configurations. They do this by disallowing 

unrealistic combinations of articulatory features. These constraints are described using the following rules: 

1. If the lips are widely separated then don't allow rounded or wide lip width. 

2. If the lips are closed then don't allow rounded or wide lip width. 

3. If the jaw is lowered, don't allow the lips to be closed or almost closed. 

4. If the tongue tip is near or is touching the alveolar ridge, then the tongue body must be mid-high or 

high, and the tongue body cannot be back or slightly back. 
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5. If the velic aperture is open then voicing must be on. 

6. If the velic aperture is open then tongue cannot be forward or slightly forward. 

7. The velic aperture may only be open in a given articulatory configuration X if there is a transition 

directly from X to a nasal phoneme articulatory configuration. 

 

Some of these constraints, such as (1), (3), and (4), are physical constraints, imposed by the limitations of the 

articulation system. Other constraints, such as (2), disallow states that are physically possible but would not 

normally be used while speaking naturally in American English. This set of static constraints reduces the 

number of states in the HAMM from 25,600 to 6,676. 

We also impose dynamic constraints on the model to prevent physically impossible articulatory movements. 

We only allow the model to contain a transition from some configuration C to some configuration D if ∀i: –1 ≤ 

di– ci ≤ 1, where ci is the (integer) position of articulator i in the articulatory configuration C. This imposes a 

continuity and maximum velocity constraint on the articulators whereby in one time step each articulator may 

move by at most one position1. 

 
2.3 Diphones 

The basic unit in the HAMM is a diphone. To construct a diphone, we list the sequence of articulatory targets 

from the last target of the first phoneme to the last target of the second phoneme. In this way, a chain of 

diphones will properly sequence through each phonetic target (see Figure 3a). The states between the targets are 

filled in and allowable transitions are added. 

We constrain the model so that the only allowable state vectors between any two target phoneme vectors, P 

and Q, are those C which satisfy: 

 ∀i: min({ pi, qi} ) ≤ ci ≤ max({ pi, qi} )2 (1) 

Thus, in traversing from one target articulatory configuration to another, the model may only pass through 

states which fall “between” those target vectors. 

 For example, suppose for N=2 we are constructing a graph from phoneme P={  [3 2] }  to Q={  [1 1] → [0 2] } . 

Then the resulting graph (assuming none of these states are removed by static constraints) is shown in Figure 
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3b. Note that we only allow transitions which move closer to the next target state (we also allow self-transitions, 

which are not shown in the figure). Also, because an articulation target could consist of a range of positions for 

some articulator, we take additional steps to prevent cycles in the transition graph by requiring that at least one 

of the articulators that changed position was originally outside of its target range. 

Notice that the HAMM allows for asynchrony, whereby one articulator may move with or without other 

articulators moving, thus more accurately representing speech production. In addition, many different diphones 

may contain the same intermediate articulatory configuration. Since our acoustic probability distributions are 

dependent on the articulatory configuration, not the diphone using it, having the same intermediate 

configurations leads to a large amount of sharing between diphones. 

3 TRAINING 

We train our HAMM using the Baum-Welch algorithm. We construct an HMM for each diphone using the 

static and dynamic constraints from Section 2.2. We construct words by concatenating diphone models. For 

instance, the model for the word “meatball”  is the concatenation of the diphone models /m/-/i/, /i/-/t/, /t/-/b/, /b/-

/a/, /a/-/l/. Thus, the model learns transition probabilities on per-diphone basis. 

To reduce the model size, we removed states that, during training, had very low state-occupation probabilities. 

Training reduced the number of parameters in the HAMM from 2 million to 522 thousand. 

 
3.1 Initial Model Construction 

Training requires an initial model, which is iteratively improved until it converges to a local optimum. The 

quality of the initial model can have a large effect on the performance of the trained model, and on its 

convergence. The states (articulatory configurations) in our model fall into two categories: (1) states which 

correspond to a phoneme, and (2) all other allowable states. There is no single obviously best way to initialize 

the parameters for states in category (2). We chose a simple interpolation method based on an assumption about 

the geometry of the articulatory states. We felt that this would be sufficient to produce sensible starting values, 

which is crucial for EM. 

 We used segmental k-means to determine an initial setting for the Gaussian parameters for states which fell 

into category (1) above. Each category (2) state was initialized by a weighted interpolation of the category (1) 
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states. The weighting was given by the inverse Euclidean distance between the state being initialized, and the 

states from which we were interpolating (see Figure 4 for a diagram of this for a fictitious two-articulator 

system). 

In equation (2) we show the desired probability distribution for the state being initialized. S is the set of all 

possible category (1) states, and wi are inversely proportional to the Euclidean distance in our N-dimensional 

discrete articulatory feature space (where N=8 in our case). 
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For category (2) states, we used a diagonal Gaussian with these means and variances. In the multi-component 

case, where each state is a mixture of Gaussian components, we do the same, using a random assignment of 

components from the states being interpolated to the component being initialized. 

