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Abstract. Both one-to-one and one-to-many correspondences between
events, sometimes known as injective and non-injective agreements, re-
spectively, are widely used to specify correctness properties of crypto-
graphic protocols. In earlier work, we showed how to typecheck one-
to-one correspondences for protocols expressed in the spi-calculus. We
present a new type and effect system able to verify both one-to-one and
one-to-many correspondences.

1 Motivation

A common strategy for specifying a security protocol is to enumerate expected
correspondences between actions of the principals running the protocol. For ex-
ample, if Alice sends a series of instructions to her banker Bob, each acceptance
by Bob of an instruction apparently from Alice should correspond to an at-
tempt by Alice to issue the instruction to Bob. Ruling out potential attacks on
a protocol reduces to ruling out violations of a set of correspondences.

The idea of specifying authenticity properties as correspondences has ap-
peared in many forms [Gol02], but Woo and Lam [WL93] were early pioneers.
Woo and Lam formalise the progress of principals through a protocol via labelled
events, divided into two kinds, begin-events and end-events. A correspondence
assertion specifies that in any run of the system, each end-event has a distinct,
preceding begin-event with the same label. Authenticity properties typically do
not rely on liveness, so there is no requirement that every begin-event is subse-
quently followed by a corresponding end-event. Our previous work on typecheck-
ing authenticity properties of security protocols [GJ01b,GJ01a,GJ02,GP02] rests
on formulating correspondence assertions by annotating programs with begin-
and end-events.

Woo and Lam’s assertions are one-to-one in the sense there is a distinct
begin-event for each end-event. Let a one-to-many correspondence be the more
liberal condition that there exists a preceding—but not necessarily distinct—
begin-event for every end-event. One-to-one correspondences are desirable to
rule out replay attacks; if Alice sends a single money transfer instruction to
Bob, our specification should prevent Bob being duped into acting on it twice.
On the other hand, there are at least two situations when it is appropriate to
relax the formal one-to-one requirement.



First, security may not actually depend on one-to-one correspondence. For
example, if Alice sends an account balance request, and Bob encrypts his reply,
it may be harmless if the attacker replaying the request were to cause Bob to
send two balance messages to Alice. Replay protection requires some state to
be maintained, which in some applications may be more expensive than simply
tolerating replays. For example, messages containing nonces cannot usefully be
cached by proxies.

Second, even if security depends on a one-to-one correspondence, it may
be acceptable to check only a one-to-many correspondence formally, and then
to verify the absence of replays outside the formalism. For example, a protocol
based on timestamps may prevent replays by relying on a complex infrastructure
for securing and synchronising clocks. It may be expedient to check for a one-
to-many correspondence formally, and to argue informally that a standard use
of timestamps in fact achieves a one-to-one correspondence. In some protocols,
such as those involving freshly generated nonces included in event labels, it may
be obvious that no two end-events have the same label. If labels are unique, one-
to-one and one-to-many correspondences are equivalent, so it may be preferable
simply to verify a one-to-many correspondence.

This paper introduces a type and effect system for verifying both one-to-
one and one-to-many correspondences. Hence, we generalize our previous work
on type and effect systems [GJ01b,GJ01a] for one-to-one correspondences in the
spi-calculus [AG99]. There are many prior systems for verifying one-to-many cor-
respondences; this is the first based on typechecking. It shows that our method-
ology is not limited to the one-to-one case. The main new construct in our
type theory are ok-types, types whose inhabitation proves it is ok to perform
end-events. Moreover, the technicalities of our operational semantics are sim-
pler than in previous work, allowing a corresponding simplification of our type
soundness proofs. Using types to embody security invariants fits cleanly into the
development cycle, and is becoming increasingly popular [LY97,LLL+02,SM02].
Still, unlike some other protocol analyses, our method requires human interven-
tion to annotate the protocol with type information, and like other type systems,
rejects some well-behaved programs.

We verify that correspondences hold in spite of an attacker able to monitor,
modify, and replay messages, and, given suitable keys, to encrypt and decrypt
messages [DY83]. Hence, like many other formal techniques, our verifications do
not rule out attacks that side-step this attacker model, such as cryptanalyses of
the underlying cryptographic algorithms. Unlike some other formal techniques,
we have no general model of insider attacks, although some specific situations
can be modelled.

We can position our work on the spectrum—ranging from extensional to
intensional—of security specifications, as follows. At the extensional end, spec-
ifications describe the intended service provided by the protocol, for example,
in terms of behavioural equivalence [FG94,AFG98,Aba99,AFG00,FGM00]. At
the intensional end, specifications describe the underlying mechanism, in terms
of states or events [AB01,WL93,Low97,Ros96,Gol02,Mea96,Pau98,Sch98,GT02].
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Correspondences are towards the intensional end of the spectrum; our begin- and
end-assertions are intermingled with implementation code. Still, we can infor-
mally picture correspondences using message-sequence notations, and there are
advantages from making specifications executable.

The rest of the paper is structured as follows. Section 2 gives examples of
specifying protocols via correspondences. Section 3 explains how to formulate
the problem of checking correspondences within a version of the spi-calculus.
Section 4 describes how to typecheck one-to-many correspondences in a spi-
calculus, by introducing new ok-types. Section 5 summarises and concludes.

