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1.1 Introduction

Many computer vision problems such as object segmentation, disparity estimation, and 3D reconstruction

can be formulated as pixel or voxel labeling problems. The conventional methods for solving these problems

use pairwise Conditional and Markov Random Field (CRF/MRF) formulations [1], which allow for the

exact or approximate inference of Maximum a Posteriori (MAP) solutions. MAP inference is performed

using extremely efficient algorithms such as combinatorial methods (e.g. graph-cut [2, 3, 4] or the BHS-

algorithm [5, 6]), or message passing based techniques (e.g. Belief Propagation (BP) [7, 8, 9] or Tree-

Reweighted (TRW) message passing [10, 11]).
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The classical formulations for image labelling problems represent all output elements using random

variables. An example is the problem of interactive object cut-out where each pixel is represented using a

random variable which can take two possible labels: foreground or background. The conventionally used

pairwise random field models introduce a statistical relationship between pairs of random variables, often

only among the immediate 4 or 8 neighboring pixels. Although such models permit efficient inference,

they have restricted expressive power. In particular, they are unable to enforce the high-level structural

dependencies between pixels that have been shown to be extremely powerful for image labeling problems.

For instance, while segmenting an object in 2D or 3D, we might know that all its pixels (or parts) are

connected. Standard pairwise MRFs or CRFs are not able to guarantee that their solutions satisfy such a

constraint. To overcome this problem, a global potential function is needed which assigns all such invalid

solutions a zero probability or an infinite energy.

Despite substantial work from several communities, pairwise MRF and CRF models for computer vision

problems have not been able to solve image labelling problems such as object segmentation fully. This has

led researchers to question the richness of these classical pairwise energy function based formulations, which

in turn has motivated the development of more sophisticated models. Along these lines, many have turned to

the use of higher-order models that are more expressive, thereby enabling the capture of statistics of natural

images more closely.

The last few years have seen the successful application of higher-order CRFs and MRFs to some low-

level vision problems such as image restoration, disparity estimation and object segmentation [12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23]. Researchers have used models composed of new families of higher-order

potentials i.e. potentials defined over multiple variables, which have higher modelling power and lead to

more accurate models of the problem. Researchers have also investigated incorporation of constraints such

as connectivity of the segmentation in CRF and MRF models. This is done by including higher-order or

global potentials1 that assign zero probability (infinite cost) to all label configurations that do not satisfy

these constraints.

One of the key challenges with respect to higher-order models is the question of efficiently inferring the

Maximum a Posterior (MAP) solution. Since, inference in pairwise models is very well studied, one pop-

ular technique is to transform the problem back to a pairwise random field. Interestingly, any higher-order

function can be converted to a pairwise one, by introducing additional auxiliary random variables [5, 24].

Unfortunately, the number of auxiliary variables grows exponentially with the arity of the higher-order func-

tion, hence in practice only higher-order function with a few variables can be handled efficiently. However,

if the higher-order function contains some inherent “structure” then it is indeed possible to practically per-

form MAP inference in a higher-order random field where each higher-order function may act on thousands

1Potentials defined over all variables in the problem are referred to as global potentials.
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of variables [25, 15, 26, 21]. We will review various examples of such potential functions in this chapter.

There is a close relationship between higher-order random fields and random field models containing

latent variables [27, 19]. In fact, as we will see later in the chapter, any higher order model can be written as

a pairwise model with auxiliary latent variables and vice versa [27]. Such transformations enable the use of

powerful optimization algorithms and even result in global optimally solutions for some problem instances.

We will explain the connection between higher order models and models containing latent variables using

the problem of interactive foreground/background image segmentation as an example [28, 29].

Outline This chapter deals with higher-order graphical models and their applications. We discuss a num-

ber of recently proposed higher-order random field models and the associated algorithms that have been

developed to perform MAP inference in them. The structure of the chapter is as follows.

We start with a brief introduction of higher-order models in section 1.2. In section 1.3, we introduce

a class of higher-order functions which encode interactions between pixels belonging to image patches or

regions. In section 1.4 we relate the conventional latent variable CRF model for interactive image segmen-

tation [28] to a random field model with region-based higher-order functions. Section 1.5 discusses models

which encode image-wide (global) constraints. In particular, we discuss the problem of image segmentation

under a connectivity constraint and solving labeling problems under constraints on label-statistics. In the

last section 1.6, we discuss algorithms that have been used to perform MAP inference in such models. We

concentrate on two categories of techniques: the transformation approach, and the problem (dual) decom-

position approach. We also give pointers to many other inference techniques for higher-order random fields

such as message passing [18, 21]. For topics on higher-order model that are not discussed in this chapter,

we refer the reader to [30, 31].

1.2 Higher-order Random Fields

Before proceeding further, we provide the basic notation and definitions used in this chapter. A random field

is defined over a set of random variables x = {xi|i ∈ V}. These variables are typically arranged on a lattice

V= {1,2, ...,n} and represent scene elements, such as pixels or voxels. Each random variable takes a value

from the label set L = {l1, l2, . . . , lk}. For example, in scene segmentation the labels can represent semantic

classes such as building, tree or person. Any possible assignment of labels to the random variables will be

called a labeling (also denoted by x). Clearly, in the above scenario the total number of labelings x is kn.