State transition probabilities were initially set to 0.9 for self-loops, with the remaining 0.1 probability evenly 

distributed among all outgoing transitions. 

 
3.2 Untrained Diphones 

Frequently, in speech recognition systems, untrained diphones (diphones which appear in the test set but not in 

the training set) are mapped to trained diphones using decision-tree based state tying (Young 1996). Rather than 

implementing this mapping, we depended on the shared nature of the articulatory models to predict untrained 

diphones. Different diphones represent different trajectories in a shared articulatory state space. Thus, an 

untrained diphone may still be considered trained as it traverses through articulatory states which have been 

trained as portions of other diphones. The only untrained portions of such a diphone are the state transition 

probabilities, and states which did not appear in any trained diphone. The values of state transition probabilities 

are known to be of less importance to word error rate than the means and variances in Gaussian mixture HMM 

systems, so we left them fixed to their initial values. States which did not appear in any trained diphone were 

removed from the model. In Figure 5, we show this diagrammatically. Suppose diphones B-E and M-A are 
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trained. It is apparent that diphone M-E, although untrained, primarily uses states which have previously been 

trained (light gray circles). If there were no other trained diphones, then four states (dark gray circles) would be 

removed from the M-E diphone. Note that this can result in oddly shaped diphones, with missing “corners”  or 

narrow transition graphs. An alternative would be to initialize the untrained states with the interpolation method 

described in Section 3.1. 

We can see that the use of the articulatory knowledge allows us to construct models for diphones which did 

not exist in the training set. Though we chose to remove untrained states from the diphones, we could 

alternatively have constructed sensible Gaussian probability distributions for them using the interpolation 

method describe earlier. This is an example of why it is that articulatory models require less data, since 

traditional models would require the training data to contain all diphones which appear in the test set. 

As an analogy, consider phoneme-based HMMs and word-based HMMs. To train a word-based HMM 

requires a training set in which every possible word is uttered at least once (and hopefully multiple times). It is 

nearly impossible to get such data, so ASR systems instead use phoneme based models. With a phoneme based 

model, the training set needs only to contain at least a few instances of each phoneme, a much simpler task. 

Phoneme-based speech recognition systems are able to recognize words which never appeared in the training 

set, a task that would be impossible for word-based recognizers. 

In traditional phoneme-based systems, a diphone may only be modeled if it exists in the training set. By using 

a finer-grained model, the HAMM is able to model diphones which were not encountered in the training data. 

As a phoneme-based model is able to construct unseen words out of trained phonemes, the HAMM is able to 

construct unseen diphones out of trained articulatory states. 

 

4 EXPERIMENTS AND RESULTS 

We obtained speech recognition results using PHONEBOOK, a large-vocabulary, phonetically-rich, isolated-

word, telephone-speech database (Pitrelli 1995). All data was represented using 12 MFCCs plus c0 and deltas 

resulting in a 26 element feature vector sampled every 10ms. In the HAMM, each state used a mixture of two 
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diagonal covariance Gaussians. While it is true that ASR systems typically use more mixtures, we chose to use 

two mixtures so that the number of parameters was somewhat more comparable to our phonetic HMM baseline. 

Additionally, we generated two baseline models, 3state and 4state, which were standard left to right, diagonal 

Gaussian HMMs with 3 and 4 states per phoneme and with 16 and 24 mixtures per state respectively. 

The training, development, and test sets were as defined in (Dupont 1997), and consisted of approximately 

20000, 7300, and 6600, utterances, respectively. Test words did not occur in the training vocabulary, so test 

word models were constructed using diphones learned during training. Training was considered complete when 

the training data log-likelihood difference between successive iterations fell below 0.2%. 

 
4.1 Compar ison with Random 

To verify that the HAMM uses the articulatory knowledge to its advantage, we compared its performance to 

that of a HAMM with no articulatory knowledge. To construct such a model, we used a random mapping of 

phonemes to articulatory features. To ensure a fair comparison, we used the same feature space, static 

constraints, and dynamic constraints that were introduced in Section 2. 

We used two methods for producing random mappings. In the first, referred to as arbitrary, we simply 

selected a random value within the given feature range for all features across all phonemes. In the second, 

referred to as permutation, we randomly rearranged the original mapping. In other words, each phoneme was 

mapped in the same way as some randomly selected phoneme in the original mapping without duplication. 

Table 1 demonstrates the difference between the random mappings. 

The arbitrary mapping was “more”  random since it was drawn from a uniformly distributed state space. The 

permutation method produced a mapping that was still fairly random, yet retained the same distribution over 

features as the original mapping. For instance, in the original mapping, the velic aperture was open for only 

three phonemes. In a permutation mapping, this would still be the case, while in an arbitrary mapping, it would 

be open for approximately half of the phonemes. 

