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1.1 Introduction

Many computer vision problems such as object segmentation, disparity estimation, and 3D reconstruction
can be formulated as pixel or voxel labeling problems. The conventional methods for solving these problems
use pairwise Conditional and Markov Random Field (CRF/MRF) formulations [1]], which allow for the
exact or approximate inference of Maximum a Posteriori (MAP) solutions. MAP inference is performed
using extremely efficient algorithms such as combinatorial methods (e.g. graph-cut [2, 3| 4] or the BHS-
algorithm [3} 6]), or message passing based techniques (e.g. Belief Propagation (BP) [7, 8, [9] or Tree-
Reweighted (TRW) message passing [10} [11]).
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The classical formulations for image labelling problems represent all output elements using random
variables. An example is the problem of interactive object cut-out where each pixel is represented using a
random variable which can take two possible labels: foreground or background. The conventionally used
pairwise random field models introduce a statistical relationship between pairs of random variables, often
only among the immediate 4 or 8 neighboring pixels. Although such models permit efficient inference,
they have restricted expressive power. In particular, they are unable to enforce the high-level structural
dependencies between pixels that have been shown to be extremely powerful for image labeling problems.
For instance, while segmenting an object in 2D or 3D, we might know that all its pixels (or parts) are
connected. Standard pairwise MRFs or CRFs are not able to guarantee that their solutions satisfy such a
constraint. To overcome this problem, a global potential function is needed which assigns all such invalid
solutions a zero probability or an infinite energy.

Despite substantial work from several communities, pairwise MRF and CRF models for computer vision
problems have not been able to solve image labelling problems such as object segmentation fully. This has
led researchers to question the richness of these classical pairwise energy function based formulations, which
in turn has motivated the development of more sophisticated models. Along these lines, many have turned to
the use of higher-order models that are more expressive, thereby enabling the capture of statistics of natural
images more closely.

The last few years have seen the successful application of higher-order CRFs and MRFs to some low-
level vision problems such as image restoration, disparity estimation and object segmentation [[12, [13} 14,
150116, 17, 18,119} 20, 21} 122} 23]]. Researchers have used models composed of new families of higher-order
potentials i.e. potentials defined over multiple variables, which have higher modelling power and lead to
more accurate models of the problem. Researchers have also investigated incorporation of constraints such
as connectivity of the segmentation in CRF and MRF models. This is done by including higher-order or
global potentialsﬂ that assign zero probability (infinite cost) to all label configurations that do not satisfy
these constraints.

One of the key challenges with respect to higher-order models is the question of efficiently inferring the
Maximum a Posterior (MAP) solution. Since, inference in pairwise models is very well studied, one pop-
ular technique is to transform the problem back to a pairwise random field. Interestingly, any higher-order
function can be converted to a pairwise one, by introducing additional auxiliary random variables [5, 24]].
Unfortunately, the number of auxiliary variables grows exponentially with the arity of the higher-order func-
tion, hence in practice only higher-order function with a few variables can be handled efficiently. However,
if the higher-order function contains some inherent “structure” then it is indeed possible to practically per-

form MAP inference in a higher-order random field where each higher-order function may act on thousands

IPotentials defined over all variables in the problem are referred to as global potentials.
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of variables [25} 15} 126, 21]]. We will review various examples of such potential functions in this chapter.
There is a close relationship between higher-order random fields and random field models containing
latent variables [27,[19]]. In fact, as we will see later in the chapter, any higher order model can be written as
a pairwise model with auxiliary latent variables and vice versa [27]. Such transformations enable the use of
powerful optimization algorithms and even result in global optimally solutions for some problem instances.
We will explain the connection between higher order models and models containing latent variables using

the problem of interactive foreground/background image segmentation as an example [28., 29]].

QOutline This chapter deals with higher-order graphical models and their applications. We discuss a num-
ber of recently proposed higher-order random field models and the associated algorithms that have been
developed to perform MAP inference in them. The structure of the chapter is as follows.

We start with a brief introduction of higher-order models in section [I.2] In section [I.3] we introduce
a class of higher-order functions which encode interactions between pixels belonging to image patches or
regions. In section |1.4{ we relate the conventional latent variable CRF model for interactive image segmen-
tation [28]] to a random field model with region-based higher-order functions. Section [[.5]discusses models
which encode image-wide (global) constraints. In particular, we discuss the problem of image segmentation
under a connectivity constraint and solving labeling problems under constraints on label-statistics. In the
last section [T.6] we discuss algorithms that have been used to perform MAP inference in such models. We
concentrate on two categories of techniques: the transformation approach, and the problem (dual) decom-
position approach. We also give pointers to many other inference techniques for higher-order random fields
such as message passing [18} 21]]. For topics on higher-order model that are not discussed in this chapter,

we refer the reader to [30, 31]].

1.2 Higher-order Random Fields

Before proceeding further, we provide the basic notation and definitions used in this chapter. A random field
is defined over a set of random variables x = {x;|i € V}. These variables are typically arranged on a lattice
V ={1,2,...,n} and represent scene elements, such as pixels or voxels. Each random variable takes a value
from the label set L = {I},1,,...,I;}. For example, in scene segmentation the labels can represent semantic
classes such as building, tree or person. Any possible assignment of labels to the random variables will be
called a labeling (also denoted by x). Clearly, in the above scenario the total number of labelings x is k".
An MRF or CRF model enforces a particular factorization of the posterior distribution P(x|d), where
d is the observed data (e.g. RGB input image). It is common to define an MRF or CRF model through its

so-called Gibbs energy function E(x) which is the negative log of the posterior distribution of the random
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field i.e.
E(x;d) = —log P(x|d) + constant. (1.1)