An MRF or CRF model enforces a particular factorization of the posterior distribution P(x|d), where

d is the observed data (e.g. RGB input image). It is common to define an MRF or CRF model through its

so-called Gibbs energy function E(x) which is the negative log of the posterior distribution of the random
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field i.e.

E(x;d) =− logP(x|d)+ constant. (1.1)

The energy (cost) of a labeling x is represented as a sum of potential functions, each of which depends on a

subset of random variables. In its most general form, the energy function can be defines as:

E(x;d) = ∑
c∈C

ψc(xc). (1.2)

Here, c is called a clique which is a set of random variables xc which are conditionally dependent on each

other. The term ψc(xc) denotes the value of the clique potential corresponding to the labeling xc ⊆ x for the

clique c, and C is the set of all cliques. The degree of the potential ψc(·) is the size of the corresponding

clique c (denoted by |c|). For example, a pairwise potential has |c|= 2.

For the well-studied special case of pairwise MRFs, the energy only consists of potentials of degree one

and two, that is,

E(x;d) = ∑
i∈V

ψi(xi;d)+ ∑
(i, j)∈E

ψi j(xi,x j). (1.3)

Here E represents the set of pairs of variables which interact with each other. In the case of image segmen-

tation, E may encode a 4-connected neighborhood system on the pixel-lattice.

Observe that the pairwise potential ψi j(xi,x j) in equation 1.3 does not depend on the image data. If we

condition the pairwise potentials on the data, then we obtain a pairwise CRF models which is defined as:

E(x;d) = ∑
i∈V

ψi(xi;d)+ ∑
(i, j)∈E

ψi j(xi,x j;d). (1.4)

1.3 Patch and Region based potentials

In general it is computationally infeasible to exactly represent a general higher order potential function

defined over many variables2. Some researchers have proposed higher order models for vision problems

which use potentials defined over a relatively small number of variables. Examples of such models include

the work of Woodford et al [23] on disparity estimation using a third order smoothness potential, and El-

Zehiry and Grady [12] on image segmentation with a curvature potential3. In such cases, it is also feasible to

transform the higher order energy into an equivalent pairwise energy function with the addition of a relatively

small number of auxiliary variables and minimize the resulting pairwise energy using conventional energy

minimization algorithms.

2Representation of a general m order potential function of k-state discrete variables requires km parameter values
3El-Zehiry and Grady [12] used potentials defined over 2x2 patches to enforce smoothness. Shekhovtsov et al. [32] have recently

proposed a higher order model for encouraging smooth, low curvature image segmentations that uses potentials defined over much

large sets of variables and was learnt using training data.
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Although the above-mentioned approach has been shown to produce good results, it is not able to deal

with higher order potential defined over very large number (hundreds or thousands) of variables. In the

following, we present two categories of higher-order potentials that can be represented compactly and min-

imized efficiently. The first category encodes the property that pixels belonging to certain groups take the

same label. While this is a powerful concept in several application domains e.g., pixel-level object recogni-

tion, it is not always applicable, e.g. image denoising. The second category generalizes this idea by allowing

groups of pixels to take arbitrary labelings, as long as the set of different labelings is small.

1.3.1 Label consistency in a set of variables

A common method to solve various image labeling problems like object segmentation, stereo and single

view reconstruction is to formulate them using image segments (so called super-pixels [33]) obtained from

unsupervised segmentation algorithms. Researchers working with these methods have made the observation

that all pixels constituting the segments often have the same label, that is they might belong to the same

object or might have the same depth.

Standard super-pixel based methods use label consistency in super-pixels as a hard constraint. Kohli et

al. [25] proposed a higher-order CRF model for image labeling that used label consistency in super-pixels as

a soft constraint. This was done by using higher-order potentials defined on the image segments generated

using unsupervised segmentation algorithms. Specifically, they extend the standard pairwise CRF model

often used for object segmentation by incorporating higher-order potentials defined on sets or regions of

pixels. In particular, they extend the pairwise CRF which is used in TextonBoost [34]4.

The Gibbs energy of the higher-order CRF of [25] can be written as:

E(x) = ∑
i∈V

ψi(xi)+ ∑
(i, j)∈E

ψi j(xi,x j)+ ∑
c∈S

ψc(xc), (1.5)

where E represents the set of all edges in a 4- or 8-connecting neighbourhood system, S refers to a set of

image segments (or super-pixels), and ψc are higher-order label consistency potentials defined on them. In

[25], the set S consisted of all segments of multiple segmentations of an image obtained using an unsuper-

vised image segmentation algorithm such as mean-shift [35]. The labels constituting the label set L of the

CRF represent the different objects. Every possible assignment of the random variables x (or configuration

of the CRF) defines a segmentation.

The label consistency potential used in [25] is similar to the smoothness prior present in pairwise

CRFs [36]. It favors all pixels belonging to a segment taking the same label. It takes the form of a Pn

4Kohli et al. ignore a part of the TextonBoost [34] energy that represents a global appearance model for each object-class.

In section 1.4 we will revisit this issue and show that in fact this global, appearance model is closely related to the higher-order

potentials defined in [25].
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Figure 1.1: Behavior of the rigid Pn Potts potential (left) and the Robust Pn model potential (right). The

figure shows how the cost enforced by the two higher-order potentials changes with the number of variables

in the clique not taking the dominant label i.e. Ni(xc) = mink(|c|−nk(xc)), where nk(.) returns the number

of variables xi in xc that take the label k. Q is the truncation parameter used in the definition of the higher

order potential (see equation 1.7).