Table 2 shows the results of this experiment on the test set. The arbitrary and permutation mappings both 

resulted in significantly worse (p < 0.01 using two-tailed z-test) word error rates than our knowledge-based 

original mapping. Furthermore, the arbitrary mapping required significantly more parameters3. From these 
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results, we conclude that the articulatory knowledge does indeed contribute to the better performance of the 

HAMM. 

 

4.2 Model Combination 

The HAMM performs worse than the 3state and 4state models (see Table 3). We hypothesized, however, that 

since it is based on articulatory knowledge, the HAMM would make different mistakes than the standard 

models. Therefore, there might be a benefit to combining the HAMM with the other models. In certain cases, 

the success of combining two systems has been shown to rely on those two systems making different mistakes. 

There are a variety of techniques for combining models. One simple way is by a weighted sum of the models’  

log-likelihoods. The weighting of each model is based on the prior confidence in its accuracy. Under certain 

modeling assumptions,  if the errors are independent this can result in a higher accuracy (Bishop 1995). We used 

this technique for our model combination experiments. 

We measured the performance of the HAMM when combined with the 4state model in this way. We used a 

weight of 5.0 for the 4state model’s likelihoods, and a weight of 1.0 for the HAMM’s, which were the optimal 

weights based on the development set. Figure 6 shows the results of this combination on the test set across a 

variety of likelihood weights.  

We verified that the log-likelihoods for the two models vary over the same range of values. This implies that 

the reason that the performance of the combined model is best when 4state is given a higher weight than the 

HAMM is likely due to the fact that the 4state model alone has a lower word error rate (WER) than the HAMM 

alone. For comparison purposes, we also measured the performance of a combination of the 4state and 3state 

models, whose likelihoods were both given a weight of 1.0 (also the optimal weights based on the development 

set). 

In Table 3 we show the results of performing model combination. The HAMM performed significantly worse 

than the 4state model, but the combination of the two performed significantly better (12-22% relative decrease 

in WER versus 4state alone), but at the expense of many more parameters. Also note that combining the 3state 

model with the 4state model had much less effect on the WER.  
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To understand these results, we analyzed the mistakes made by each system. On the 600 word test set, the 

HAMM chose the correct hypothesis 47% of the times that the 4state model made a mistake. The two models 

made the same mistake only 15% of the times that the 4state model made a mistake. More details about the 

differences in mistakes between the two models can be found in Table 4. The probable reason that the 

combination of the HAMM and 4state model does so well is that they make different mistakes, as our analysis 

has shown.  

 
4.3 Reducing the number of Parameters – State Vanishing Ratio 

One disadvantage of the HAMM is its large state space and therefore number of parameters. We thus removed 

states during training that had low state occupation probabilities. During each training iteration, a state i was 

removed from a diphone if equation (4) held for that state. 

 �
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N

j

j
i N1 τ
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γ    where   ( )�=
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ii tγγ    and   )|()( XiQpt ti ==γ  (4) 

where N is the number of states in the diphone, i represents a state, Qt is the hidden state random variable, and 

X is the entire observation set. τ is what we call the state vanishing ratio (SVR). When SVR is very high, few 

states are removed; a low SVR results in the removal of many states. When a state was removed, any transitions 

to it were proportionately re-directed to all of its direct successors. 

Models were trained initially using a large SVR, τ=1020. After training converged, the SVR was decreased and 

models were re-trained until convergence. As a final step, states were removed if they existed only in untrained 

diphones.  

Figure 7 shows the effect of various SVRs on the number of model parameters, as well as on the word error 

rates. As expected, when SVR decreases so do the number of parameters, but somewhat surprisingly we also 

found a WER improvement. After determining the ideal SVR on the development set (τ =105) , we tested the 

pruned model on the test set. As Table 5 shows, the pruned model has 51% fewer parameters, but shows a 16-

24% relative WER reduction. Later experiments use this reduced model.  

We verified that the pruned HAMM still outperforms a random model after both the HAMM and the random 

models have been pruned using the SVR technique. The results are summarized in Table 5. Each of the models 
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(one HAMM, five random) was pruned with a SVR of 102, 103, 105, 1010, and 1020. The SVR which achieved 

the lowest WER on the 75 and 150 word development sets was then used for the test set. The HAMM 

significantly out-performed the random models (p<0.01). The HAMM also had significantly fewer parameters 

than the random models (p<0.01). 

 
4.4 Model Combination on Reduced model 

We gave the HAMM model a weight of 1, and found the optimal 4state model weight (searching in 

increments of 0.5) based on the development set to be 2.5. On the test set, the combined model achieved a 28-

35% WER improvement over the 4state model alone (see Table 5). This demonstrates that a HAMM can give 

practical gains when used in combination with a standard model. 