2 Specifying Protocols by Correspondences

The goal of this section is to illustrate one-to-many correspondences via some
protocol examples, including a couple of classic protocols from the original paper
on the BAN logic [BAN89], and to sketch their encoding within our typed spi-
calculus.

Example 1: A Basic One-to-Many Correspondence. Suppose two principals, A
and B, share a secret symmetric key KAB . The following protocol protocol uses
a timestamp to protect encrypted messages sent from A to B.

Event 1 A begins! Sending(A,B,M)
Message 1 A → B : {M,TA}KAB

Event 2 B ends Sending(A,B,M)

The protocol consists of a single message, Message 1, sent from the initiator
A to the responder B. Begin- and end-events mark the progress of the principals
through a run of the protocol. Event 1 is a one-to-many begin-event, whose
label, Sending(A,B, M) identifies the principals taking part in this run of the
protocol, together with the instruction, M , that A wishes to send to B. Event 2
is an end-event by B, whose label matches the earlier begin-event by A. Event
1 occurs immediately before A initiates the protocol. Event 2 occurs only after
B is satisfied the protocol run has succeeded, and records the parties B regards
as taking part, and the instruction to be acted on.

In general, the assertion induced by begin- and end-events is that each end-
event has a corresponding begin-event with the same label. We annotate the
begin-event, Event 1, with “!”, to indicate that it can match one or more end-
events with the same label. This one-to-many correspondence assertion means
that every message M accepted by B as coming from A actually came from
A, but it does not rule out replays. To specify a one-to-one correspondence, we
would omit the “!” to indicate that the begin-event can be matched at most
once.

The timestamp serves to narrow the window of opportunity for replay at-
tacks, but it may or may not entirely rule out replays. Typical implementations
would reject timestamps older than some limit, for example, five minutes. State-
ful servers may also record previously seen timestamps, so as to prevent replays.
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Some attention needs to be paid to secure synchronisation of clocks, to prevent,
for example, attacks based on fooling a node into issuing requests with future
timestamps, for later replay.

Our theory can establish one-to-many correspondences, as specified above,
but since it does not deal explicitly with the passage of time, it cannot show that
a particular use of timestamps does in fact establish a one-to-one correspondence.
We leave this to an informal argument. On the other hand, our earlier papers
show how to typecheck the one-to-one correspondences achieved by various kinds
of nonce exchanges.

Types for Example 1. We use this basic example to illustrate our use of types
and processes to model protocols. Here is the type for the shared key KAB .

SharedKey 4= Key(x:Msg , t:Un,Ok(end Sending(A,B, x)))

This says KAB is a secret key for encrypting triples (M,TA, ok), where M
has type Msg , TA has type Un, and ok has type Ok(endSending(A,B,M)), that
is, the type Ok(end Sending(A,B, x)) with the parameter x instantiated to M ,
the component of the triple labelled x. We leave the type Msg of instructions
conveyed by the protocol unspecified. Messages of type Un are public data known
to the opponent; we assign timestamps the type Un since they may be published
to the opponent. The message ok of type Ok(end Sending(A,B,M)) may be
thought of as a certificate testifying that it is justified to perform an end-event
labelled Sending(A,B,M).

Ok-types, such as Ok(end Sending(A,B, x)), are one of the main innovations
in this paper, compared to our previous type systems for the spi-calculus. The
general form is Ok(R) where R is a resource, a representation of events that
may be safely performed. A simple example of a resource is a finite multiset of
events, written end L1 | · · · | end Ln.

Ok-types are meaningful at compile time—during typechecking—but convey
no information at runtime. At compile time, we exploit ok-types to prove that
end-events performed in one part of a program are justified by preceding begin-
events elsewhere. At runtime, there is exactly one value, written ok, of ok-type.
It is the unique inhabitant of every type Ok(R), and therefore takes no space to
represent. We consider ok : Ok(R) as simply an annotation, proof that the events
in R are safe to perform. Accordingly, although we formalize Message 1 as an
encrypted triple, {M,TA, ok}KAB

, as far as runtime behaviour is concerned this
is equivalent to the encrypted pair, {M,TA}KAB

, of our informal description.

Interlude: Resources, Events, and Safety. To describe our process semantics, we
suppose that every state of our system includes an imaginary tuplespace, record-
ing those end-events that may be safely performed. It is purely a formal device
to record the progress of protocol participants, and cannot be used for actual
communication. Accordingly, the opponent cannot read or write the tuplespace.
The contents of the tuplespace is a resource, R (as also found in an ok-type).
Here is the full syntax of resources:
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Resources:

R,S ::= resource: record of allowed end-events
end L allows one end-event labelled L
!R allows whatever R allows, arbitrarily often
R | S allows whatever R and S allow
0 allows nothing

Syntactically, replication binds tighter than composition; so that !R | R′

means (!R) | R′. We identify resources up to an equivalence relation R ≡ R′,
the least congruence relation to satisfy the equations R | (R′ | R′′) ≡ (R |
R′) | R′′, R | R′ ≡ R′ | R, R | 0 ≡ R, !R ≡ R | !R, !0 ≡ 0, !!R ≡ !R, and
!(R | R′) ≡ !R | !R′. (Hence, a resource denotes a multiset of end-events, each
of which has either finite or infinite multiplicity.) Let fn(R) be the set of names
occurring in any label occurring in R.