Potts model [15]:

ψc(xc) =

 0 if xi = lk,∀i ∈ c,

θ1|c|θα otherwise.
(1.6)

where |c| is the cardinality of the pixel set c5, and θ1 and θα are parameters of the model. The expression

θ1|c|θα gives the label inconsistency cost, i.e. the cost added to the energy of a labeling in which different

labels have been assigned to the pixels constituting the segment. Figure 1.1(left) visualizes a Pn Potts

potential.

The Pn Potts model enforces label consistency rigidly. For instance, if all but one of the pixels in a

super-pixel take the same label then the same penalty is incurred as if they were all to take different labels.

Due to this strict penalty, the potential might not be able to deal with inaccurate super-pixels or resolve

conflicts between overlapping regions of pixels. Kohli et al. [25] resolved this problem by using the Robust

higher-order potentials defined as:

ψc(xc) =

 Ni(xc)
1
Q γmax if Ni(xc)≤ Q

γmax otherwise.
(1.7)

where Ni(xc) denotes the number of variables in the clique c not taking the dominant label i.e. Ni(xc) =

mink(|c| − nk(xc)), γmax = |c|θα(θ1 + θ2G(c)) where G(c) is the measure of the quality of the super-pixel

c, and Q is the truncation parameter which controls the rigidity of the higher-order clique potential. Figure

1.1(right) visualizes a robust Pn Potts potential.

5For the problem of [25] this is the number of pixels constituting super-pixel c.
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Figure 1.2: Some qualitative results. Please view in colour. First Row: Original Image. Second Row:

Unary likelihood labeling from TextonBoost [34]. Third Row: Result obtained using a pairwise contrast

preserving smoothness potential as described in [34]. Fourth Row: Result obtained using the Pn Potts model

potential [15]. Fifth Row: Results using the Robust Pn model potential (1.7) with truncation parameter

Q = 0.1|c|, where |c| is equal to the size of the super-pixel over which the Robust Pn higher-order potential

is defined. Sixth Row: Hand labeled segmentations. The ground truth segmentation are not perfect and many

pixels (marked black) are unlabelled. Observe that the Robust Pn model gives best results. For instance, the

leg of the sheep and bird have been accurately labeled which was missing in the other results.

Unlike the standard Pn Potts model, this potential function gives rise to a cost that is a linear truncated

function of the number of inconsistent variables (see figure 1.1). This enables the robust potential to allow
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Figure 1.3: (a) Robust Pn model for binary variables. The linear functions f1 and f2 represents the penalty

for variables not taking the labels 0 and 1 respectively. The function f3 represents the robust truncation fac-

tor. (b) The general concave form of the robust Pn model defined using a larger number of linear functions.

some variables in the clique to take different labels. Figure 1.2 shows results for different models.

Lower-envelope Representation of Higher-order Functions Kohli and Kumar [24] showed that many

types of higher-order potentials including the Robust Pn model can be represented as lower envelopes of

linear functions. They also showed that the minimization of such potentials can be transformed to the

problem of minimizing a pairwise energy function with the addition of a small number of auxiliary variables

which take values from a small label set.

It can be easily seen that the Robust Pn model (1.7) can be written as a lower envelope potential using

h+1 linear functions. The functions f q,q ∈ Q = {1,2, . . . ,h+1} are defined using

µq =

 γa if q = a ∈ L ,

γmax otherwise,

wq
ia =

 0 if q = h+1 or a = q ∈ L ,

αa otherwise.

The above formulation is illustrated in figure 1.3 for the case of binary variables.

1.3.2 Pattern-based potentials

The potentials in the previous section were motivated by the fact that often a group of pixels have the same

labeling. While this is true for a group of pixels which is inside an object, it is violated for a group which

encodes a transitions between objects. Furthermore, the label consistency assumption is also not useful

when the labeling represents e.g. natural textures. In the following we will generalize the label-consistency

potentials to so-called pattern-based potentials, which can model arbitrary labelings. Unfortunately, this

generalization also implies that the underlying optimization will become harder (see sec. 1.6).
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Figure 1.4: Different parameterizations of higher-order potentials. (a) The original higher-order potential

function. (b) Approximating pattern-based potential which requires the definition of 7 labelings. (c) The

compact representation of the higher-order function using the functional form defined in equation (1.9).

This representation (1.9) requires only t = 3 deviation functions.

Suppose we had a dictionary containing all possible 10× 10 patches that are present in natural real-

world images. One could use this dictionary to define a higher-order prior for the image restoration problem

which can be incorporated in the standard MRF formulation. This higher-order potential is defined over sets

of variables, where each set corresponds to a 10× 10 image patch. It enforces that patches in the restored

image come from the set of natural image patches. In other words, the potential function assigns a low cost

(or energy) to the labelings that appear in the dictionary of natural patches. The rest of the labelings are

given a high (almost constant) cost.

It is well known that only a small fraction of all possible labelings of a 10×10 patch actually appear in

natural images. Rother et al. [26] used this sparsity property to compactly represent a higher-order potential

prior for binary texture denoising by storing only the labelings that need to be assigned a low cost, and

assigning a (constant) high cost to all other labelings.