 
4.5 Noise 

A potential advantage of articulatory based HMMs is robustness to noise. Table 6 compares the performance 

of the models in a noisy environment4 (the models were trained, as earlier, with clean speech; only the test 

utterances had noise added to them). We used stationary white Gaussian noise at 15dB SNR. Interestingly, the 

HAMM and the 4state model achieved comparable WER in this case (recall that in the noise-free experiments, 

the HAMM performed significantly worse than the 4state model). We believe the articulatory knowledge assists 

the HAMM by being more attuned to the speech-like information contained in the signals. Again, we combined 

the two models, using a weight of 1 for both (the optimum on the development set), and obtained a 23-26% 

relative WER improvement over the 4state model alone. 

 
4.6 Diphone Models 

Because we did not implement decision tree state tying (see Section 4.3), it was necessary to demonstrate that 

such a procedure would be unlikely to have changed our results much. Also, the HAMM is diphone-based and 

the 4state model is monophone-based; as a result, our experiments may exhibit a bias against the 4state model 

due to the fact that the HAMM has the opportunity to learn context-dependent models while the 4state model 

does not. In what follows, we attempted to normalize for both of these issues, in order to ensure that our 

experiments were fair to both 4state and the HAMM. 
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First, we built diphone 4state models, called 4state-d1, and 4state-d2 with 1 and 2 diagonal Gaussian 

components per state, respectively. We also constructed a new reduced test set which is the full test set minus 

any words which contain at least one diphone that appeared in the training set less than 10 times. On average, 

the reduced test set was 12% smaller than the full test set, both in utterances and lexicon size. The reduced set 

was necessary for testing the 4state-d models. By comparing the results between 4state on the full and reduced 

test sets, we found that the reduced test set is simpler, in that the models have less errors on it than on the full 

test set (See Table 7). We have verified that the words which were removed were no greater than average in 

having errors, and thus the error reduction in the reduced test set was due to the reduction in lexicon size. 

Note that the relative WER increase in going from the reduced to the full test set is lower for the HAMM than 

it is for the 4state monophone model (13% increase vs. 24% increase, on average), which implies the HAMM 

does not have a disproportionately larger number of errors in the words containing untrained diphones. This 

suggests that the HAMM’s articulatory-based methods do a reasonable job at estimating parameters for unseen 

diphones. Also note that the performance of the 4state-d models is similar to the 4state model. This suggests that 

we have not been unfair in our comparison of the HAMM to the 4state model, even though the 4state model is 

only a monophone model while the HAMM is a diphone model. 

It is also interesting since it appears that monophone phone models are not improved upon with diphone 

models, as is typically the case. It appears that monophone HMM models might be sufficient for this database. 

 
4.7 Real Ar ticulatory Data 

A Viterbi path using our HAMM is an estimation of articulatory feature values throughout an utterance. To 

show that our model reasonably predicts articulator movements, we compared the Viterbi path with recordings 

of articulator motion. The articulator data comes from the MOCHA (Wrench 2000) database, which contains 

both speech and the measured time-aligned articulator trajectories. Data for two speakers, a female (fsew0) and 

a male (msak0), is currently available. 

The MOCHA database contains recorded trajectories (in both X and Y dimensions) for 9 Electromagnetic 

Articulograph (EMA) coils attached to various parts of the mouth of the speaker. Note that in the MOCHA 
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database, positive x-direction is toward the back of the vocal tract, away from the teeth, and positive y-direction 

is up, toward the roof of the mouth. 

The formulae for converting from the X-Y space of the MOCHA data to our articulator feature space are given 

in Table 8. Table 9 explains the MOCHA abbreviations. For instance, to calculate the Jaw Separation, we took 

the difference between the upper incisor Y position (UI_Y) and the lower incisor Y position (LI_Y). This gave 

us a continuous value, which is at a minimum when the jaw is closed and at a maximum when the jaw is fully 

open. This corresponds to the Jaw Separation feature, which has a value of 0 when the jaw is closed and 3 when 

the jaw is open. Voicing was determined by measuring the c0 energy in the laryngograph recordings which are 

also part of the database. 

Using the HAMM, we calculated the optimal Viterbi path through the articulatory state space for the phrases 

in the MOCHA database, and then compared the estimated articulatory feature values with the actual measured 

feature values  (after they had been converted as described above) using a correlation coefficient (See Table 10). 

All values greater than 0.01 are statistically significant (p<0.01). As can be seen, the diagonal entries tend to 

have the highest correlation. Table 10 also presents the correlation of the measured MOCHA features with 

themselves. This table demonstrates which correlations between features are expected, due to the physical 

behavior of the articulators. For instance, the strong negative correlation between the estimated jaw opening 

parameter with the measured lowness of the tongue is normal, as it also occurs within the measured data. The 

estimated and measured feature correlations generally agree. 