The energy (cost) of a labeling x is represented as a sum of potential functions, each of which depends on a
subset of random variables. In its most general form, the energy function can be defines as:
E(x;d) = ) ye(xo). (1.2)
ceC
Here, c is called a clique which is a set of random variables x. which are conditionally dependent on each
other. The term y.(x.) denotes the value of the clique potential corresponding to the labeling x. C x for the
clique ¢, and C is the set of all cliques. The degree of the potential y,(-) is the size of the corresponding
clique ¢ (denoted by |c|). For example, a pairwise potential has |c| = 2.
For the well-studied special case of pairwise MRFs, the energy only consists of potentials of degree one

and two, that is,

E(x;d) =Y wilxsd)+ ) wij(xi,x;). (1.3)

eV (i,j)e€
Here € represents the set of pairs of variables which interact with each other. In the case of image segmen-
tation, & may encode a 4-connected neighborhood system on the pixel-lattice.
Observe that the pairwise potential ;;(x;,x;) in equation does not depend on the image data. If we

condition the pairwise potentials on the data, then we obtain a pairwise CRF models which is defined as:

E(x;d) =Y wilxzd)+ Y, wij(xi,xj:d). (1.4)
= (if)ee

1.3 Patch and Region based potentials

In general it is computationally infeasible to exactly represent a general higher order potential function
defined over many Variableﬂ Some researchers have proposed higher order models for vision problems
which use potentials defined over a relatively small number of variables. Examples of such models include
the work of Woodford et al [23] on disparity estimation using a third order smoothness potential, and El-
Zehiry and Grady [12] on image segmentation with a curvature potentia]ﬂ In such cases, it is also feasible to
transform the higher order energy into an equivalent pairwise energy function with the addition of a relatively
small number of auxiliary variables and minimize the resulting pairwise energy using conventional energy

minimization algorithms.

ZRepresentation of a general m order potential function of k-state discrete variables requires k™ parameter values
3El-Zehiry and Grady [12]] used potentials defined over 2x2 patches to enforce smoothness. Shekhovtsov et al. [32] have recently

proposed a higher order model for encouraging smooth, low curvature image segmentations that uses potentials defined over much

large sets of variables and was learnt using training data.
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Although the above-mentioned approach has been shown to produce good results, it is not able to deal
with higher order potential defined over very large number (hundreds or thousands) of variables. In the
following, we present two categories of higher-order potentials that can be represented compactly and min-
imized efficiently. The first category encodes the property that pixels belonging to certain groups take the
same label. While this is a powerful concept in several application domains e.g., pixel-level object recogni-
tion, it is not always applicable, e.g. image denoising. The second category generalizes this idea by allowing

groups of pixels to take arbitrary labelings, as long as the set of different labelings is small.

1.3.1 Label consistency in a set of variables

A common method to solve various image labeling problems like object segmentation, stereo and single
view reconstruction is to formulate them using image segments (so called super-pixels [33]]) obtained from
unsupervised segmentation algorithms. Researchers working with these methods have made the observation
that all pixels constituting the segments often have the same label, that is they might belong to the same
object or might have the same depth.

Standard super-pixel based methods use label consistency in super-pixels as a hard constraint. Kohli et
al. [25]) proposed a higher-order CRF model for image labeling that used label consistency in super-pixels as
a soft constraint. This was done by using higher-order potentials defined on the image segments generated
using unsupervised segmentation algorithms. Specifically, they extend the standard pairwise CRF model
often used for object segmentation by incorporating higher-order potentials defined on sets or regions of
pixels. In particular, they extend the pairwise CRF which is used in TextonBoost [34

The Gibbs energy of the higher-order CRF of [25]] can be written as:

Ex)=Y wilx)+ Y wijlxix)+ Y we(xe), (1.5)

i€V (i,j)EE ceSs

where € represents the set of all edges in a 4- or §-connecting neighbourhood system, S refers to a set of
image segments (or super-pixels), and . are higher-order label consistency potentials defined on them. In
[25]], the set S consisted of all segments of multiple segmentations of an image obtained using an unsuper-
vised image segmentation algorithm such as mean-shift [35]]. The labels constituting the label set £ of the
CREF represent the different objects. Every possible assignment of the random variables x (or configuration
of the CRF) defines a segmentation.

The label consistency potential used in [25] is similar to the smoothness prior present in pairwise

CRFs [36]. It favors all pixels belonging to a segment taking the same label. It takes the form of a P"

4Kohli et al. ignore a part of the TextonBoost [34] energy that represents a global appearance model for each object-class.
In section [[.4] we will revisit this issue and show that in fact this global, appearance model is closely related to the higher-order

potentials defined in [23]].
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Figure 1.1: Behavior of the rigid P" Potts potential (left) and the Robust P" model potential (right). The
figure shows how the cost enforced by the two higher-order potentials changes with the number of variables
in the clique not taking the dominant label i.e. N;j(x.) = ming(|c| — ng(x.)), where ny(.) returns the number
of variables x; in X, that take the label k. Q is the truncation parameter used in the definition of the higher

order potential (see equation|[I.7).

Potts model [15]]:
0 if xi =, Vi€ c,

Wc(xc) = (1.6)
01/c|% otherwise.

where |c| is the cardinality of the pixel set CE], and 0; and O, are parameters of the model. The expression
01 |c|® gives the label inconsistency cost, i.e. the cost added to the energy of a labeling in which different
labels have been assigned to the pixels constituting the segment. Figure [I.I[left) visualizes a P" Potts
potential.

The P" Potts model enforces label consistency rigidly. For instance, if all but one of the pixels in a
super-pixel take the same label then the same penalty is incurred as if they were all to take different labels.
Due to this strict penalty, the potential might not be able to deal with inaccurate super-pixels or resolve
conflicts between overlapping regions of pixels. Kohli et al. [25]] resolved this problem by using the Robust
higher-order potentials defined as:

volx) = Ni(Xe) g¥max  if Ni(xc) < Q a7

Ymax otherwise.
where N;(x.) denotes the number of variables in the clique ¢ not taking the dominant label i.e. N;(x.) =
ming (|| — nx(xc)), Ymax = |c|% (01 4 02G(c)) where G(c) is the measure of the quality of the super-pixel
¢, and Q is the truncation parameter which controls the rigidity of the higher-order clique potential. Figure

[I.T(right) visualizes a robust P" Potts potential.