We include begin- and end-assertions in the syntax of our spi-calculus to for-
malize correspondences. These assertions read or write the imaginary tuplespace.
A one-to-one begin-assertion begin L;P adds end L to the tuplespace, then runs
P . A one-to-many begin-assertion begin !L;P adds the replicated resource !end L
to the tuplespace, then runs P . An end-assertion end L;P consumes the re-
source endL from the imaginary tuplespace. The absence of endL, when running
endL;P , is a deadlock signifying violation of a correspondence assertion. We say
a system is safe if no reachable state has such a deadlock. Moreover, a system P
is robustly safe if P | O is safe for any process O representing an opponent. We
formalize these definitions later; they are similar to those in our previous work,
except for the addition of replicated resources and one-to-many begin-assertions,
to allow modelling of both one-to-one and one-to-many correspondences.

Processes for Example 1. Returning to our example, the following process rep-
resents an attempt by A to send M to B.

PA(M) 4= begin !Sending(A,B,M);
new(TA:Un); out net〈{M,TA, ok}KAB

〉

The process starts with a one-to-many begin-assertion, that adds the repli-
cated resource !end Sending(A,B,M) to the imaginary tuplespace. Since it is
replicated, it matches many end-events. The restriction operator new(TA:Un)
generates a fresh timestamp TA. The process ends by an output of the encrypted
triple {M,TA, ok}KAB

on the public channel net .
We postpone a detailed discussion of intuitions behind the type system to Sec-

tion 4, but note that the message ok can be assigned Ok(end Sending(A,B,M))
only due to the presence of !end Sending(A,B,M) in the imaginary tuplespace.

Next, process PB represents B receiving a single message from A.

PB
4= inp net(c:Un); decrypt c is {xto}KAB

;
split xto is (x:Msg , t:Un, o:Ok(end Sending(A,B, x)));
exercise o; end Sending(A,B, x)
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The process starts with a blocking receive of a message c off the public
channel net . It then attempts to decrypt the message with the key KAB , and
split the plaintext into its three components x, t, and o. If c is not encrypted
with KAB the process will immediately terminate; we assume there is suffi-
cient redundancy in the ciphertext to detect this situation. At runtime, the
process exercise o; does nothing; control unconditionally falls through to the
end-assertion end Sending(A,B, x) to indicate that B accepts the message x
from A. At compile time, the process exercise o; exploits the ok-type assigned to
o to show that the following end-assertion cannot deadlock.

Finally, we formalize principal A attempting to send a sequence M1, . . . , Mn

of messages to B as the process Sys(M1, . . . ,Mn).

Sys(M1, . . . ,Mn) 4= new(KAB :SharedKey); (PA(M1) | · · · | PA(Mn) | !PB)

The process PA(M1) | · · · | PA(Mn) is n copies of PA, one for each of the
messages to be sent, running in parallel. The replicated process !PB is a server
run by B that repeatedly runs PB to try to receive a message from A. The new
binder delimits the scope of the key KAB to be the processes representing A and
B. The opponent is some process running alongside Sys(M1, . . . ,Mn) that may
send and receive messages on the public net channel. The fact that the opponent
O does not know the key KAB is represented by O not being within the scope
of the binder for KAB .

This completes our reduction of the one-to-many specification of our protocol
to the problem of showing that the process Sys(M1, . . . ,Mn) is robustly safe.
Robust safety follows from the type system of Section 4.

Example 2: The Wide-Mouthed-Frog Protocol. Assume that each of a number
of principals A, B, . . . shares a key KAS , KBS , . . . , with a trusted server S.
The Wide-Mouthed-Frog protocol [BAN89] allows one of these principals to
create and communicate a key to another, via the server S, using timestamps
for replay protection. Here is the protocol and its specification using a one-to-
many correspondence.

Event 1 A begins! Sending(A,B,KAB)
Message 1 A → S : {msg1(TA, B, KAB)}KAS

Message 2 S → B : {msg2(TS , A, KAB)}KBS

Event 2 B ends Sending(A,B,KAB)

Message 1 communicates the new key KAB from A to S, who checks that the
timestamp TA is fresh, and then forwards the key on to B tagged with its own
timestamp TS . The specification says that each time B believes it has received
a key KAB from A, by performing Event 2, then in fact A has earlier begun the
protocol with B, intending to send KAB , by performing Event 1.

If each principal rejects any message whose timestamp is older than the
last message received from the same principal, then the protocol can prevent re-
plays. If so, the specification can be strengthened to a one-to-one correspondence
(though this cannot be checked within our type system).
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We tag the plaintexts of Messages 1 and 2 to prevent any confusion of the two.
This thwarts the “type flaw” attack, reported by Anderson and Needham [AN95],
in which an attacker replays Message 2 as Message 1, in order to keep the
timestamp fresh.

Types for Example 2. Let variable p range over the principals A, B, . . . . The
longterm key shared between any principal p and the server S has the follow-
ing type Princ(p), where SKey is the type of session keys, and Payload is the
unspecified type of payload data.