There are a multitude of reasons why these correlations are not higher. First, the MOCHA data is recorded at 

16kHz but PHONEBOOK is telephone-quality (8Khz, µ-law encoding). Second, our model was trained using 

isolated word speech but MOCHA is continuous speech. Third, our quantization of articulatory features as 

represented in the hidden state space is not necessarily linear, but is assumed to be by the correlation coefficient 

calculation. Also, MOCHA contains British English whereas PHONEBOOK contains only American utterances. 

Nevertheless, the correlations indicate that the HAMM is indeed representing articulatory information, and that 

the Baum-Welch algorithm has not re-assigned the state meanings during training.  
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4.8 Viterbi Path Through The Articulatory State Space 

A Viterbi path decoding using our HAMM results in an estimation of articulatory feature values for an 

utterance. In Figure 8, we show a comparison of the spectrogram and the HAMM’s automatically estimated 

articulatory features for the word “accumulation” . 

As can be seen, it is difficult to precisely compare the two figures. One feature which is easy to see in the 

spectrogram is voicing (feature 8), which seems to align very well with the HAMM’s voicing feature. Another 

positive item to note is that the states evolve somewhat asynchronously, which is what we expect to find if the 

HAMM is indeed modeling the articulator movements (Deng 1994b). Other work on modeling the 

asynchronous evolution of articulators can be found in (Deng 1994a), (Deng 1997a), and (Deng 1998). 

Recall that the mapping from phonemes to articulatory configurations used in these experiments was manually 

derived. We believe a data-driven technique for determining the articulatory mapping would provide better 

results. To this end, we used the Viterbi path, which allowed us to determine which states were most used by a 

particular phoneme. We generated a new mapping from phonemes to articulatory configurations by mapping 

each phoneme to the most common articulatory configuration(s) for it in the Viterbi paths across all training 

utterances. Theoretically, one could iterate this process indefinitely, using the model to estimate phonetic 

mappings, and using the resulting phonetic mappings to create a new model. There are many difficulties in 

doing this properly. For instance, some phonemes map to multiple configurations, or a sequence of 

configurations, both of which are lost when choosing only the most common configuration for the new 

mapping. We tried to solve the first problem by considering when the most and second-most common 

articulatory configurations for a phoneme occurred with similar frequency. In this case, we mapped the 

phoneme to a range which covered both configurations. For the second problem, we used the original mapping 

to determine which phonemes are diphthongs, and mapped these phonemes to a sequence of two articulatory 

configurations by dividing the Viterbi paths in half and finding a mapping for each. Empirically, we found that 

this data driven method for automatically mapping phonemes to articulatory configurations resulted in minor 

improvement in one iteration, followed by degraded performance in future iterations. Although our results in 

this area were not promising, we believe it may be a useful direction for future research. 
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5 DISCUSSION 

In this work, we have presented the hidden articulatory Markov model as an alternative or companion to 

standard phone-based HMM models for speech recognition. We have found that either in noisy conditions, or 

when used in tandem with a traditional HMM, a hidden articulatory model can yield improved WER results. We 

have also shown that the HAMM is able to reasonably estimate articulator motion from speech.  

There are a number of avenues to improve this work. In the future, we plan to add more articulatory 

knowledge, with rules for phoneme modification that arise as a result of physical limitations and shortcuts in 

speech production, as was done in (Erler 1996) (for example, vowel nasalization). Such rules may help speech 

recognition systems in the presence of strong coarticulation, such as in conversational speech. 

While this work focused on diphone modeling, we would like to verify that the results apply for more context-

dependent models as well. Diphone modeling limits the context dependency which the HAMM is able to model. 

This limitation can be circumvented by replacing the simple diphones in the HAMM with context-dependent 

diphones, in which each endpoint of the diphone is context-dependent (e.g. a triphone). 

 We would also like to use the MOCHA database in the training process. We believe it could be used to 

improve model initialization, determine better articulatory feature mappings, and find more realistic constraints 

on the articulator dynamics. We have done some preliminary work in using a combination of the MOCHA data 

and state interpolation (as introduced in Section 3.1) to create a better initial model. This work has been 

unsuccessful to date, which we believe is partially due to the mismatch between MOCHA and PHONEBOOK, and 

partially due to the difficulty in accurately quantizing the continuous-valued features given in MOCHA into 

meaningful discrete-valued features as required by the HAMM. 