They parameterize higher-order potentials by a list of possible labelings (also called patterns [37]) X =

{X1,X2, ...,Xt} of the clique variables xc, and their corresponding costs θ = {θ1,θ2, ...,θt}. They also

include a high constant cost θmax for all other labelings. Formally, the potential functions can be defined as:

ψc(xc) =

 θq if xc = Xq ∈ X

θmax otherwise ,
(1.8)

where θq ≤ θmax,∀θq ∈ θ. The higher-order potential is illustrated in Figure 1.4(b). This representation was

concurrently proposed by Komodakis et al. [37].

Soft Pattern potentials The pattern-based potential is compactly represented and allows efficient infer-

ence. However, the computation cost is still quite high for potentials which assign a low cost to many

labelings. Notice that the pattern-based representation requires one pattern per low-cost labeling. This
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representation cannot be used for higher-order potentials where a large number of labelings of the clique

variables are assigned low weights (< θmax).

Rother et al. [26] observed that many low cost label assignments tend to be close to each other in terms

of the difference between labelings of pixels. For instance, consider the image segmentation task which has

two labels, foreground ( f ) and background (b). It is conceivable that the cost of a segmentation labeling

( f f f b) for 4 adjacent pixels on a line would be close to the cost of the labeling ( f f bb). This motivated them

to try to encode the cost of such groups of similar labelings in the higher-order potential in such a way that

their transformation to quadratic functions does not require increasing the number of states of the switching

variable z (see details in sec. 1.6). The differences of the representations are illustrated in figure 1.4(b) and

(c).

They parameterized the compact higher-order potentials by a list of labeling deviation cost functions

D = {d1,d2, ...,dt}, and a list of associated costs θ ={θ1,θ2, ...,θt}. They also maintain a parameter for the

maximum cost θmax that the potential can assign to any labeling. The deviation cost functions encode how

the cost changes as the labeling moves away from some desired labeling. Formally, the potential functions

can be defined as:

ψc(xc) = min{ min
q∈{1,2,...,t}

θq +dq(xc),θmax} , (1.9)

where deviation functions dq : L |c| → R are defined as: dq(xc) = ∑i∈c;l∈L wq
ilδ(xi = l), where wq

il is the

cost added to the deviation function if variable xi of the clique c is assigned label l. The function δ(xi = l)

is the Kronecker delta function that returns value 1 if xi = l and returns 0 for all assignments of xi. This

higher-order potential is illustrated in fig. 1.4(c). It should be noted that the higher-order potential (1.9) is a

generalization of the pattern-based potential defined in equation (1.8) and in [37]. Setting weights wq
il as:

wq
il =

 0 if Xq(i) = l

θmax otherwise
(1.10)

makes potential (1.9) equivalent to equation (1.8).

Note, that the above pattern-based potentials can also be used to model arbitrary higher-order potentials,

as done in e.g. [38], as long as the size of the clique is small.

Pattern-based higher-order potentials for binary texture denoising Pattern-based potentials are espe-

cially important for computer vision since many image labeling problems in vision are dependent on good

prior models of patch labelings. In existing systems, such as new view synthesis, e.g. [13], or super-

resolution, e.g. [39], patch-based priors are used in approximate ways and do not directly solve the under-

lying higher-order random field.

Rother et al. [26] demonstrated the power of the pattern-based potentials for the toy task of denoising
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Figure 1.5: Binary texture restoration for Brodatz texture D101. (a) Training image (86× 86 pixels). (b)

Test image. (c) Test image with 60% noise, used as input. (d) 6 (out of 10) selected patterns of size 10×10

pixels. (e) Their corresponding deviation cost function. (f-j) Results of various different models (see text for

details).

a specific type of binary texture, i.e. Brodatz texture D1016. Given a training image, fig. 1.5(a), their goal

was to denoise the input image (c) to achieve ideally (b). To derive the higher-order potentials, they selected

a few patterns, of size 10× 10 pixels, which occur frequently in the training image (a) and are as different

as possible in terms of their Hamming distance. They achieve this by k-means clustering over all training

patches. Fig. 1.5(d) depicts 6 (out of k=10) such patterns.

To compute the deviation function for each particular pattern they considered all patterns which belong

to the same cluster. For each position within the patch, they record the frequency of having the same value.

Figure 1.5(e) shows the associate deviation costs, where a bright value means low frequency (i.e. high cost).

As expected, lower costs are at the edge of the pattern. Note, the scale and truncation of the deviation

functions, as well as the weight of the higher-order function with respect to unary and pairwise terms, are

set by hand in order to achieve best performance. The results for various models are shown in fig. 1.5(f-l).

(Please refer to [26] for a detailed description of each model.)