SFor the problem of [23] this is the number of pixels constituting super-pixel c.
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Figure 1.2: Some qualitative results. Please view in colour. First Row: Original Image. Second Row:
Unary likelihood labeling from TextonBoost [34]. Third Row: Result obtained using a pairwise contrast
preserving smoothness potential as described in [34)]. Fourth Row: Result obtained using the P" Potts model
potential [15)]. Fifth Row: Results using the Robust P" model potential ({I.7) with truncation parameter
Q = 0.1|c|, where |c| is equal to the size of the super-pixel over which the Robust P" higher-order potential
is defined. Sixth Row: Hand labeled segmentations. The ground truth segmentation are not perfect and many
pixels (marked black) are unlabelled. Observe that the Robust P" model gives best results. For instance, the

leg of the sheep and bird have been accurately labeled which was missing in the other results.

Unlike the standard P" Potts model, this potential function gives rise to a cost that is a linear truncated

function of the number of inconsistent variables (see figure [I.T). This enables the robust potential to allow
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Figure 1.3: (a) Robust P" model for binary variables. The linear functions f| and f, represents the penalty
for variables not taking the labels 0 and 1 respectively. The function f3 represents the robust truncation fac-

tor. (b) The general concave form of the robust P" model defined using a larger number of linear functions.

some variables in the clique to take different labels. Figure [I.2]shows results for different models.

Lower-envelope Representation of Higher-order Functions Kohli and Kumar [24] showed that many
types of higher-order potentials including the Robust P" model can be represented as lower envelopes of
linear functions. They also showed that the minimization of such potentials can be transformed to the
problem of minimizing a pairwise energy function with the addition of a small number of auxiliary variables
which take values from a small label set.

It can be easily seen that the Robust P" model (I.7) can be written as a lower envelope potential using

h+ 1 linear functions. The functions f9,qg € Q = {1,2,...,h+ 1} are defined using

Yo if g=acL,
Ymax Otherwise,
0 if g=h+lora=qeL,

o, otherwise.

The above formulation is illustrated in figure[I.3] for the case of binary variables.

1.3.2 Pattern-based potentials

The potentials in the previous section were motivated by the fact that often a group of pixels have the same
labeling. While this is true for a group of pixels which is inside an object, it is violated for a group which
encodes a transitions between objects. Furthermore, the label consistency assumption is also not useful
when the labeling represents e.g. natural textures. In the following we will generalize the label-consistency
potentials to so-called pattern-based potentials, which can model arbitrary labelings. Unfortunately, this

generalization also implies that the underlying optimization will become harder (see sec. [I.6).
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Figure 1.4: Different parameterizations of higher-order potentials. (a) The original higher-order potential
function. (b) Approximating pattern-based potential which requires the definition of 7 labelings. (c) The
compact representation of the higher-order function using the functional form defined in equation (1.9).

This representation ([I.9) requires only t = 3 deviation functions.

Suppose we had a dictionary containing all possible 10 x 10 patches that are present in natural real-
world images. One could use this dictionary to define a higher-order prior for the image restoration problem
which can be incorporated in the standard MRF formulation. This higher-order potential is defined over sets
of variables, where each set corresponds to a 10 x 10 image patch. It enforces that patches in the restored
image come from the set of natural image patches. In other words, the potential function assigns a low cost
(or energy) to the labelings that appear in the dictionary of natural patches. The rest of the labelings are
given a high (almost constant) cost.

It is well known that only a small fraction of all possible labelings of a 10 x 10 patch actually appear in
natural images. Rother et al. [26] used this sparsity property to compactly represent a higher-order potential
prior for binary texture denoising by storing only the labelings that need to be assigned a low cost, and
assigning a (constant) high cost to all other labelings.

They parameterize higher-order potentials by a list of possible labelings (also called patterns [37]) X =
{X1,Xs,...,X;} of the clique variables x., and their corresponding costs 8 = {6,0,,...,6,}. They also

include a high constant cost O« for all other labelings. Formally, the potential functions can be defined as:

0, ifx.=X,cX
We(x,) = (1.8)

Omax otherwise ,

where 0, < 0,5, V0, € 6. The higher-order potential is illustrated in Figure b). This representation was
concurrently proposed by Komodakis ez al. [37].

Soft Pattern potentials The pattern-based potential is compactly represented and allows efficient infer-
ence. However, the computation cost is still quite high for potentials which assign a low cost to many

labelings. Notice that the pattern-based representation requires one pattern per low-cost labeling. This
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representation cannot be used for higher-order potentials where a large number of labelings of the clique
variables are assigned low weights (< Opax)-

Rother et al. [26] observed that many low cost label assignments tend to be close to each other in terms
of the difference between labelings of pixels. For instance, consider the image segmentation task which has
two labels, foreground (f) and background (). It is conceivable that the cost of a segmentation labeling
(fffb) for 4 adjacent pixels on a line would be close to the cost of the labeling (ffbb). This motivated them
to try to encode the cost of such groups of similar labelings in the higher-order potential in such a way that
their transformation to quadratic functions does not require increasing the number of states of the switching
variable z (see details in sec. [I.6). The differences of the representations are illustrated in figure [T.4(b) and
(©).

They parameterized the compact higher-order potentials by a list of labeling deviation cost functions
D ={d,,ds,...,d; }, and a list of associated costs 6 ={8;,6,,...,0,}. They also maintain a parameter for the
maximum cost Op,« that the potential can assign to any labeling. The deviation cost functions encode how
the cost changes as the labeling moves away from some desired labeling. Formally, the potential functions

can be defined as:

Ye(xc) =min{ min 6,4+ d,(Xc),0max} (1.9)
qe{1,2,...t}

where deviation functions d, : LI — R are defined as:  d(xc) = Liceer Whd(x; = 1), where w¥ is the
cost added to the deviation function if variable x; of the clique c is assigned label /. The function 8(x; = 1)
is the Kronecker delta function that returns value 1 if x; = [ and returns O for all assignments of x;. This
higher-order potential is illustrated in fig. [T.4[c). It should be noted that the higher-order potential (I.9) is a
generalization of the pattern-based potential defined in equation and in [37]. Setting weights w?l as:

0 if X,(i)=1

= (1.10)
Omax  Otherwise

i

makes potential (I.9) equivalent to equation (1.8).
Note, that the above pattern-based potentials can also be used to model arbitrary higher-order potentials,

as done in e.g. [38]], as long as the size of the clique is small.

