
LIGHT WEIGHT BACKGROUND BLURRING FOR
VIDEO CONFERENCING APPLICATIONS

Cha Zhang, Yong Rui and Li-wei He

Microsoft Research
One Microsoft Way, Redmond, WA 98052

ABSTRACT

Background blurring is an effective way to both preserving privacy
and keeping communication effective during video conferencing.
This paper proposes a light weight real-time algorithm to perform
background blurring using a fast background modeling algorithm
combined with a face detector/tracker. A soft decision is made at
each pixel whether it belongs to the foreground or the background
based on multiple vision features. The classification results are mapped
to a per-pixel blurring radius image to blur the background. The
algorithm produces satisfactory results under a wide range of con-
ditions, and occupies less than 30% of the CPU cycles on a 3GHz
Pentium 4 machine without further optimization.

Index Terms— Video signal processing, Teleconferencing

1. INTRODUCTION

Video conferencing has become more and more popular thanks to the
emergence of high speed Internet and reduced price of high quality
web cameras. Wide-spread instant messaging software such as MSN
Messenger, Yahoo! Messenger and AOL Instant Messenger all sup-
port voice/video chatting, where people can view each other while
talking. There are however privacy concerns raised about video con-
ferencing. For instance, some people do not want to show their living
rooms or bedrooms to other people, hence they are not enthusiastic
about the new video communication media.

There are a number of approaches to overcoming the privacy
issue. For example, the Logitech Video Effects [1] can replace a
talking face with a 3D animated avatar. It is fun to play with such
effects, though the expressiveness of the avatars is often limited and
cannot deliver information as rich as that conveyed by true faces. An
alternative solution is to separate the foreground (fg) and background
(bg) objects in the video, so that the background can be replaced by a
different image or video. This would be ideal for preserving privacy
while maintaining the effectiveness of the conversation, except that
automatic video fg/bg segmentation is a very challenging task. In
addition, human eyes are very sensitive to segmentation errors dur-
ing background replacement, which demands the segmentation al-
gorithm to be extremely accurate. Existing approaches are either too
slow to be processed in real time [2, 3], or assuming a known back-
ground [4, 5], or requiring a stereo camera pair [6]. Few of them
have achieved the efficiency, accuracy and convenience needed in
real-world applications.

In this paper, we explore the idea of blurring the background in
video conferencing instead of replacing the background completely.
This has a number of advantages. First, as one would imagine, after
background blurring, the foreground objects will stay focused while
the background objects will be blurred, hence it protects the privacy

Fig. 1. Original image (left), background replacement (middle)
and background blurring (right). Background replacement requires
higher segmentation accuracy, while the blurring needs less. Both
are good approaches to protect privacy and keep the effectiveness of
the conversation.

of the person while keeping the conversation effective. Second, peo-
ple are much more forgiving to the errors made in background blur-
ring than background replacement, as shown in Figure 1. This allows
us to develop very efficient fg/bg classification algorithms without
concerning too much about the classification errors. Finally, back-
ground blurring has the similar effect as a wide aperture video cam-
era which always focuses on the foreground objects. It can make the
foreground objects pop up as the background is blurred, creating an
extra dimension to the video.

We developed a fast pixel-level background modeling algorithm
to perform fg/bg classification, assuming the camera and the back-
ground are static. Pixels that remain the same colors for a long
period of time are considered as background pixels. With such a
background model, we make a soft decision at each pixel how likely
it belongs to the foreground. The likelihoods are then mapped to
a per-pixel blurring radius image, which is used to blur the video
frame after smoothing.

One problem with the above algorithm is that the foreground
objects can get blurred if they stay still for a long while. An impor-
tant observation we made is that faces are by far the most important
objects that should always stay focused in video conferencing even
though they are still. We employ a face detector/tracker on top of the
above background modeling approach. The detected face regions
are used to modulate the blurring radius image, making sure that the
faces are not blurred. In addition, face pixels will not be pushed into
the background model during the process.

Despite the simplicity of the proposed algorithm, we achieve
satisfactory results on real-world sequences. The algorithm does
not require information about the background before hand since it
can learn the background adaptatively. This capability also makes it
very robust to sudden lighting variations, camera shaking, etc. More
importantly, the algorithm is very light weight. Without much opti-
mization, it runs for 320 × 240 videos at 15 fps on a desktop com-
puter with Pentium 4 3GHz processor comfortably (20-30% CPU



usage) without blocking other applications.
The rest of the paper is organized as follows. The background

modeling process is discussed in Section 2. The face detector and
tracker are described in Section 3. The blurring process is presented
in Section 4. Experimental results and conclusions are given in Sec-
tion 5 and Section 6, respectively.