Figure 1.5(f) shows the result with a learned pairwise MRF. It is apparent that the structure on the patch-

level is not preserved. In contrast, the result in fig. 1.5(g), which uses the soft higher-order potentials and

pairwise function, is clearly superior. Figure 1.5(h) shows the result with the same model as in (g) but where

pairwise terms are switched off. The result is less good since those pixels which are not covered by a patch

are unconstrained and hence take the optimal noisy labeling. Figure 1.5(i) shows the importance of having

6This specific denoising problem has also been addressed previous in [40].
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Figure 1.6: Interactive image segmentation using the interactive segmentation method proposed in [29]. The

user places a yellow rectangle around the object (a). The result (b) is achieved with the iterative EM-style

procedure proposed [29]. The result (c) is the global optimum of the function, which is achieved by trans-

forming the energy to a higher-order random field and applying a dual-decomposition (DD) optimization

technique [19]. Note, the globally optimal result is visually superior.

patch robustness, i.e. that θmax in eqn. (1.9) is not infinite, which is missing in the classical patch-based

approaches (see [26]). Finally, 1.5(j) shows a result with the same model as in (g) but with a different

dictionary. In this case the 15 representative patches are different for each position in the image. To achieve

this, they used the noisy input image and hence have a CRF model instead of an MRF model (see details in

[26]).

Figure 1.5(k-l) visualizes the energy for the result in (g). In particular, 1.5(k) illustrates in black those

pixels where the maximum (robustness) patch cost θmax is paid. It can be observed that only a few pixels do

not utilize the maximum cost. Figure 1.5(l) illustrates all 10×10 patches which are utilized, i.e. each white

dot in 1.5(k) relates to a patch. Note that there is no area in 1.5(l) where a patch could be used which does

not overlap with any other patch. Also, note that many patches do overlap.

1.4 Relating appearance models and region-based potentials

As mentioned in the previous section 1.3.1, there is a connection between robust Pn Potts potentials and

the TextonBoost model [34] that contains variables that encode the appearance of the foreground and back-

ground regions in the image. In the following, we will analyze this connection which was presented in the

work of Vicente et. al. [19].

TextonBoost [34] has an energy term that models for each object-class segmentation an additional para-

metric appearance model. The appearance model is derived at test-time for each image individually. For

simplicity let us consider the interactive binary segmentation scenario, where we know beforehand that

only two classes (fore- and background) are present. Figure 1.6 explains the application scenario. It has

been shown in many works that having an additional appearance model for both fore- and background give
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improved results [28, 29]. The energy of this model takes the form:

E(x,θ0,θ1) = ∑
i∈V

ψi(xi,θ
0,θ1,di)+ ∑

(i, j)∈E
wi j|xi− x j| . (1.11)

Here E is the set of 4-connected neighboring pixels, and xi ∈ {0,1} is the segmentation label of pixel i

(where 0 corresponds to background and 1 to foreground). The first term of eqn. 1.11 is the likelihood term,

where di is the RGB color at site i and θ0 and θ1 are respectively the background and foreground color

models. Note that the color models θ0,θ1 act globally on all pixels in the respective segment. The second

term is the standard contrast-sensitive edge term, see [28, 29] for details.

The goal is to minimize the energy (1.11) jointly for x, θ0 and θ1. In [29] this optimization was done

in an iterative, EM-style fashion. It works by iterating the following steps: (i) Fix color models θ0,θ1 and

minimize energy (1.11) over segmentation x. (ii) Fix segmentation x, minimize energy (1.11) over color

models θ0,θ1. The first step is solved via a maxflow algorithm, and the second one via standard machine

learning techniques for fitting a model to data. Each step is guaranteed not to increase the energy, but of

course the procedure may get stuck in a local minimum, as shown in fig. 1.6(b).

In the following we show that the global variables can be eliminated by introducing global region-based

potentials in the energy. This then allows for more powerful optimization techniques, in particular the dual-

decomposition procedure. This procedure provides empirically a global optimum in about 60% of cases,

see one example in fig. 1.6(c).

In [19] the color models were expressed in the form of histograms. We assume that the histogram has

K bins indexed by k = 1, ...,K. The bin in which pixel i falls is denoted as bi, and Vk ⊆ V denotes the

set of pixels assigned to bin k. The vectors θ0 and θ1 in [0,1]K represent the distribution over fore- and

background, respectively, and sum to 1. The likelihood model is then given by

ψi(xi,θ
0,θ1,di) = ∑

i
− log θ

xi
bi
, (1.12)

where θ
xi
bi

represents the likelihood of observing a pixel belonging to bin bi which takes label xi.

Rewriting the energy via high-order cliques Let us denote ns
k to be the number of pixels i that fall into

bin k and have label s, i.e. ns
k = ∑i∈Vk

δ(xi− s). All these pixels contribute the same cost − log θs
k to the

term ψi(xi,θ
0,θ1,di), therefore we can rewrite it as

ψi(xi,θ
0,θ1,di) = ∑

s
∑
k
−ns

k log θ
s
k . (1.13)

It is well-known that for a given segmentation x distributions θ0 and θ1 that minimize ψi(xi,θ
0,θ1,di)

are simply the empirical histograms computed over the appropriate segments: θs
k = ns

k/ns where ns is the
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number of pixels with label s : ns = ∑i∈V δ(xi− s). Plugging optimal θ0 and θ1 into the energy (1.11) gives

the following expression:

E(x) = min
θ0,θ1

E(x,θ0,θ1) = ∑
k

hk(n1
k)+h(n1)+ ∑

(i, j)∈E
wi j|xi− x j| , with (1.14)

hk(n1
k) = −g(n1

k)−g(nk−n1
k) (1.15)

h(n1) = g(n1)+g(n−n1) , (1.16)

where g(z) = z log(z),nk = |Vk| is the number of pixels in bin k and n = |V| is the total number of pixels.