Pattern-based higher-order potentials for binary texture denoising Pattern-based potentials are espe-
cially important for computer vision since many image labeling problems in vision are dependent on good
prior models of patch labelings. In existing systems, such as new view synthesis, e.g. [13], or super-
resolution, e.g. [39]], patch-based priors are used in approximate ways and do not directly solve the under-
lying higher-order random field.

Rother et al. [26] demonstrated the power of the pattern-based potentials for the toy task of denoising
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(d) selected patterns (e) corresponding (f) Pairwise MRF
6 (out of 10) deviation costs Error 16.4%

(g) 15 10x10 deviation pat.  (h) Same as (g) but (i) Same as (g) but no patch (j) Same as (g) but data- (k) Illustration for (g) (1) Nustration for (g)
Error 10.5% no pairw. Error 16.5% robust. Error 23% driven dict. Error 6.9% active HO-nodes active HO-patterns

Figure 1.5: Binary texture restoration for Brodatz texture DI0I. (a) Training image (86 x 86 pixels). (b)
Test image. (c) Test image with 60% noise, used as input. (d) 6 (out of 10) selected patterns of size 10 x 10
pixels. (e) Their corresponding deviation cost function. (f-j) Results of various different models (see text for

details).

a specific type of binary texture, i.e. Brodatz texture DlOllﬂ Given a training image, fig. a), their goal
was to denoise the input image (c) to achieve ideally (b). To derive the higher-order potentials, they selected
a few patterns, of size 10 x 10 pixels, which occur frequently in the training image (a) and are as different
as possible in terms of their Hamming distance. They achieve this by k-means clustering over all training
patches. Fig. [[.5(d) depicts 6 (out of k=10) such patterns.

To compute the deviation function for each particular pattern they considered all patterns which belong
to the same cluster. For each position within the patch, they record the frequency of having the same value.
Figure[I.5]e) shows the associate deviation costs, where a bright value means low frequency (i.e. high cost).
As expected, lower costs are at the edge of the pattern. Note, the scale and truncation of the deviation
functions, as well as the weight of the higher-order function with respect to unary and pairwise terms, are
set by hand in order to achieve best performance. The results for various models are shown in fig. [I.5(f-1).
(Please refer to [26] for a detailed description of each model.)

Figure[1.5]f) shows the result with a learned pairwise MRF. It is apparent that the structure on the patch-
level is not preserved. In contrast, the result in fig. [I.5(g), which uses the soft higher-order potentials and
pairwise function, is clearly superior. Figure[I.5(h) shows the result with the same model as in (g) but where
pairwise terms are switched off. The result is less good since those pixels which are not covered by a patch

are unconstrained and hence take the optimal noisy labeling. Figure[I.5]i) shows the importance of having

OThis specific denoising problem has also been addressed previous in [40].
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(a) input (b) EM procedure (c) DD procedure (global opt.)

Figure 1.6: Interactive image segmentation using the interactive segmentation method proposed in [29]. The
user places a yellow rectangle around the object (a). The result (b) is achieved with the iterative EM-style
procedure proposed [29]. The result (c) is the global optimum of the function, which is achieved by trans-
forming the energy to a higher-order random field and applying a dual-decomposition (DD) optimization

technique [l19)]. Note, the globally optimal result is visually superior.

patch robustness, i.e. that Oy,x in eqn. is not infinite, which is missing in the classical patch-based
approaches (see [26]). Finally, EK]’) shows a result with the same model as in (g) but with a different
dictionary. In this case the 15 representative patches are different for each position in the image. To achieve
this, they used the noisy input image and hence have a CRF model instead of an MRF model (see details in
[26]).

Figure [[.5(k-1) visualizes the energy for the result in (g). In particular, [[.5(k) illustrates in black those
pixels where the maximum (robustness) patch cost Oy, is paid. It can be observed that only a few pixels do
not utilize the maximum cost. Figure [I.3(1) illustrates all 10 x 10 patches which are utilized, i.e. each white
dot in [I.5|k) relates to a patch. Note that there is no area in[[.5(1) where a patch could be used which does

not overlap with any other patch. Also, note that many patches do overlap.

1.4 Relating appearance models and region-based potentials

As mentioned in the previous section [I.3.1] there is a connection between robust P" Potts potentials and
the TextonBoost model [34]] that contains variables that encode the appearance of the foreground and back-
ground regions in the image. In the following, we will analyze this connection which was presented in the
work of Vicente et. al. [19].

TextonBoost [34] has an energy term that models for each object-class segmentation an additional para-
metric appearance model. The appearance model is derived at test-time for each image individually. For
simplicity let us consider the interactive binary segmentation scenario, where we know beforehand that
only two classes (fore- and background) are present. Figure [I.6] explains the application scenario. It has

been shown in many works that having an additional appearance model for both fore- and background give
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improved results [28, 29]]. The energy of this model takes the form:
E(x,0°,0') = Zwi(xi,eo,el,di)—i— Z wijlxi —x;j] . (1.11)
eV (i,j)e€
Here € is the set of 4-connected neighboring pixels, and x; € {0,1} is the segmentation label of pixel i
(where 0 corresponds to background and 1 to foreground). The first term of eqn. [I.11]is the likelihood term,
where d; is the RGB color at site i and 8° and 8! are respectively the background and foreground color
models. Note that the color models 8°,8! act globally on all pixels in the respective segment. The second
term is the standard contrast-sensitive edge term, see [28, 29] for details.

The goal is to minimize the energy jointly for x, 8" and @'. In [29] this optimization was done
in an iterative, EM-style fashion. It works by iterating the following steps: (i) Fix color models 6°,8! and
minimize energy over segmentation x. (ii) Fix segmentation X, minimize energy over color
models 8°,0'. The first step is solved via a maxflow algorithm, and the second one via standard machine
learning techniques for fitting a model to data. Each step is guaranteed not to increase the energy, but of
course the procedure may get stuck in a local minimum, as shown in fig. [I.6(b).