SKey 4= Key(PayLoad)

Princ(p) 4= Key(Union(
msg1(ta : Un, b : Un, kab : SKey ,Ok(end Sending(p, b, kab))),
msg2(ts : Un, a : Un, kab : SKey ,Ok(end Sending(a, p, kab)))))

This says the longterm key for principal p is a secret symmetric key for
encrypting two kinds of messages, tagged with msg1 or msg2. The first kind are
triples (TA, B,KAB), together with an ok indicating that an end-event labelled
Sending(p, B, KAB) is safe. Similarly, the second kind are triples (TS , A, KAB),
together with an ok indicating that an end-event labelled Sending(A, p,KAB) is
safe.

Much as for Example 1, we can encode the protocol behaviour and its spec-
ification as a process, but we omit the details.

Example 3: BAN Kerberos. Our final example is a one-to-many specification of
an early version of Kerberos [BAN89]. Again, the starting assumption is that
there is a set of principals each of which shares a key with an authentication
server S. The protocol allows an initiator A to request a fresh session key KAB

from S for communication with B, and to have S send the key to both A and
B. Here is the protocol and its specification.

Event 1 A begins! Init(A,B)
Message 1 A → S : A,B

Event 2 S begins! KeyGenInit(A,B,KAB)
Event 3 S begins! KeyGenResp(A,B,KAB)
Message 2 S → A : {msg2a(TS , L,B,KAB ,Tkt)}KAS

where Tkt = {msg2b(TS , L,A, KAB)}KBS

Event 4 A ends KeyGenInit(A,B,KAB)

Message 3 A → B : Tkt , {msg3(A, TA)}KAB

Event 5 B ends KeyGenResp(A,B,KAB)
Event 6 B ends Init(A,B)

Event 7 B begins! Resp(A,B)
Message 4 B → A : {msg4(TA)}KAB

Event 8 A ends Resp(A,B)
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Compared to the original presentation, we have added tags to messages,
eliminated the decrement of the timestamp in Message 4, and swapped the order
of a couple of components of Message 2.

The terms TA and TS are timestamps, and L is a lifetime. The specification
gives guarantees to the principals performing end-events. At Event 4, A is guar-
anteed that S generated the session key for use with B, and, symmetrically, at
Event 5, B is guaranteed that S generated the session key for use with A. At
Event 8, the initiator A is guaranteed that the responder B has run the protocol
with A, and, symmetrically, at Event 6, the responder B is guaranteed that the
initiator A has run the protocol with B. The server S receives no guarantee that
A or B are present or running the protocol.

There are more detailed formal analyses of more recent versions of Kerberos;
see the paper [BCJS02], and its bibliography.

Types for Example 3. The longterm key shared between any principal p and the
server S has the following type Princ(p), where SKey(a, b) is the type of session
keys shared between a and b, and Payload is the unspecified type of payload
data.

Princ(p) 4= Key(Union(
msg2a(ta : Un, l:Un, b:Un, kab:SKey(p, b), tkt :Un,

Ok(end KeyGenInit(p, b, kab))),
msg2b(ts:Un, l:Un, a:Un, kab:SKey(a, p),

Ok(end KeyGenResp(a, p, kab)))))

SKey(a, b) 4= Key(Union(
msg3(a′:Un, ta:Un,Ok(end Init(a, b))),
msg4(ta:Un,Ok(end Resp(a, b, kab)))))

As with Example 2, we omit the encoding of protocol behaviour and its
specification as an actual process.

3 A State-Based Semantics of Correspondences

The previous section illustrates how to reduce an informal protocol specification
to the question of whether a process with embedded begin- and end-assertions
is robustly safe. This section formalizes this question by precisely defining a spi-
calculus and its operational semantics. The next explains how to check robust
safety by typechecking.

Messages. The messages and event labels of our calculus are as follows. The
syntax is similar to previous versions of spi, except for the addition of ok.

Messages, Event Labels:

` message tag
a, b, c, x, y, z names, variables
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L, M, N ::= message
x name: a key or a channel
{M}N message M encrypted with key N
`(M) message tagged with `
(M,N) message pair
ok an ok to use some resource

As usual, pairs can represent arbitrary tuples; for example, (L, (M,N)) can
represent the triple (L,M,N). We use analogous, standard abbreviations at the
process and type level, but omit the details. Let fn(L) be the set of names
occurring in L.

Processes. The syntax of processes is as follows. Types, ranged over by T , are
defined in Section 4. We write fn(P ) and fn(T ) for the sets of names occurring
free in the process P and the type T , respectively.

Processes:

P,Q,R ::= process
out M〈N〉 asynchronous output
inp M(x:T );P input (scope of x is P )
new(x:T );P name generation (scope of x is P )
!P replication
P | Q composition
0 inactivity
begin L;P one-to-one begin-assertion
begin !L;P one-to-many begin-assertion
end L;P end-assertion
decrypt L is {y:T}N ;P decryption (scope of y is P )
case M (`i(xi:Ti)Pi

i∈1..n) union case, n ≥ 0 (scope of each xi is Pi)
split M is (x:T, y:U);P pair splitting (scope of x is U , P , of y just P )
match M is (N, y:T );P pair matching (scope of y is P )
exercise M ;P exercise an ok