One remaining question is why has the use of articulatory information alone, without the use of phonetic 

information, neither helped to improve WER nor has decreased the number of parameters. We believe that it is 

because it is important to model the distinctive articulatory attributes in each word, and to structure the model 

discriminatively (Bilmes 2000). In the future, we plan to produce structurally discriminative HAMMs, both in 

the hidden level, and at the observation level, in what could be called a Buried Articulatory Markov Model 

(BAMM) (Bilmes 1999). 
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We have presented results demonstrating the practical usefulness of a HAMM. We accomplished a reduction 

in model size by 51%, while achieving a reduction in WER of 16-24%. By combining with a standard HMM 

model, we accomplish a 28-35% WER reduction relative to the HMM model alone, resulting in the lowest WER 

for PHONEBOOK that we are aware of, other than the recent work by Livescu (Livescu 2001). In the presence of 

noise, we improved on recognition over a standard HMM by 23-26%. 
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Footnotes: 
 
(1) Each time step is one frame of speech, 10ms in our experiments 
 
(2) Recall, pa or qa may be a range of values, see Section 2.1. 
 
(3) The arbitrary model begins with more parameters as well. In the arbitrary mapping, the beginning and ending phones 

of a diphone are more likely to contain different values for each feature since the entropy of each feature is higher than in 
the original or permuted mappings. This results in larger diphone models. Many of these states, however, were not removed 
by the state elimination algorithm, implying that they were being used by the model. 

 
(4) Note that because PHONEBOOK is telephone quality speech, it is already somewhat noisy, so even the clean-speech 

case isn’ t really clean. 
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Figure 2: Articulatory feature space. 

Figure 1: HAMM cast as a factorial HMM 
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Figure 3a: (upper) A diphone model is a sequence of articulator 
configuration targets, with asynchronous articulatory movement 
in between. 
Figure 3b: (lower) Example HMM transition graph for a 
diphone. Note, each state also has a transition back to itself, 
which was omitted for clarity. 

/i/

/a/ 

/t/ 

Figure 4: Sample state initialization. The shaded circle is a 
state being initialized. It is interpolated from states which are 
mapped to directly by a phoneme. The width of the arrow 
represents the weight given to each factor in the interpolation, 
which is proportional to the inverse Euclidean distance between 
them. 
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Figure 5: Demonstrates the shared nature of states 
(circles) across trained diphones /B/-/E/ and /M/-/A/ 
(boxes) and untrained diphone /M/-/E/ (grey circles). 
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from the model. 
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Figure 8: HAMM Viterbi path decoding for the word “accumulation.”  The lower half of the figure is a 
spectrogram of the speech. The upper half shows the estimated articulatory configurations over time (note: 
features are numbered 1-8 with 1=Jaw and 8=Voicing). The black vertical lines denote the estimated diphone 
boundaries. 
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Lex. Size 75 150 300 600 params 
original 3.23% 4.67% 6.69% 9.03% 522k 
arbitrary 3.72 ± 0.08% 5.18 ± 0.06% 7.19 ± 0.20% 9.81 ± 0.22% 661k ± 10k 

permutation 4.76 ± 0.24% 6.77 ± 0.40% 9.11 ± 0.43% 12.35 ± 0.35% 462k ± 13k 

Table 2: Word Error Rate comparison of original phone mapping versus random mappings for various 
lexicon sizes. Random model results are given as mean ± standard error (we tested 5 arbitrary models and 2 
permutation models). The original mapping is significantly better than either of the random mappings. 
(Note that the number of parameters varies due to pruning). 

Lexicon Size 75 150 300 600 params 
HAMM 3.23% 4.67% 6.69% 9.03% 522k 
3state 1.88% 2.91% 4.20% 6.14% 105k 
4state 1.45% 2.79% 4.04% 5.76% 203k 
4state+3state 1.42% 2.49% 3.71% 5.46% 308k 
4state+HAMM 1.27% 2.18% 3.29% 4.56% 725k 

Table 3: Word Error Rate comparison showing the advantage of combining models. The best combination is the 
standard 4state HMM with the HAMM. 

Normal Permutation Arbitrary  
Phone Jaw Nasal Jaw Nasal Jaw Nasal 

a 0 1 1 0 0 0 
b 2 0 0 1 1 1 
c 1 0 0 0 2 1 
d 0 0 2 0 1 0 

Table 1: Sample phoneme mapping, highlighting the 
difference between permutation and arbitrary random 
mappings. Permutation is a reordering of the rows, while 
arbitrary is purely random. Notice how the permutation 
mapping retains the distribution of values for a given feature. 