In the following we show that the global variables can be eliminated by introducing global region-based
potentials in the energy. This then allows for more powerful optimization techniques, in particular the dual-
decomposition procedure. This procedure provides empirically a global optimum in about 60% of cases,
see one example in fig. [[.6]c).

In [19] the color models were expressed in the form of histograms. We assume that the histogram has
K bins indexed by k = 1,...,K. The bin in which pixel i falls is denoted as b;, and V; C V denotes the
set of pixels assigned to bin k. The vectors 8° and 8! in [0, 1]X represent the distribution over fore- and
background, respectively, and sum to 1. The likelihood model is then given by

vi(x;,6°,0',d;) =) —log 6} , (1.12)

1

where 9)12 represents the likelihood of observing a pixel belonging to bin b; which takes label x;.

Rewriting the energy via high-order cliques Let us denote ;. to be the number of pixels i that fall into
bin k and have label s, i.e. n} = Y,cy, 8(x; —s). All these pixels contribute the same cost —log 6j to the

term ;(x;,0°,0',d;), therefore we can rewrite it as
vi(x,0°,0'.d;) =Y ) —njlog 6} . (1.13)
s k

It is well-known that for a given segmentation x distributions 8° and 8! that minimize ;(x;,6°,0',d;)

are simply the empirical histograms computed over the appropriate segments: 0; = n}/n* where n’ is the
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number of pixels with label s : n* = Y. 8(x; — s). Plugging optimal 8° and 0! into the energy (1.11)) gives

the following expression:

E(x) = gglierllE(x,eo,el):th(n}c)nth(nl)%— Z wijlxi — x|, with (1.14)
’ k (i,j)e€

h(ng) = —g(m) —glmk—ny) (1.15)

h(n') = g(n')+gn—n'), (1.16)

where g(z) = z log(z),nx = | V| is the number of pixels in bin k and n = |V| is the total number of pixels.
It is easy to see that functions /(-) are concave and symmetric about n; /2, and function A(-) is convex
and symmetric about n/2. Unfortunately, as we will see in sec. the convex part makes the energy hard
to be optimized. The form of eqn.(I.14) allows an intuitive interpretation of this model. The first term (sum
of concave functions) has a preference towards assigning all pixels in V; to the same segment. The convex
part prefers balanced segmentations, i.e. segmentations in which the background and the foreground have

the same number of pixels.

Relationship to Robust P” model for binary variables The concave functions /(-), i.e. eqn. (1.15)
have the form of a robust P" Potts model for binary variables as illustrated in fig. [I.3(b). There are two
main differences between the model of [25]] and [[19]]. Firstly, the energy of [[19] has a balancing term (eqn.
[I.16). Secondly, the underlying super-pixel segmentation is different. In [19], all pixels in the image which
have the same colour are deemed to belong a single super-pixel, whereas in [25]] super-pixels are spatially
coherent. An interesting future work is to perform an empirical comparison of these different models. In
particular, the balancing term (eqn. [I.16) may be weighted differently, which can lead to improved results

(see examples in [19]).

1.5 Global Potentials

In this section we discuss higher-order potential functions which act on all variables in the model. For
image labelling problems, this implies a potential whose cost is affected by the labelling of every pixel. In
particular, we will consider two types of higher-order functions: ones which enforce topological constraints
on the labelling such as connectivity of all foreground pixels, and those whose cost depends on the frequency

of assigned labels.

1.5.1 Connectivity Constraint

Enforcing connectivity of a segmentation is a very powerful global constraint. Consider fig. where the

concept of connectivity is used to build an interactive segmentation tool. To enforce connectivity we can
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(2) User input (b) Graph cut ~ (c) Graph cut (d) Additional (e) DijkstraGC
reduced coherency user input

Figure 1.7: Illustrating the connectivity prior from [41)]. (a) Image with user-scribbles (green - foreground;
blue - background). Image segmentation using graph cut with standard (b) and reduced coherency (c).
None of the results are perfect. By enforcing that the foreground object is 4-connected a perfect result can
be achieved (e). Note, this result is obtained by starting with the segmentation in (b) and then adding the 5

foreground user-clicks (red crosses) in (d).

simply write the energy as

E(x)= Y wi(x)+ Y wijlxi—xj| s.t.xbeing connected, (1.17)
i€V (i,))eE

where connectivity can for instance be defined on the standard 4-neighborhood grid. Apart from the con-
nectivity constraint, the energy is a standard pairwise energy for segmentation, as in eqn. (L.II). In [20]
a modified version of this energy is solved with each user interaction. Consider the result in fig. [I.7(b)
that is obtained with the input in [I.7((a). Given this result, the user places one red cross, e.g. at the tip of
the fly’s leg (fig. [[.7(d)), to indicate another foreground pixel. The algorithm in [20] then has to solve the
subproblem of finding a segmentation where both islands (body of the fly and red cross) are connected. For
this a new method called DijkstraGC was developed, which combines the shortest-path Dijkstra algorithm
and graph cut. In [20] it is also shown that for some practical instances DijkstraGC is globally optimal. Tt
is worth commenting that the connectivity constraint enforces a different from of regularization compared
to standard pairwise terms. Hence in practice the strength of the pairwise terms may be chosen differently
when the connectivity constraint potential is used.

The problem of minimizing the energy (I.17) directly has been addressed in Nowozin et. al [42], using a
constraint-generation technique. They have shown that enforcing connectivity does help object recognition
systems. Very recently the idea of connectivity was used for 3D reconstruction, i.e. to enforce that objects

are connected in 3D, see details in [41]].

Bounding Box Constraint Building on the work [42], Lempitsky er al. extended the connectivity
constraint to the so-called bounding box prior. Figure [I.8] gives an example where the bounding box prior

helps to achieve a good segmentation result.
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Figure 1.8: Bounding Box prior. (Left) Typical result of the image segmentation method proposed in [29]
where the user places the yellow bounding box around the object which results in the blue segmentation. The
result is expected since in the absence of additional prior knowledge the head of the person is more likely
background, due to the dark colors outside the box. (Right) Improved result after applying the bounding box
constraint. It enforces that the segmentation is spatially “close” to the four sides of the bounding box and

also that the segmentation is connected.