It is easy to see that functions hk(·) are concave and symmetric about nk/2, and function h(·) is convex

and symmetric about n/2. Unfortunately, as we will see in sec. 1.6, the convex part makes the energy hard

to be optimized. The form of eqn.(1.14) allows an intuitive interpretation of this model. The first term (sum

of concave functions) has a preference towards assigning all pixels in Vk to the same segment. The convex

part prefers balanced segmentations, i.e. segmentations in which the background and the foreground have

the same number of pixels.

Relationship to Robust Pn model for binary variables The concave functions hk(·), i.e. eqn. (1.15)

have the form of a robust Pn Potts model for binary variables as illustrated in fig. 1.3(b). There are two

main differences between the model of [25] and [19]. Firstly, the energy of [19] has a balancing term (eqn.

1.16). Secondly, the underlying super-pixel segmentation is different. In [19], all pixels in the image which

have the same colour are deemed to belong a single super-pixel, whereas in [25] super-pixels are spatially

coherent. An interesting future work is to perform an empirical comparison of these different models. In

particular, the balancing term (eqn. 1.16) may be weighted differently, which can lead to improved results

(see examples in [19]).

1.5 Global Potentials

In this section we discuss higher-order potential functions which act on all variables in the model. For

image labelling problems, this implies a potential whose cost is affected by the labelling of every pixel. In

particular, we will consider two types of higher-order functions: ones which enforce topological constraints

on the labelling such as connectivity of all foreground pixels, and those whose cost depends on the frequency

of assigned labels.

1.5.1 Connectivity Constraint

Enforcing connectivity of a segmentation is a very powerful global constraint. Consider fig. 1.7 where the

concept of connectivity is used to build an interactive segmentation tool. To enforce connectivity we can
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Figure 1.7: Illustrating the connectivity prior from [41]. (a) Image with user-scribbles (green - foreground;

blue - background). Image segmentation using graph cut with standard (b) and reduced coherency (c).

None of the results are perfect. By enforcing that the foreground object is 4-connected a perfect result can

be achieved (e). Note, this result is obtained by starting with the segmentation in (b) and then adding the 5

foreground user-clicks (red crosses) in (d).

simply write the energy as

E(x) = ∑
i∈V

ψi(xi)+ ∑
(i, j)∈E

wi j|xi− x j| s.t. x being connected, (1.17)

where connectivity can for instance be defined on the standard 4-neighborhood grid. Apart from the con-

nectivity constraint, the energy is a standard pairwise energy for segmentation, as in eqn. (1.11). In [20]

a modified version of this energy is solved with each user interaction. Consider the result in fig. 1.7(b)

that is obtained with the input in 1.7(a). Given this result, the user places one red cross, e.g. at the tip of

the fly’s leg (fig. 1.7(d)), to indicate another foreground pixel. The algorithm in [20] then has to solve the

subproblem of finding a segmentation where both islands (body of the fly and red cross) are connected. For

this a new method called DijkstraGC was developed, which combines the shortest-path Dijkstra algorithm

and graph cut. In [20] it is also shown that for some practical instances DijkstraGC is globally optimal. It

is worth commenting that the connectivity constraint enforces a different from of regularization compared

to standard pairwise terms. Hence in practice the strength of the pairwise terms may be chosen differently

when the connectivity constraint potential is used.

The problem of minimizing the energy (1.17) directly has been addressed in Nowozin et. al [42], using a

constraint-generation technique. They have shown that enforcing connectivity does help object recognition

systems. Very recently the idea of connectivity was used for 3D reconstruction, i.e. to enforce that objects

are connected in 3D, see details in [41].

Bounding Box Constraint Building on the work [42], Lempitsky et al. [43] extended the connectivity

constraint to the so-called bounding box prior. Figure 1.8 gives an example where the bounding box prior

helps to achieve a good segmentation result.
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Figure 1.8: Bounding Box prior. (Left) Typical result of the image segmentation method proposed in [29]

where the user places the yellow bounding box around the object which results in the blue segmentation. The

result is expected since in the absence of additional prior knowledge the head of the person is more likely

background, due to the dark colors outside the box. (Right) Improved result after applying the bounding box

constraint. It enforces that the segmentation is spatially “close” to the four sides of the bounding box and

also that the segmentation is connected.

The bounding box prior is formalized with the following energy

E(x) = ∑
i∈V

ψi(xi)+ ∑
(i, j)∈E

wi j|xi− x j| s.t. ∀C ∈ Γ ∑
i∈C

xi ≥ 1 , (1.18)

where Γ is the set of all 4-connected “crossing” paths. A crossing path C is a path which goes from the

top to the bottom side of the box, or from the left to the right side. Hence the constraint in (1.18) forces

that along each path C there is at least one foreground pixel. This constraint makes sure that there exist a

segmentation which touches all 4 sides of the bounding box and which is also 4-connected. As in [42], the

problem is solved by first relaxing it to continuous labels, i.e. xi ∈ [0,1], and then applying a constraint-

generation technique, where each constraint is a crossing path which violates the constraint in eqn. (1.18).

The resulting solution is then converted back to an integer solution, i.e. xi ∈ {0,1}, using a rounding schema

called pin-pointing, see details in [43].