2. BACKGROUND MODELING

Pixel level background modeling has been extensively studied in lit-
erature. To name a few, Wren et al. [4] used Gaussian distribution to
model the color variation of the background pixels, mostly for indoor
environments. Later it was extended to Gaussian mixture models [7,
8], non-parametric kernel density estimators [9, 10] and three state
HMM [11] to adapt to outdoor, dynamic backgrounds. A separate
region-level or even object-level model can be added to further im-
prove the background modeling quality in dynamic scenes [12, 13].
Since most video conferencing applications are indoor, we find a sin-
gle Gaussian distribution is sufficient to model the color variations of
background pixels. Another reason to use single Gaussian distribu-
tion is its simplicity and efficiency in implementation. On the other
hand, a more sophisticated background modeling algorithm could
certainly improve the system performance, if the additional compu-
tational cost is affordable.

Let an input video frame be It at time t. Let ct(x) be the color
of the pixel at location x in It. To make the background model ro-
bust to lighting variations, we convert the video frame from the RGB
color space to the YUV color space, and use only the UV compo-
nents for the task. Thus ct(x) is a two dimensional vector. At each
pixel, we maintain a background mean and a background variance,
denoted as mt(x) and Σt(x), respectively. Initially, all pixels are
assumed to be foreground pixels. And we let m0(x) = [−1,−1]T ,
and Σ0(x) = εI, where I is a 2D identity matrix and ε is a tiny
number (e.g., 10−3).

Given a new input frame, the likelihood of a pixel belonging to
the background can be computed using the standard Gaussian kernel:

pt = exp{−1

2
(ct −mt−1)

T (Σt−1)
−1(ct −mt−1)}. (1)

Here the pixel location variable x is ignored for conciseness. If this
probability is above a certain threshold, e.g., pt > 0.2, the new pixel
will be used to update the background model as:

Σt = α(ct −mt−1)(ct −mt−1)
T + (1− α)Σt−1 (2)

mt = αct + (1− α)mt−1, (3)

where α is a decay factor indicating the updating rate. The above up-
dating mechanism can handle slow background variations very well.

Another functionality we need in background modeling is the
ability to push a pixel into the background if its color does not change
for a long period of time. To enable this, we also compute a running
mean µt(x) and a running variance Ωt(x) for each pixel. When-
ever a new frame comes in, these running means and variances are
updated similarly as:

Ωt = α(ct − µt−1)(ct − µt−1)
T + (1− α)Ωt−1 (4)

µt = αct + (1− α)µt−1. (5)

Initially we let µ0(x) = c0(x) and Ω0(x) = ρI, where ρ is a
big number (e.g., 20). If a pixel’s color remains constant for a long
period, the trace of the covariance matrix Ωt will decrease. If the
trace is smaller than a certain threshold, the pixel will be push into

the background, i.e., we set mt(x) = µt(x) and Σt(x) = Ωt(x).
Note a similar mechanism was adopted in [14] for surveillance ap-
plications.

3. FACE DETECTION AND TRACKING

The background modeling algorithm in the last section works rea-
sonably well if the foreground person is constantly moving. Un-
fortunately, many people do not move around all the time during a
video conferencing session. When the person stays still for a while,
the above algorithm will gradually merge the foreground pixels into
the background, generating a blurry foreground person. While there
exist more sophisticated algorithms for background modeling [13],
they suffer from the same problem inherently.

We observe that in video conferencing applications, the face is
by far the most important foreground object that should always be in
focus. Therefore we adopt a face detector and a face tracker to iden-
tify the face region to help remedy the above mentioned problem.
The face detector is based on the work in [15], which is a three-step
detector consisting of a linear pre-filter, a boosting chain and a num-
ber of post filtering algorithms such as support vector machine and
color filters. The detector has a high detection rate for frontal faces
with low false alarms thanks to the post-filters, however its detec-
tion rate on profile faces is relatively low and it is too expensive to
run the detector on every video frame. Our solution is to combine
the detector with a color-based non-rigid object tracker called pixel
classification and integration (PCI) [16]. PCI has a few advantages
over the popular mean-shift (MS) algorithm. It ensures a global op-
timal solution rather than a local optimal solution in MS. It is also
computationally more efficient than MS, with better scale adaption
and appearance modeling.