The bounding box prior is formalized with the following energy
E(x)= Y wilx)+ Y wijlx—x;| st.vVCel Y x>1, (1.18)
iV (i,J))€E ieC

where I is the set of all 4-connected “crossing” paths. A crossing path C is a path which goes from the
top to the bottom side of the box, or from the left to the right side. Hence the constraint in (I.T8) forces
that along each path C there is at least one foreground pixel. This constraint makes sure that there exist a
segmentation which touches all 4 sides of the bounding box and which is also 4-connected. As in [42], the
problem is solved by first relaxing it to continuous labels, i.e. x; € [0,1], and then applying a constraint-
generation technique, where each constraint is a crossing path which violates the constraint in eqn. (T.T8).
The resulting solution is then converted back to an integer solution, i.e. x; € {0, 1}, using a rounding schema

called pin-pointing, see details in [43].

1.5.2 Constraints and Priors on label statistics

A simple and useful global potential is a cost based on the number of labels which are present in the final
output. In its most simple form the corresponding energy function has the form:
E(x) = Z (X)) + Z Wij(xi,x;) + ch[ﬂi:x,- =1, (1.19)
i€V (i,))eE leL
where L is the set of all labels, ¢; is the cost for each label, and [arg] is 1 if arg is true, and O otherwise. The
above defined energy prefers a simpler solution over a more complex one.
The label cost potential has been used successfully in various domains, such as stereo [44], motion

estimation [43], object segmentation and object-instance recognition [46]]. For instance in a 3D
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(a) Stereo pair (b) Without label-constraint

Figure 1.9: lllustrating the label-cost prior. (a) Crop of a stereo image (“cones” image from Middlebury
database). (b) Result without a label-cost prior. In the left image each color represents a different surface,
where gray-scale colors mark planes and non gray-scale colors B-splines. The right image shows the
resulting depth map. (c) Corresponding result with label-cost prior. The main improvement over (b) is that

large parts of the green background (visible through the fence) are assigned to the same planar surface.

scene is reconstructed by a set of surfaces (planes or B-splines). A reconstruction with fewer surfaces is
preferred due to the label-cost prior. One example where this prior helps is shown in fig. [I.9] where a plane,
which is visible through a fence, is recovered as one plane, instead of many planar fragments.

Various method have been proposed for minimizing the energy (I.19) including alpha-expansion (see
details in [14, 43]). Extension to the energy defined in[T.I9]have also been proposed. For instance, Ladicky
et al. [14] have addressed the problem of minimizing energy functions containing a term whose cost is an

arbitrary function of the set of labels present in the labeling.

Higher-order Potentials enforcing Label Counts In many computer vision problems such as object seg-
mentation or reconstruction, which are formulated in terms of labeling a set of pixels, we may know the
number of pixels or voxels which can be assigned to a particular label. For instance, in the reconstruction
problem, we may know the size of the object to be reconstructed. Such label count constraints are extremely
powerful and have recently been shown to result in good solutions for many vision problems.

Werner [22]] were one of the first to introduce constraints on label counts in energy minimization. They
proposed a n-ary maxsum diffusion algorithm for solving these problems, and demonstrated its performance
on the binary image denoising problem. Their algorithm, however, could only produce solutions for some
label counts. It was not able to guarantee an output for any arbitrary label count desired by the user. Kol-
mogorov et al. [47] showed that for submodular energy functions, the parametric maxflow algorithm can
be used for energy minimization with label counting constraints. This algorithm outputs optimal solutions
for only few label counts. Lim ef al.[49] extended this work by developing a variant of the above algorithm
they called decomposed parametric maxflow. Their algorithm is able to produce solutions corresponding to

many more label counts.
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(a) Training set 0 (b) Cost function (c) Testimage  (d) Test image noisy (e) MRF (f) MPF

Figure 1.10: lllustrating the advantage of using an Marginal Probability Field (MPF) over an MRF. (a) Set
of training images for binary texture denoising. Superimposed is a pairwise term (translationally invariant
with shift (15; 0); 3 exemplars in red). Consider the labeling k = (1,1) of this pairwise term §. Each training
image has a certain number h(; 1y of (1,1) labels, i.e. h(; 1y = Y,;[¢; = (1,1)]. The negative logarithm of the
statistics {h(l,l)} over all training images is illustrated in blue (b). It shows that all training images have
roughly the same number of pairwise terms with label (1,1). The MPF uses the convex function f. (blue) as
cost function. It is apparent that the linear cost function of an MRF is a bad fit. (c) A test image and (d) a
noisy input image. The result with an MRF (e) is inferior to the MPF model (f). Here the MPF uses a global

potential on unary and pairwise terms.

0 20 40 60
(e) Derivative histogram

Figure 1.11: Results for image denoising using a pairwise MRF (c) and an MPF model (d). The MPF forces
the derivatives of the solution to follow a mean distribution, which was derived from a large dataset. (f)
Shows derivative histograms (discretized into the 11 bins). Here black is the target mean statistic, blue is
for the original image (a), yellow for noisy input (b), green for the MRF result (c), and red for the MPF
result (d). Note, the MPF result is visually superior and does also match the target distribution better. The

runtime for the MRF (c) is 1096s and for MPF (d) 2446s.

Marginal Probability Fields Finally let us review the marginal probability field introduced in [50], which
uses a global potential to overcome some fundamental limitations of Maximum-a-Posterior (MAP) estima-

tion in Markov random fields (MRFs).

The prior model of a Markov random field suffers from a major drawback: the marginal statistics of the

most likely solution (MAP) under the model generally do not match the marginal statistics used to create the
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model. Note, we refer to the marginal statistics of the cliques used in the model, which generally equates to
those statistics deemed important. For instance, the marginal statistics of a single clique for a binary MRF
are the number of Os and 1s of the output labeling.