1.5.2 Constraints and Priors on label statistics

A simple and useful global potential is a cost based on the number of labels which are present in the final

output. In its most simple form the corresponding energy function has the form:

E(x) = ∑
i∈V

ψi(xi)+ ∑
(i, j)∈E

ψi j(xi,x j)+∑
l∈L

cl[∃i : xi = l] , (1.19)

where L is the set of all labels, cl is the cost for each label, and [arg] is 1 if arg is true, and 0 otherwise. The

above defined energy prefers a simpler solution over a more complex one.

The label cost potential has been used successfully in various domains, such as stereo [44], motion

estimation [45], object segmentation [14] and object-instance recognition [46]. For instance in [44] a 3D
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Figure 1.9: Illustrating the label-cost prior. (a) Crop of a stereo image (“cones” image from Middlebury

database). (b) Result without a label-cost prior. In the left image each color represents a different surface,

where gray-scale colors mark planes and non gray-scale colors B-splines. The right image shows the

resulting depth map. (c) Corresponding result with label-cost prior. The main improvement over (b) is that

large parts of the green background (visible through the fence) are assigned to the same planar surface.

scene is reconstructed by a set of surfaces (planes or B-splines). A reconstruction with fewer surfaces is

preferred due to the label-cost prior. One example where this prior helps is shown in fig. 1.9, where a plane,

which is visible through a fence, is recovered as one plane, instead of many planar fragments.

Various method have been proposed for minimizing the energy (1.19) including alpha-expansion (see

details in [14, 45]). Extension to the energy defined in 1.19 have also been proposed. For instance, Ladicky

et al. [14] have addressed the problem of minimizing energy functions containing a term whose cost is an

arbitrary function of the set of labels present in the labeling.

Higher-order Potentials enforcing Label Counts In many computer vision problems such as object seg-

mentation or reconstruction, which are formulated in terms of labeling a set of pixels, we may know the

number of pixels or voxels which can be assigned to a particular label. For instance, in the reconstruction

problem, we may know the size of the object to be reconstructed. Such label count constraints are extremely

powerful and have recently been shown to result in good solutions for many vision problems.

Werner [22] were one of the first to introduce constraints on label counts in energy minimization. They

proposed a n-ary maxsum diffusion algorithm for solving these problems, and demonstrated its performance

on the binary image denoising problem. Their algorithm, however, could only produce solutions for some

label counts. It was not able to guarantee an output for any arbitrary label count desired by the user. Kol-

mogorov et al. [47] showed that for submodular energy functions, the parametric maxflow algorithm [48] can

be used for energy minimization with label counting constraints. This algorithm outputs optimal solutions

for only few label counts. Lim et al.[49] extended this work by developing a variant of the above algorithm

they called decomposed parametric maxflow. Their algorithm is able to produce solutions corresponding to

many more label counts.
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Figure 1.10: Illustrating the advantage of using an Marginal Probability Field (MPF) over an MRF. (a) Set

of training images for binary texture denoising. Superimposed is a pairwise term (translationally invariant

with shift (15; 0); 3 exemplars in red). Consider the labeling k = (1,1) of this pairwise term φ. Each training

image has a certain number h(1,1) of (1,1) labels, i.e. h(1,1) = ∑i[φi = (1,1)]. The negative logarithm of the

statistics {h(1,1)} over all training images is illustrated in blue (b). It shows that all training images have

roughly the same number of pairwise terms with label (1,1). The MPF uses the convex function fk (blue) as

cost function. It is apparent that the linear cost function of an MRF is a bad fit. (c) A test image and (d) a

noisy input image. The result with an MRF (e) is inferior to the MPF model (f). Here the MPF uses a global

potential on unary and pairwise terms.

Figure 1.11: Results for image denoising using a pairwise MRF (c) and an MPF model (d). The MPF forces

the derivatives of the solution to follow a mean distribution, which was derived from a large dataset. (f)

Shows derivative histograms (discretized into the 11 bins). Here black is the target mean statistic, blue is

for the original image (a), yellow for noisy input (b), green for the MRF result (c), and red for the MPF

result (d). Note, the MPF result is visually superior and does also match the target distribution better. The

runtime for the MRF (c) is 1096s and for MPF (d) 2446s.

Marginal Probability Fields Finally let us review the marginal probability field introduced in [50], which

uses a global potential to overcome some fundamental limitations of Maximum-a-Posterior (MAP) estima-

tion in Markov random fields (MRFs).

The prior model of a Markov random field suffers from a major drawback: the marginal statistics of the

most likely solution (MAP) under the model generally do not match the marginal statistics used to create the
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model. Note, we refer to the marginal statistics of the cliques used in the model, which generally equates to

those statistics deemed important. For instance, the marginal statistics of a single clique for a binary MRF

are the number of 0s and 1s of the output labeling.

To give an example, given a corpus of binary training images which each contain 55% white and 45%

black pixels (with no other significant statistic), a learned MRF prior will give each output pixel an indepen-

dent probability of 0.55 of being white. Since the most likely value for each pixel is white, the most likely

image under the model has 100% white pixels, which compares unfavorably with the input statistic of only

55%. When combined with data likelihoods, this model will therefore incorrectly bias the MAP solution

towards being all white, the more so the greater the noise and hence data uncertainty.