The first group of constructs forms a typed π-calculus. The middle group
consists of the begin- and end-assertions discussed in Section 2. Only one-to-
many begin-assertions are new in this paper. The final group is of data ma-
nipulation constructs. Only the last, exercise M ;P , is new, and is described,
along with decryption and pair splitting in Section 2. A union case process,
case M (`i(xi:Ti)Pi{xi} i∈1..n), behaves as Pj{N} if M is the tagged message
`j(N) for some j ∈ 1..n, and otherwise is stuck, that is, does nothing. (In gen-
eral, we use the notation P{x} to denote the process P and to note that it may
have free occurrences of the variable x. In this context, we write P{M} for the
outcome of substituting the message M for each of those free occurrences of the
variable x in P .) A pair match match M is (N, y:T );P{y} behaves as P{L} if
M is the pair (N,L), and otherwise is stuck.
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We write ~x:~T as a shorthand for the list x1:T1, . . . , xn:Tn of typed variables,
when ~x = x1, . . . , xn and ~T = T1, . . . , Tn. Moreover, we write new(~x:~T );P as
shorthand for new(x1:T1); · · · new(xn:Tn);P , and also end L for end L;0.

As in many presentations of the π-calculus, we define a structural equiva-
lence relation, that identifies processes up to some structural rearrangements.
The following table includes equivalence rules, congruence for the basic struc-
tural operators (restriction, parallel composition, and replication), monoid laws
for composition, Engelfriet’s replication laws [Eng96], and the mobility laws for
restriction. As usual, the exact choice of rules of structural equivalence is a little
arbitrary.

Structural Equivalence of Processes: P ≡ Q

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q,Q ≡ R ⇒ P ≡ R (Struct Trans)

P ≡ P ′ ⇒ new(x:T );P ≡ new(x:T );P ′ (Struct Res)
P ≡ P ′ ⇒ P | R ≡ P ′ | R (Struct Par)
P ≡ P ′ ⇒ !P ≡ !P ′ (Struct Repl)

P | 0 ≡ P (Struct Par Zero)
P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)

!P ≡ P | !P (Struct Repl Unfold)
!!P ≡ !P (Struct Repl Repl)
!(P | Q) ≡ !P | !Q (Struct Repl Par)
!0 ≡ 0 (Struct Repl Zero)

new(x:T ); (P | Q) ≡ P | new(x:T );Q (Struct Res Par) (for x /∈ fn(P ))
new(x1:T1); new(x2:T2);P ≡

new(x2:T2); new(x1:T1);P
(Struct Res Res)
(for x1 6= x2, x1 /∈ fn(T2), x2 /∈ fn(T1))

States. A computation state takes the form new(~x:~T ); (R ‖ P ), where the typed
names ~x are freshly generated, the process P represents the running threads of
control, and R is a resource—the imaginary tuplespace—recording which end-
events the process may safely perform.

Structural Equivalence of States: S ≡ S′

S ≡ S (Struct Refl)
S′ ≡ S ⇒ S′ ≡ S (Struct Symm)
S ≡ S′, S′ ≡ S′′ ⇒ S ≡ S′′ (Struct Trans)
S ≡ S′ ⇒ new(x:T );S ≡ new(x:T );S′ (Struct Res)
R ≡ R′, P ≡ P ′ ⇒ R ‖ P ≡ R′ ‖ P ′ (Struct Par)
x /∈ fn(R) ⇒ new(x:T ); (R ‖ P ) ≡ R ‖ new(x:T );P (Struct Res State)
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State Transitions and Safety. Our operational semantics is a state transition
relation, defined by the following rules. The first group are transitions on states
of the form R ‖ P , and formalize our intuitive explanations of the various forms
of process. The second group includes congruence rules, and the rule (Trans
Struct) that allows a state to be re-arranged up to structural equivalence while
deriving a transition.

State Transitions: S → S′

R ‖ P | out M〈N〉 | inp M(y:T );Q{y} →
R ‖ Q{N}

(Trans I/O)

R ‖ P | begin L;Q →
R | end L ‖ P | Q

(Trans Begin)

R ‖ P | begin !L;Q →
R | !end L ‖ P | Q

(Trans Begin!)

R | end L ‖ P | end L;Q →
R ‖ P | Q

(Trans End)

R ‖ P | decrypt {M}N is {y:T}N ;Q{y} →
R ‖ P | Q{M}

(Trans Decrypt)

R ‖ P | case `j(M) (`i(xi:Ti)Qi{xi} i∈1..n) →
R ‖ P | Qj{M} j ∈ 1..n

(Trans Case)

R ‖ P | split (M,N) is (x:T, y:U);Q{x, y} →
R ‖ P | Q{M,N}

(Trans Split)

R ‖ P | match (M,N) is (M,y:U);Q{y} →
R ‖ P | Q{N}

(Trans Match)

R ‖ P | exercise ok;Q →
R ‖ P | Q

(Trans Exercise)

S → S′ ⇒ new(x:T );S → new(x:T );S′ (Trans Res)
S ≡ S′, S′ → S′′, S′′ ≡ S′′′ ⇒ S → S′′′ (Trans Struct)

For example, here is a transition sequence in which a one-to-many begin-
assertion is matched by a couple of end-events:

0 ‖ begin !L; end L; end L → !end L ‖ end L; end L

≡ !end L | end L | end L ‖ end L; end L

→ !end L | end L ‖ end L → !end L ‖ 0

On the other hand, a one-to-one begin-assertion matches only one end-event.
In the final state 0 ‖ end L;0 of the following sequence, the end-assertion is
deadlocked, signifying a violation of a correspondence assertion.