To give an example, given a corpus of binary training images which each contain 55% white and 45%
black pixels (with no other significant statistic), a learned MRF prior will give each output pixel an indepen-
dent probability of 0.55 of being white. Since the most likely value for each pixel is white, the most likely
image under the model has 100% white pixels, which compares unfavorably with the input statistic of only
55%. When combined with data likelihoods, this model will therefore incorrectly bias the MAP solution
towards being all white, the more so the greater the noise and hence data uncertainty.

The marginal probability field (MPF) overcomes this limitation. Formally, the MPF is defined as

E(x)=) f (Z[m(x) —ﬂ) : (1.20)
k i

where [arg] is defined as above, ¢;(x) returns the labeling of a factor at position i, k is an n-d vector, and f; is
the MPF cost kernel R — R™. For example, a pairwise factor of a binary random field has |k| = 4 possible
states, i.e. k € {(0,0),(0,1),(1,0),(1,1)}.

The key advantage of an MPF over an MREF is that the cost kernel f; is arbitrary. In particular, by
choosing a convex form for the kernel any arbitrary marginal statistics can be enforced. Figure gives
an example for binary texture denoising. Unfortunately, the underlying optimization problem is rather chal-
lenging, see details in [50]. Note that linear and concave kernels result in tractable optimization problems,
e.g. for unary factors this has been described in sec. (see fig. b) for a concave kernel for };[x; = 1]).

The MPF can be used in many applications, such as denoising, tracking, segmentation, and image syn-

thesis (see [50]). Figure[I.T]illustrates an example for image denoising.

1.6 Maximum a Posteriori Inference

Given an MREF, the problem of estimating the maximum a posteriori (MAP) solution can be formulated
as finding the labeling x that has the lowest energy. Formally, this procedure (also referred to as energy

minimization) involves solving the following problem:
x" = argminE(x;d). (1.21)
X

The problem of minimizing a general energy function is NP-hard in general, and remains hard even if we
restrict the arity of potentials to 2 (pairwise energy functions). A number of polynomial time algorithms
have been proposed in the literature for minimizing pairwise energy functions. These algorithms are able

to find either exact solutions for certain families of energy functions or approximate solutions for general
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functions. These approaches can broadly be classified into two categories: message passing and move
making. Message passing algorithms attempt to minimize approximations of the free energy associated
with the MRF [10, 1511 52]].

Move making approaches refer to iterative algorithms that move from one labeling to the other while
ensuring that the energy of the labeling never increases. The move space (that is, the search space for the
new labeling) is restricted to a subspace of the original search space that can be explored efficiently [2].
Many of the above approaches (both message passing [[10} 51} 52]] and move making [2]) have been shown
to be closely related to the standard LP relaxation for the pairwise energy minimization problem [53]].

Although there has been work on applying message passing algorithms for minimizing certain classes
of higher-order energy functions [21, [18]], the general problem has been relatively ignored. Traditional
methods for minimizing higher-order functions involve either (1) converting them to a pairwise form by
addition of auxiliary variables, followed by minimization using one of the standard algorithms for pairwise
functions (such as those mentioned above) [15 138} 137, 26], or (2) using dual-decomposition which works
by decomposing the energy functions into different parts, solving them independently and then merging the

solution of the different parts [20} 50].

1.6.1 Transformation based methods

As mentioned before, any higher-order function can be converted to a pairwise one, by introducing additional
auxiliary random variables [5, [24]]. This enables the use of conventional inference algorithms such as Belief
Propagation, Tree Reweighted message passing, and Graph cuts for such models. However, this approach
suffers from the problem of combinatorial explosion. Specifically, a naive transformation can result in an
exponential number of auxiliary variables (in the size of the corresponding clique) even for higher-order
potentials with special structure [38, 37, [26].

In order to avoid the undesirable scenario presented by the naive transformation, researchers have re-
cently started focusing on higher-order potentials that afford efficient algorithms [25, [15 122} 23] |50]. Most
of the efforts in this direction have been towards identifying useful families of higher-order potentials and
designing algorithms specific to them. While this approach has led to improved results, its long term im-
pact on the field is limited by the restrictions placed on the form of the potentials. To address this issue,
some recent works [24, [14} 45| 38| [37, 26]] have attempted to characterize the higher-order potentials that
are amenable to optimization. These works have successfully been able to exploit the sparsity of potentials

and provide a convenient parameterization of tractable potentials.

Transforming Higher-order Pseudo-boolean Functions The problem of transforming a general sub-

modular higher-order function to a second order one has been well studied. Kolmogorov and Zabih [3]]
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showed that all submodular functions of order three can be transformed to one of order two, and thus can be
solved using graph cuts. Freedman and Drineas [54] showed how certain submodular higher-order functions
can be transformed to submodular second order functions. However, their method, in the worst case, needed
to add an exponential number of auxiliary binary variables to make the energy function second order.

The special form of the Robust P" model allows it to be transformed to a pairwise function with
the addition of only two binary variables per higher-order potential. More formally, Kohli et al. [25]] showed
that higher-order pseudo-boolean functions of the form:

f(x¢) = min (90 —|—Zw?(1 —x),0; +ZW,~1X1‘, Gmax) (1.22)

i€c i€c
can be transformed to submodular quadratic pseudo-boolean functions, and hence can be minimized using
graph cuts. Here, x; € {0,1} are binary random variables, c is a clique of random variables, x. € {0, 1}/
denotes the labelling of the variables involved in the clique, and w? >0, w} >0, 69, 01, Omax are parameters

of the potential satisfying the constraints Op,,x > 69,01, and

((emax <0+ Y wl(1—x:)) V (Omax < 6 +Zwl-1xi)> =1 vxe{0,1} (1.23)
icc iec
where V is a boolean OR operator. The transformation to a quadratic pseudo-boolean function requires the
addition of only two binary auxiliary variables making it computationally efficient.
Theorem The higher-order pseudo-boolean function:
f(x.) = min (eo + Y (1 —x),01+ Y whxi, emax) (1.24)
icc icc
can be transformed to the submodular quadratic pseudo-boolean function:
f(x) = ’72131”111] (ro(l —myg) +my Zw?(l —x;)+rimy+ (1 —my) Zwi]xi —K) (1.25)
’ icc icc
by the addition of binary auxiliary variables mg and m;. Here, ry = Opax — 00, 71 = Omax — 01 and K =
Omax — 00 — 01. (See proof in [53])
Multiple higher-order potentials of the form (1.22)) can be summed together to obtain higher-order po-