HAMM 4state Occurrences 
correct correct 5825 
correct wrong 177 
wrong correct 393 
wrong wrong (same) 57 
wrong wrong (different) 146 

total 6598 

Table 4: The HAMM and 4state models make different 
mistakes on the 600 word task, making model 
combination likely to be beneficial. 
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Model 75 150 300 600 params 

unpruned HAMM 3.23% 4.67% 6.69% 9.03% 520k 
pruned HAMM 2.46% 3.77% 5.47% 7.56% 255k 
pruned random models 3.18% ± 0.08% 4.48% ± 0.11% 6.53% ± 0.15% 8.83% ± 0.17% 388k ± 27k 
4state 1.45% 2.79% 4.04% 5.76% 203k 
pruned HAMM + 4state 0.99% 1.80% 2.79% 4.17% 458k 

Table 5: WER Results on the test set for various lexicon sizes. Random model results are given as mean ± standard error 
(over 5 models). The pruned HAMM does better in both WER and number of parameters than before pruning, as well as 
in comparison with random models. The last entry is the combined model, which out-performs all other models tested. 

Model 75 150 300 600 
HAMM 15.40% 20.63% 26.16% 32.43% 
4state 14.65% 20.70% 26.76% 33.68% 
combined 10.91% 15.60% 20.61% 25.86% 

Table 6: WER results on the test set in the presence of 15db 
SNR additive noise for various lexicon sizes. 

Model test set 75 150 300 600 param 
4state full 1.45% 2.79% 4.04% 5.76% 203k 
4state reduced 1.08% 2.18% 3.31% 5.08% 203k 

4state-d1 reduced 1.39% 2.29% 3.48% 4.79% 217k 
4state-d2 reduced 1.13% 1.91% 2.86% 4.10% 425k 
HAMM full 2.46% 3.77% 5.47% 7.56% 255k 
HAMM reduced 2.08% 3.25% 4.92% 7.02% 255k 

Table 7: Comparison of diphone and non-diphone systems on 
full and reduced test sets. The reduced test set contains no words 
with untrained diphones. 
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Feature Abbr . M Low →→→→ High Formula 
Jaw Separation Jaw 4 closed open UI_Y – LI_Y 
Lip Separation Lip 4 closed open UL_Y – LL_Y 
Lip Rounding Rnd 4 round wide none 
Tongue Body BF 5 back fwd. -TB_X – BN_X 
Tongue Body LH 4 low high TB_Y – BN_X 
Tongue Tip Tip 5 low high TT_Y – BN_Y 
Velic Aperture Vel 2 closed open -V_Y – BN_Y 
Voicing Voic 2 off on laryn. c0 energy 

Table 8: Articulatory dimensions. M denotes the number of 
quantization levels. Formulas are given for translating from 
recorded MOCHA (Wrench 2000) data to our articulatory 
space (see Section 4.7). All values except laryngograph energy 
come from the EMA data. 

Jaw Lip BF LH Tip Vel Vce Jaw Lip BF LH Tip Vel Vce

Jaw .36 .21 -.22 -.29 -.31 .18 .20 .21 .15 -.14 -.18 -.21 .03 .15
Lip .14 .36 -.12 -.08 -.06 -.06 -.03 .07 .27 -.08 -.07 -.01 -.11 -.08
BF -.17 .15 .22 -.02 .23 -.10 -.12 -.22 .03 .03 .04 .28 .08 -.13
LH -.44 -.07 .14 .36 .43 -.19 -.22 -.32 -.01 .05 .23 .31 -.02 -.14
Tip -.18 -.11 -.06 .11 .36 .03 -.04 -.06 -.02 .02 .02 .20 .11 .04
Vel -.08 -.12 .09 .08 .08 .29 .22 .01 -.06 .10 .06 .02 .23 .28
Vce .21 .09 -.09 .00 -.16 .16 .61 .23 .14 -.05 -.08 -.13 .16 .60

Measur ed Featur e Measur ed Featur e

E
st

im
at

ed
 F

ea
tu

re

Jaw Lip BF LH Tip Vel Vce Jaw Lip BF LH Tip Vel Vce

Jaw 1.0 .40 -.23 -.31 -.62 .24 .35 1.0 .50 .08 -.40 -.65 .01 .33
Lip .40 1.0 .09 .08 -.17 .06 .19 .50 1.0 .12 .02 -.18 -.05 .25
BF -.23 .09 1.0 .13 .01 -.23 -.14 .08 .12 1.0 .08 -.10 .07 -.08
LH -.31 .08 .13 1.0 .45 -.19 .00 -.40 .02 .08 1.0 .55 -.12 -.09
Tip -.62 -.17 .01 .45 1.0 -.13 -.27 -.65 -.18 -.10 .55 1.0 .06 -.19
Vel .24 .06 -.23 -.19 -.13 1.0 .23 .01 -.05 .07 -.12 .06 1.0 .16
Vce .35 .19 -.14 .00 -.27 .23 1.0 .33 .25 -.08 -.09 -.19 .16 1.0

Measur ed Featur e Measur ed Featur e

M
ea

su
re

d 
F

ea
tu

re

Table 10: Correlations of estimated vs. measured articulator 
positions of female (upper-left) and male (upper-right) data. 
Correlations of measured articulator positions vs. themselves in 
female (lower-left) and male (lower-right) data. Measurements 
are from MOCHA, estimates are from the pruned HAMM Viterbi 
path. 