The key then is how to combine the face detector and the PCI
tracker into a single framework that has good performance yet being
efficient. We use the face detector as both a detector and a verifier for
the process. If no face is detected in the scene, the detector will be
fired once every second. Otherwise, it is used to verify the sub-image
cropped by the tracked face twice a second. If a face is not verified
for a number of tries, the detector is launched again for a whole
image detection. The detected/tracked faces are expanded slightly
up and down to cover the hair and the neck of the person. We then
generate a face background likelihood map as:

ft(x) =


0 if the pixel belongs to a face (expanded)
1 otherwise. (6)

That is, pixels belonging to a face have probability 0 as background,
and 1 otherwise. In addition, if a pixel belongs to a face region, it
will not be pushed into the background model no matter how small
the trace of Ωt(x) is.

4. BACKGROUND BLURRING

The two background likelihood maps are combined into one for
background blurring. Let:

qt(x) = min(pt(x), ft(x)). (7)

We map this combined likelihood image into a blurring radius image
as:

rt(x) =


qt(x)

δ
rmax if qt(x) < δ

rmax otherwise
(8)

where rmax is the maximum blurring radius set by the user, δ is a
small thresholding probability. If qt(x) is greater than δ, the pixel



x

0

R

x
1

x
2

x
3

x
4

(a) (b)

Fig. 2. The integral image. (a) Calculating the integral image
(Equation 9). (b) The sum of colors in region R is computed asP

x∈R ct(x) = Ct(x4) + Ct(x1)− Ct(x2)− Ct(x3).

will be fully blurred. We find δ = 0.01 works well. The blurring
radius image is then used to blur the original video input. That is,
for each pixel, we take the corresponding blurring radius and blur the
input image by averaging pixels within the radius. Various kernels
can be used such as Gaussian or rectangular kernels.

One challenge we face during the blurring process is that it can
be very expensive, because each pixel can have a different blurring
radius. When the maximum radius rmax is large, the adaptive blur-
ring procedure can be very slow. Fortunately, for certain blurring
kernels such as the rectangular kernel, this procedure can be greatly
sped up with the help of integral images [17]. As shown in Figure
2, the integral image is calculated as:

Ct(x) =
X

z∈R(0,x)

ct(z) (9)

where R(0,x) is the rectangular region formed by the origin and
x, as shown in the shaded region in Figure 2(a). The computational
cost for calculating the integral image is low – two additions for each
pixel in the image [17].

After the integral image has been calculated, the sum of colors
in an arbitrary rectangular region can be computed with 3 additions,
as shown in Figure 2(b). The blurred pixel is thus the sum of pixels
within the radius divided by the size of the rectangular region, which
can be computed efficiently for arbitrary size of neighbors.

Two example frames illustrating the background blurring pro-
cess are shown in Figure 3. They are taken from the same sequence
but at different time instances. Figure 3(i) is at frame #488, where
the person is moving around a lot. The background modeling works
very well in this case, producing almost identical results as the pro-
posed approach. Figure 3(ii) is at frame #1100, where the person has
been still for a long while. It can be seen in (ii-b) that the background
modeling algorithm will classify most of the pixels as background,
which blurs both the foreground and the background, as shown in
(ii-c). This is unwanted and prevented by the proposed approach,
as shown in (ii-d) to (ii-f). Note the original likelihood map is very
noisy due to sensor noises. We blur the radius image with a 21× 21
box blurring filter, which results in a much smoother radius image as
shown in (ii-e). The end result (ii-f) still looks very good.

5. EXPERIMENTAL RESULTS

The above proposed algorithm has been tested under a wide range
of conditions, e.g., moving vs. still foreground objects, lighting
changes, frontal vs. non-frontal faces, single vs. multiple persons,
etc. A number of example sequences are shown in Figure 4.

(i-a) (i-b) (i-c)

(i-d) (i-e) (i-f)

(ii-a) (ii-b) (ii-c)

(ii-d) (ii-e) (ii-f)

Fig. 3. Two examples of the background blurring process. (i) frame
#488, where the person is moving around. (ii) frame #1100, where
the person has been still for a while. (a) Original frame and the
face detection/tracking results. (b) Background likelihood if face
detection/tracking is not enabled. (c) Blurring result using the like-
lihood map in (b). (d) Background likelihood computed as Equa-
tion 7, where the face detector/tracker has been considered. (e) The
actual blurring radius map computed as Equation 8 and smoothed.
(f) Blurring result generated from (e).

In Figure 4, sequence (a) and (b) have relatively cluttered back-
ground, but the foreground persons do not move much. It is notice-
able that the body of the foreground persons are blurred after a long
period of time, however, the faces stay focused thanks to the inte-
grated face detector/tracker. This creates a dreamy effect, which can
emphasize the important role of face expressions during a conversa-
tion and deemphasize the motionless body and background.