tentials of the more general form

f(xe) = F() x) (1.26)

ic
where F, : R — R is any concave function. However, if the function F is convex (as discussed in section@
then this transformation scheme does not apply. Kohli and Kumar [24] have shown how the minimization of
energy function containing higher-order potentials of the form with convex functions F, can be transformed
to a compact max-min problem. However, this problem is computationally hard and does not lend itself to

conventional maxflow based algorithms.
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Transforming Pattern-based Higher-order Potentials We will now describe the method used in [26]
to transform the minimization of an arbitrary higher-order potential functions to the minimization of an
equivalent quadratic function. We start with a simple example to motivate our transformation.

Consider a higher-order potential function which assigns a cost 0y if the variables x, take a particular

labeling Xy € LI, and 0, otherwise. More formally,

90 if X = X()
Ve(xe) = ‘ (1.27)
0, otherwise.
where 6y < 01, and X denotes a particular labeling of the variables x.. The minimization of this higher-

order function can be transformed to the minimization of a quadratic function using one additional switching

variable z as:

miny,(x) = min @) +Y gi(z.x) (1.28)

x.,2€{0,1} e

where the selection function f is defined as: f(0) = 6y and f(1) = 0;, while the consistency function g; is

defined as:
0 if z=1

gi(z,x)=4¢ 0 if z=0 and x; = X,(i) (1.29)
inf otherwise.

where X (i) denotes the label of variable x; in labeling Xp.

Transforming Pattern-based Higher-order Potentials with Deviations The minimization of a pattern-
based potential with deviation functions (as defined in section[I.3.2) can be transformed to the minimization

of a pairwise function using a (¢ + 1)-state switching variable as:

minye (Xe) = el f(z) +§g(z,x,-) (1.30)

0 if z=qge{l,..,t
where f(z) = ! g€ I (1.31)
Omax if z=1+1,

wh if z=gandx;=l€ L

gi(z,x) = (1.32)

0 if z=t+1.
The role of the switching variable in the above mentioned transformation can be seen as that of finding which
deviation function will assign the lowest cost to any particular labeling. The reader should observe that the
lasti.e. (t+ 1) state of the switching variable z does not penalize any labeling of the clique variables x.. It
should also be noted that the transformation method described above can be used to transform any general
higher-order potential. However, in the worst case, the addition of a switching variable with |L|‘C | states is
required, which makes minimization of even moderate order functions infeasible. Furthermore, in general

the pairwise function resulting from this transformation is NP-hard.
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1.6.2 Dual Decomposition

Dual decomposition has been successfully used for minimizing energy functions containing higher-order
potentials. The approach works by decomposing the energy functions into different parts, solving them
independently and then merging the solution of the different parts. Since the merging step provides a lower
bound on the original function, the process is repeated until the lower bound is optimal. For a particular task
at hand the main question is on how to decompose the given problem into parts. This decomposition can
have a major effect on the quality of the solution.

Let us explain the optimization procedure using the higher-order energy for image segmentation.

The function has the form

E(x):th(n,i)—l— Z wij|x,~—xj\+h(n1) , (1.33)
k (i.Jj)eE ~
/) E2(x)
Ex)

where () are concave functions and A(-) is a convex function. Recall that n} and n! are functions of the
segmentation: n}{ = Y.icy, Xi and n' = ¥,cy x;. It can be seen that the energy function is composed of
a submodular part (E'(x)) and a supermodular (E?(x)) part. As shown in [19] minimizing function (1.33)
is an NP-hard problem.

We now apply the dual-decomposition technique to this problem. Let us rewrite the energy as
E(x)=[E'(x) = {y,x)] + [E*(x) + (y.x)], (1.34)

where y is a vector in R”, n = |V| and (y,x) denotes the dot product between two vectors. In other words,
we added unary terms to one subproblem and subtracted them from the other one. This is a standard use of
the dual-decomposition approach for MRF optimization [56]. Taking the minimum of each term in (1.34)

over x gives a lower bound on E(X):

0(y) = min(E' (x) — (y.x)] + min[E(x) +(y.x)] < minE(x) (1.35)

oL(y) »(y)

Note that both minima, i.e. for ¢! (y) and ¢?(y), can be computed efficiently. In particular, the first term can
be optimized via a reduction to an min s-t cut problem [25]].

To get the tightest possible bound we need to maximize ¢(y) over y. Function ¢(-) is concave, therefore
one could use some standard concave maximization technique, such as a subgradient method which is
guaranteed to converge to an optimal bound. In [19] its is shown that in this case the tightest bound can be

computed in polynomial time using a parametric maxflow technique [47].
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1.7 Conclusions and Discussion

In this chapter we reviewed a number of higher-order models for computer vision problems. We showed how
the ability of higher-order models to encode complex statistics between pixels makes them an ideal candidate
for image labelling problems. The focus of the chapter has been on models based on discrete variables. It has
not covered some families of higher-order models such as Fields of Experts [[17]] and Product of Experts [S7]
that have been shown to lead to excellent results for problem such as image denoising.

We also addressed the inherent difficulty in representing higher-order models and in performing infer-
ence in them. Learning of higher-order models involving discrete variables has seen relatively little work,
and should attract more research in the future.

Another family of models that are able to encode complex relationships between pixels are hierarchical
models which contain latent variables. Typical examples of such models include Deep Belief Nets (DBN)
and Restricted Boltzmann Machines (RBM). There are a number of interesting relationships between these
models and higher-order random fields [27]]. We believe the investigation of these relationships is a promis-
ing direction for future work. We believe this would lead to better understanding of the modeling power
of both families of models as well as lead to new insights which may help in the development of better

inference and learning techniques.
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