Feature Description 
UI Upper Incisors 
LI Lower Incisors 
UL Upper Lip 
LL Lower Lip 
TT Tongue Tip (5-10mm from extended tip) 
TB Tongue Blade (approx. 2-3cm beyond TT) 
TD Tongue Dorsum (approx. 1-2cm beyond TB) 
V Velum (approx. 1-2 cm beyond hard palate) 
BN Bridge of nose reference 

Table 9: Description of MOCHA features 
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APPENDIX 

Using Edwards (Edwards 1997) as a guide to phonetics, we constructed the mapping from phonemes to 

articulatory configurations (given below). Note that some phonemes have multiple values for a given feature, 

such as the tongue tip position in phoneme /R/. Some phonemes also are defined as a sequence of 

configurations, such as the phoneme /p/, which is formed by bringing the lips together (lip separation=0, 

“closed”) to temporarily stop the flow of air, and then separating them (lip separation=2, “apart” ). 

 
 

 

phonem
e 

sam
ple 

w
ord 

jaw
 

lip 
separation 

lip w
idth 

tongue body 
(back/fw

d.) 

tongue body 
(low

/high) 

tongue tip 

velic aper. 

voiced 

i bEAt 0 1 2 4 3 0 0 1 
I bI t 3 2 2 4 2 0 0 1 
e bAI t 1 2 2 4 1 0 0 1 
E bEt 3 2 2 4 1 0 0 1 
@ bAt 3 3 1 3 0 0 0 1 
a bOb 3 2 2 2 0 0 0 1 
c bOUGHt 3 2 0 1-2 3 0 0 1 
o bOAt 3 2 0 1 1 0 0 1 
^ bUt 2 2 2 2 1 0 0 1 
u bOOt 1 1 0 0 3 0 0 1 
U bOOk 1 2 1 0 3 0 0 1 
Y bI te         
 onset 3 2 2 3 0 0 0 1 
 offset 1-2 2 2 4 3 0 0 1 

O bOY         
 onset 2 2 0 1 0-1 0-1 0 1 
 offset 0-1 2 1-2 4 3 1 0 1 

W bOUt         
 onset 3 2 2 3 0 0 0 1 
 offset 1-2 2 0 0 3 0 0 1 

R bIRd 2 2 0 2-3 2 0-1 0 1 
x sofA 2 2 2 2 1 0 0 1 
X buttER 2 2 1 2 2 0-1 0 1 
l Let 1 2 2 3 2 4 0 1 
w Wet 1 2 0 0 3 1 0 1 
r Red 1 2 1 2 2 3 0 1 
y Yet 1 2 2 4 3 3 0 1 
n Neat 1 1 2 2 3 4 1 1 
m Meet 1 0 2 2 1 1 1 1 
G siNG 1 2 2 0 3 1 1 1 
h Heat 2 2-3 2 2 1 1 0 0 

phonem
e 

sam
ple 

w
ord 

jaw
 

lip 
separation 

lip w
idth 

tongue body 
(back/fw

d.) 

tongue body 
(low

/high) 

tongue tip 

velic aper. 

voiced 

s See 1 2 1-2 3 2-3 0-1 0 0 
S She 2 2 1-2 3 3 0 0 0 
f Fee 2 0 2 2 1 1 0 0 
T Thigh 2 2 2 4 2 2 0 0 
z Zoo 1 2 1-2 3 3 0-1 0 1 
Z meaSure 2 2 1-2 3 3 0 0 1 
v Van 2 0 2 2 1 1 0 1 
D Thy 2 2 2 4 0 2 0 1 
p Pea         
 setup 1 0 2 2 1 1 0 0 
 release 1 2 2 2 1 1 0 0 
t Tea         
 setup 1 1 2 4 3 4 0 0 
 release 1 2 2 4 2 3 0 0 
k Key         
 setup 1 2 2 0 3 1 0 0 
 release 1 2 2 0 2 1 0 0 
b Bee         
 setup 1 0 2 2 1 1 0 1 
 release 1 2 2 2 1 1 0 1 
d Day         
 setup 1 1 2 4 3 4 0 1 
 release 1 2 2 4 2 3 0 1 
g Geese         
 setup 1 2 2 0 3 1 0 1 
 release 1 2 2 0 2 1 0 1 

C ChurCH         
 start 2 2 1-2 4 3 4 0 0 
 end 1 2 2 3 3 0 0 0 
J JuDGe         
 start 2 2 1-2 4 3 4 0 1 
 end 1 2 2 3 3 0 0 1 

 
 