0 ‖ begin L; end L; end L → end L ‖ end L; end L → 0 ‖ end L

We can now formalize the notions of safety (every end-assertion succeeds)
and robust safety (safety in the presence of an arbitrary opponent).

– Let S →∗ S′ mean there are S1, . . . , Sn with S ≡ S1 → · · · → Sn ≡ S′.
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– A state S is fine if and only if whenever S ≡ new(~x:~T ); (R ‖ end L;P | P ′)
there is R′ such that R ≡ end L | R′.

– A process P is safe if and only if, for all S, if 0 ‖ P →∗ S then S is fine.
– An untyped process is one in which every type is Un.
– An opponent is an untyped process O containing no begin- or end-assertions,

and no exercises.
– A process P is robustly safe if and only if P | O is safe for all opponents O.

The question now is how to check robust safety by typing.

4 Typing One-to-Many Correspondences

Like our previous systems for typechecking correspondences [GJ01a,GJ02], we
assign a resource (a kind of effect [GL86]) to each process P : an upper bound
on the unmatched end-events performed by P . We prove theorems showing that
safety and robust safety follow from assigning a process the 0 effect. Unlike our
previous systems, we also assign a resource (as well as a type) to each message
M : an upper bound on the end-events promised by all the ok terms contained
within M .

Types:

T,U ::= type
Un public data
Key(T ) secret key for T plaintext
Union(`i(Ti) i∈1..n) tagged union, n ≥ 0
(x:T,U) dependent pair (scope of x is U)
Ok(R) ok to exercise R

Abbreviation: (x1:T1, . . . , xn:Tn, Tn+1)
4= (x1:T1, . . . , (xn:Tn, Tn+1))

Messages of type Un are public data known to the opponent, including cipher-
texts known to but indecipherable by the opponent. Messages of type Key(T ) are
secret keys for encrypting and decrypting plaintext of type T . Messages of type
Union(`i(Ti) i∈1..n) take the form `j(N) where `j is one of the tags `1, . . . , `n,
and N is a message of type Tj . Messages of type (x:T,U{x}) are pairs (M,N),
where M has type T and N has type U{M}. (The scope of the bound variable
x in (x:T,U) is U .) Finally, ok is the unique message of type Ok(R), a pledge
that the resource R is available.

Formation Judgments. Our judgments are defined with respect to an environ-
ment, E, a list x1:T1, . . . , xn:Tn declaring types for those variables in scope.
Let dom(x1:T1, . . . , xn:Tn) = {x1, . . . , xn}. The first three judgments define the
correct formation of environments (E ` � meaning, roughly, all declarations are
distinct) and resources and types (E ` R and E ` T meaning, roughly, all free
variables are in scope).
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Formation Rules:

(Env ∅)

∅ ` �

(Env x)
E ` T x /∈ dom(E)

E, x:T ` �

(Resource Event)
E ` � fn(L) ⊆ dom(E)

E ` end L

(Resource Repl)
E ` R
E ` !R

(Resource Par)
E ` R E ` S

E ` R | S

(Resource Zero)
E ` �
E ` 0

(Type Un)
E ` �

E ` Un

(Type Key)
E ` T

E ` Key(T )

(Type Union)
E ` Ai ∀i ∈ 1..n

E ` Union(`i(Ai) i∈1..n)

(Type Pair)
E, x:T ` U

E ` (x:T,U)

(Type Ok)
E ` R

E ` Ok(R)

Typing Messages. The judgment E ` M : T,R means that, given E, the message
M has type T and effect R: it needs the resources R to justify promises made
by the ok messages that may be extracted from M . Recall that an extracted
message of type Ok(R) may subsequently be exercised to justify end-assertions
allowed by R.

For example, consider again the type

SharedKey 4= Key(x:Msg , t:Un,Ok(end Sending(A,B, x)))

of longterm keys from Example 1 in Section 2. Let E = KAB :SharedKey , x:Msg ,
TA:Un and let message M be the ciphertext {x, TA, ok}KAB

. Then we have:

E ` M : Un, end Sending(A,B, x)

The cipher is well-typed because the triple (x, TA, ok) has type (x:Msg , t:Un,
Ok(end Sending(A,B, x))), and hence can be encrypted with a key of type
SharedKey . The cipher M has type Un because it may safely be made pub-
lic. The effect end Sending(A,B, x) arises from the presence of the message
ok : Ok(end Sending(A,B, x)), which may eventually be exercised to justify an
end-assertion labelled Sending(A,B, x).