Sequence (c) is an extended sequence that contains lighting vari-
ations, non-frontal faces and large motions. Frame #601 has a non-
frontal face. Around frame #758, the person turns off one of the
lights for a while. The algorithm quickly adapts to such lighting
changes and the background stays blurred during the process. From
frame #896 to #1090 the person moves dramatically, yet the face
tracker locks on the person’s head very well and the background
blurring during this period is very successful.

Sequence (d) is an example to show that our algorithm can han-
dle multiple persons in the scene with ease. The only change is in
Equation 6, where multiple faces will be masked out instead of one.
Sequence (e) is another challenging example with cluttered back-
ground and large motion. Again the algorithm produces reasonable
results.



#97 #170 #359

#123 #548 #758 #896 #1090#601

(a)

(c)

(e)

#156 #646 #1046#72 #213 #232

(b)

#112 #293 #887

(d)

Fig. 4. Results for background blurring in various sequences. Sequences are labeled (a)-(e).

The proposed algorithm can fail under certain conditions, such
as sequence (e) frame #170 in Figure 4. In this frame the person
suddenly moves to the right and unoccluded a large portion of the
background. This region is not blurred because the algorithm has
never seen it before. This can be remedied if there is an extended
period before the blurring process during which the camera can learn
a static background model. On the other hand, we choose not to
assume a static background model because it is inconvenient for the
user to get such a model, and such a model can easily fail if the
camera is shaken or the background objects are moved.

6. CONCLUSIONS

This paper proposed a light weight real-time background blurring
framework for video conferencing applications. By combining a
fast background modeling algorithm and face detection/tracking, we
create an efficient background blurring algorithm which works on
a wide range of conditions. Note the algorithm does not assume
an extended period to learn the background. Rather, the background
model is built during the process, which makes the system very prac-
tical to use.

7. REFERENCES

[1] Logitech Inc. http://www.logitech.com/.
[2] E. H. Adelson and J. Y. A. Wang, “Representing Moving Images

with Layers,”, IEEE Trans. on Image Processing, Vol. 3, No. 5,
pp.625-638, 1994.

[3] J. J. Xiao and M. Shah, “Motion Layer Extraction in the Pres-
ence of Occlusion using Graph Cut,”, CVPR 2004.

[4] C. Wren, A. Azarbayejani, T. Darrel and A. Pentland, “Pfinder:
Real Time Tracking of the Human Body,”, IEEE Trans. on
PAMI, Vol. 19, No. 7, pp.780-785, 1997.

[5] H. Luo and A. Eleftheriadis, “Model-Based Segmentation and
Tracking of Head-and-Shoulder Video Objects for Real Time
Multimedia Services,” IEEE Trans. on Multimedia, Vol. 5, No.
3, pp.379–389, Sep. 2003.

[6] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross and C. Rother,
“Bi-layer Segmentation of Binocular Stereo Video,”, CVPR
2005.

[7] C. Stauffer and W. E. L. Grimson, “Adaptive Background Mix-
ture Models for Real-Time Tracking,” CVPR 1999.

[8] N. Friedman and S. Russell, “Image Segmentation in Video Se-
quences: A Probabilistic Approach,”, Proc. of the 13th Conf. on
Uncertainty in Artificial Intelligence 1997.

[9] A. Elgammal, D. Harwood, and L. S. Davis, “Non-Parametric
Model for Background Subtraction,” ECCV 2000.

[10] A. Mittal and N. Paragios, “Motion-Based Background Sub-
traction Using Adaptive Kernel Density Estimation,” CVPR
2004.

[11] J. Rittscher, J. Kato, S. Joga, and A. Blake, “A Probabilistic
Background Model for Tracking,” ECCV 2000.

[12] M. Harville, “A Framework for High-Level Feedback to
Adaptive Per-Pixel, Mixture-of-Gaussian Background Models,”
ECCV 2002.

[13] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers,
“Wallflower: Principles and Practice of Background Mainte-
nance,” ICCV 1999.

[14] J. Connell, A.W. Senior, A. Hampapur, Y.-L. Tian, L. Brown
and S. Pankanti, “Detection and Tracking in the IBM PeopleVi-
sion System”, ICME 2004.

[15] R. Xiao, M.-J. Li and H.-J. Zhang, “Robust Multipose Face
Detection in Images,” IEEE Trans. on CSVT, Vol. 14, No. 1,
pp.31-41, Jan. 2004.

[16] C. Zhang and Y. Rui, “Robust Visual Tracking via Pixel Clas-
sification and Integration,”, ICPR 2006.

[17] P. Viola and M. Jones, “Rapid Object Detection Using a
Boosted Cascade of Simple Features,” CVPR 2001.