If we have two copies of M , the effect is doubled:

E ` (M,M) : Un, end Sending(A,B, x) | end Sending(A,B, x)

The following table defines message typing. As in earlier work [GJ01a], many
constructs have two rules: one for typing data known only to the trusted princi-
pals running the protocol, and one for typing Un data known to the opponent.
The rules accumulate the effects of components that may be extracted, but ig-
nore the effects of those that cannot. For example, the rules (Msg Encrypt) and
(Msg Encrypt Un) assign the effect R1 of the plaintext M to the ciphertext
{M}N , since the plaintext may be extracted by decryption, but ignore the effect
R2 of the key N , since there is no primitive to extract it from the ciphertext.
Let R ≤ R′ 4= ∃R′′.R | R′′ ≡ R′.
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Good Messages:

(Msg Subsum)
E ` M : T,R R ≤ R′ E ` R′

E ` M : T,R′

(Msg x)
E ` � x ∈ dom(E)

E ` x : E(x),0

(Msg Encrypt)
E ` M : T,R1 E ` N : Key(T ),R2

E ` {M}N : Un,R1

(Msg Encrypt Un)
E ` M : Un,R1 E ` N : Un,R2

E ` {M}N : Un,R1

(Msg Union) (where T = Union(`i(Ti) i∈1..n))
E ` M : Tj ,R j ∈ 1..n E ` T

E ` `j(M) : T,R

(Msg Union Un)
E ` M : Un,R

E ` `(M) : Un,R

(Msg Tuple)
E ` M : T,R1 E ` N : U{M},R2 E ` (x:T,U{x})

E ` (M,N) : (x:T,U{x}),R1 | R2

(Msg Tuple Un)
E ` M : Un,R1 E ` N : Un,R2

E ` (M,N) : Un,R1 | R2

(Msg Ok)
E ` R

E ` ok : Ok(R),R

(Msg Ok Un)
E ` �

E ` ok : Un,0

The following lemma asserts that any message originating from the opponent
may be assigned the Un type and 0 effect.

Lemma 1. For any M , if fn(M) = {~x} then ~x:Un ` M : Un,0.

Typing Processes. The judgment E ` P : R means that, given E, the effect R
is an upper bound on the resources required for safe execution of P .

The first group of rules concerns the π-calculus fragment of our calculus.
The main intuition is that the effect of a process stems from the composition
of the effects of any subprocesses, together with the replicated effects of any
extractable messages. The effect of a message must be replicated to account for
the possibility that the message may be copied many times. In particular, if an
ok is copied, it can be exercised many times. For example, suppose that E is the
environment and M = {M,TA, ok}KAB

is the ciphertext from our discussion of
the message typing rules above. We have E ` M : Un, end Sending(A,B, x) and
so we have:

E,net :Un ` out net〈M〉 : !end Sending(A,B, x)

Good Processes: Basics

(Proc Subsum)
E ` P : R R ≤ R′ E ` R′

E ` P : R′

(Proc Output Un)
E ` M : Un,R1 E ` N : Un,R2

E ` out M〈N〉 : !R2
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(Proc Input Un)
E ` M : Un,R1 E, y:Un ` P : R2 y /∈ fn(R2)

E ` inp M(y:Un);P : R2

(Proc Res)(where T is generative, that is, either Un or Key(T ′) for some T ′)
E, x:T ` P : R x /∈ fn(R)

E ` new(x:T );P : R

(Proc Par)
E ` P1 : R1 E ` P2 : R2

E ` P1 | P2 : R1 | R2

(Proc Repeat)
E ` P : R
E ` !P : !R

(Proc Zero)
E ` �

E ` 0 : 0

The next group of rules concerns begin- and end-assertions. As in our previous
work, the effect of a begin-assertion is the effect of its continuation, minus the
event, while the effect of an end-assertion is the effect of its continuation, plus
the event. What is new here is the use of replication to distinguish one-to-many
from one-to-one begin-assertions.

Good Processes: Correspondence Assertions

(Proc Begin)
E ` P : R | end L

E ` begin L;P : R

(Proc Begin!)
E ` P : R | !end L

E ` begin !L;P : R

(Proc End)
fn(L) ⊆ dom(E) E ` P : R

E ` end L;P : R | end L

Next, (Proc Exercise) defines that the effect of exercise M ;P , where M has
type Ok(R), is the effect of P minus R, plus any effect M has itself.

Good Processes: Exercising an Ok

(Proc Exercise)
E ` M : Ok(R),R1 E ` P : R | R2

E ` exercise M ;P : R1 | R2

For instance, looking again at Example 1, we can derive:

A,B:Un, x:Msg , o:Ok(endSending(A,B, x)) ` exercise o; endSending(A,B, x) : 0

The final group of rules is for typing message manipulation. These rules are
much the same as in previous systems [GJ01a,GJ02], except for including the
replicated effects of extractable messages.

Good Processes: Message Manipulation

(Proc Decrypt)
E ` L : Un,R1 E ` N : Key(T ),R2 E, y:T ` P : R3 y /∈ fn(R3)

E ` decrypt L is {y:T}N ;P : !R1 | R3
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(Proc Decrypt Un)
E ` L : Un,R1 E ` N : Un,R2 E, y:Un ` P : R3 y /∈ fn(R3)

E ` decrypt L is {y:Un}N ;P : !R1 | R3

(Proc Case)
E ` M : Union(`i(Ti) i∈1..n),R1 E, xi:Ti ` Pi : R2 xi /∈ fn(R2) ∀i ∈ 1..n

E ` case M (`i(xi:Ti)Pi
i∈1..n) : !R1 | R2

(Proc Case Un)
E ` M : Un,R1 E, xi:Un ` Pi : R2 xi /∈ fn(R2) ∀i ∈ 1..n

E ` case M (`i(xi:Un)Pi
i∈1..n) : !R1 | R2

(Proc Split)
E ` M : (x:T,U),R1 E, x:T, y:U ` P : R x, y /∈ fn(R)

E ` split M is (x:T, y:U);P : !R1 | R

(Proc Split Un)
E ` M : Un,R1 E, x:Un, y:Un ` P : R x, y /∈ fn(R)

E ` split M is (x:Un, y:Un);P : !R1 | R

(Proc Match)
E ` M : (x:T,U{x}),R1 E ` N : T,R2 E, y:U{N} ` P : R y /∈ fn(R)

E ` match M is (N, y:U{N});P : !R1 | R

(Proc Match Un)
E ` M : Un,R1 E ` N : Un,R2 E, y:Un ` P : R y /∈ fn(R)

E ` match M is (N, y:Un);P : !R1 | R

The following asserts that any opponent process may be assigned the 0 effect.

Lemma 2 (Opponent Typability). For any opponent O, if fn(O) = {x1, . . . ,
xn}, then x1:Un, . . . , xn:Un ` O : 0.

Proof. Recall that an opponent is an untyped process containing no begin- or
end-assertions, and no exercises. The result follows by induction on the size of
O, with appeal to Lemma 1, (Proc Output Un), (Proc Input Un), (Proc Res),
(Proc Par), (Proc Repeat), (Proc Zero), (Proc Decrypt Un), (Proc Case Un),
(Proc Split Un), and (Proc Match Un). ut

Runtime Invariant. We say that a state new(~x:~T ); (R ‖ P ) is good if and only
if the imaginary resource R can be assigned to P as an effect. Intuitively, this
means the available resource is an upper bound of what is actually needed. Recall
that (Proc Subsum) allows us to increase the effect assigned to a process.
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Good States:

(State Res)
E, x:T ` S T generative

E ` new(x:T );S

(State Base)
E ` P : R
E ` R ‖ P

The next two propositions assert that being a good state is preserved by the
structural equivalence and transition relations.

Proposition 1. If E ` S and S ≡ S′ then E ` S′.

Proposition 2. If E ` S and S → S′ then E ` S′.

We show that good states are fine, that is, contain no deadlocked end-
assertions; theorems establishing safety and robust safety then follow easily.

Proposition 3. If E ` S then S is fine.

Proof. Suppose that S ≡ new(~x:~T ); (R ‖ end L;P | P ′). By Proposition 1,
E ` new(~x:~T ); (R ‖ end L;P | P ′). Therefore, E, ~x:~T ` end L;P | P ′ : R. It
follows there is R′ such that R ≡ end L | R′. Hence S is fine. ut

Theorem 1 (Safety). If E ` P : 0 then P is safe.

Proof. By (State Base), E ` 0 ‖ P . Consider any S such that 0 ‖ P →∗ S. By
Propositions 1 and 2, E ` S. By Proposition 3, S is fine. So P is safe. ut

Theorem 2 (Robust Safety). If x1:Un, . . . , xn:Un ` P : 0, P is robustly safe.

Proof. Combine Theorem 1 and Lemma 2, and a weakening property of the type
system. ut

We can apply these theorems to verify the one-to-many correspondences of
Examples 1–3 of Section 4, but we omit the details. Given processes annotated
with suitable types, we claim that typechecking is decidable, though we currently
have no implementation for this type system. On the other hand, we rely on
human intervention to discover suitable types, such as the types for principal
and session keys.

5 Summary and Conclusion

Our previous work [GJ01b,GJ01a,GJ02] shows how to verify one-to-one corre-
spondence assertions by typechecking process calculus descriptions of protocols.
This paper shows how to typecheck one-to-many correspondences. Applications
include checking security protocols intended only to offer one-to-many guaran-
tees, but also checking protocols that in fact offer stronger one-to-one guarantees,
but via mechanisms, such as timestamps, beyond the scope of our type system.
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There is little other work we are aware of on typechecking authenticity
properties, but there are several other works on types for cryptographic pro-
tocols [Aba99,PS00,AB01,Cer01,Dug02], mostly aimed at establishing secrecy
properties. Sometimes, of course, authenticity follows from secrecy [Bla02].

The ok-types introduced here are related to the types in our previous work
for typing nonce challenges and responses. Like nonce types, they transfer effects
by communication, allowing the type system to verify that an end-assertion in
one process is justified by a corresponding begin-assertion in another. Unlike
values of nonce types, values of ok-type are copyable, and may transfer an ef-
fect many times—hence, they are useful for one-to-many but not one-to-one
correspondences.

The states—resources paired with processes—and the state transition re-
lation introduced here allow for a smoother technical development than the la-
belled transitions and other relations used in our earlier papers. Blanchet [Bla02]
formalizes correspondence assertions similarly.

The type system of Section 4 can verify only trivial one-to-one correspon-
dences based on straightline code. In a longer version of this paper, we show
how to accommodate the nonce types of an earlier paper [GJ01a] and hence
to check protocols with interesting combinations of one-to-one and one-to-many
correspondences.

In conclusion, the present paper usefully broadens the class of authenticity
properties provable by typechecking. Still, our system continues to lack a general
treatment of various issues, such as insider attacks and key compromises. We
leave these questions, and the experimental evaluation of this type system, as
future work.
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