The marginal probability field (MPF) overcomes this limitation. Formally, the MPF is defined as

E(x) = ∑
k

fk

(
∑

i
[φi(x) = k]

)
, (1.20)

where [arg] is defined as above, φi(x) returns the labeling of a factor at position i, k is an n-d vector, and fk is

the MPF cost kernel R→ R+. For example, a pairwise factor of a binary random field has |k|= 4 possible

states, i.e. k ∈ {(0,0),(0,1),(1,0),(1,1)}.

The key advantage of an MPF over an MRF is that the cost kernel fk is arbitrary. In particular, by

choosing a convex form for the kernel any arbitrary marginal statistics can be enforced. Figure 1.10 gives

an example for binary texture denoising. Unfortunately, the underlying optimization problem is rather chal-

lenging, see details in [50]. Note that linear and concave kernels result in tractable optimization problems,

e.g. for unary factors this has been described in sec. 1.3.1 (see fig. 1.3(b) for a concave kernel for ∑i[xi = 1]).

The MPF can be used in many applications, such as denoising, tracking, segmentation, and image syn-

thesis (see [50]). Figure 1.11 illustrates an example for image denoising.

1.6 Maximum a Posteriori Inference

Given an MRF, the problem of estimating the maximum a posteriori (MAP) solution can be formulated

as finding the labeling x that has the lowest energy. Formally, this procedure (also referred to as energy

minimization) involves solving the following problem:

x∗ = argmin
x

E(x;d). (1.21)

The problem of minimizing a general energy function is NP-hard in general, and remains hard even if we

restrict the arity of potentials to 2 (pairwise energy functions). A number of polynomial time algorithms

have been proposed in the literature for minimizing pairwise energy functions. These algorithms are able

to find either exact solutions for certain families of energy functions or approximate solutions for general



20 Image Processing and Analysing Graphs: Theory and Practice

functions. These approaches can broadly be classified into two categories: message passing and move

making. Message passing algorithms attempt to minimize approximations of the free energy associated

with the MRF [10, 51, 52].

Move making approaches refer to iterative algorithms that move from one labeling to the other while

ensuring that the energy of the labeling never increases. The move space (that is, the search space for the

new labeling) is restricted to a subspace of the original search space that can be explored efficiently [2].

Many of the above approaches (both message passing [10, 51, 52] and move making [2]) have been shown

to be closely related to the standard LP relaxation for the pairwise energy minimization problem [53].

Although there has been work on applying message passing algorithms for minimizing certain classes

of higher-order energy functions [21, 18], the general problem has been relatively ignored. Traditional

methods for minimizing higher-order functions involve either (1) converting them to a pairwise form by

addition of auxiliary variables, followed by minimization using one of the standard algorithms for pairwise

functions (such as those mentioned above) [5, 38, 37, 26], or (2) using dual-decomposition which works

by decomposing the energy functions into different parts, solving them independently and then merging the

solution of the different parts [20, 50].

1.6.1 Transformation based methods

As mentioned before, any higher-order function can be converted to a pairwise one, by introducing additional

auxiliary random variables [5, 24]. This enables the use of conventional inference algorithms such as Belief

Propagation, Tree Reweighted message passing, and Graph cuts for such models. However, this approach

suffers from the problem of combinatorial explosion. Specifically, a naive transformation can result in an

exponential number of auxiliary variables (in the size of the corresponding clique) even for higher-order

potentials with special structure [38, 37, 26].

In order to avoid the undesirable scenario presented by the naive transformation, researchers have re-

cently started focusing on higher-order potentials that afford efficient algorithms [25, 15, 22, 23, 50]. Most

of the efforts in this direction have been towards identifying useful families of higher-order potentials and

designing algorithms specific to them. While this approach has led to improved results, its long term im-

pact on the field is limited by the restrictions placed on the form of the potentials. To address this issue,

some recent works [24, 14, 45, 38, 37, 26] have attempted to characterize the higher-order potentials that

are amenable to optimization. These works have successfully been able to exploit the sparsity of potentials

and provide a convenient parameterization of tractable potentials.

Transforming Higher-order Pseudo-boolean Functions The problem of transforming a general sub-

modular higher-order function to a second order one has been well studied. Kolmogorov and Zabih [3]
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showed that all submodular functions of order three can be transformed to one of order two, and thus can be

solved using graph cuts. Freedman and Drineas [54] showed how certain submodular higher-order functions

can be transformed to submodular second order functions. However, their method, in the worst case, needed

to add an exponential number of auxiliary binary variables to make the energy function second order.

The special form of the Robust Pn model (1.7) allows it to be transformed to a pairwise function with

the addition of only two binary variables per higher-order potential. More formally, Kohli et al. [25] showed

that higher-order pseudo-boolean functions of the form:

f (xc) = min
(

θ0 +∑
i∈c

w0
i (1− xi),θ1 +∑

i∈c
w1

i xi,θmax

)
(1.22)

can be transformed to submodular quadratic pseudo-boolean functions, and hence can be minimized using

graph cuts. Here, xi ∈ {0,1} are binary random variables, c is a clique of random variables, xc ∈ {0,1}|c|

denotes the labelling of the variables involved in the clique, and w0
i ≥ 0, w1

i ≥ 0, θ0, θ1, θmax are parameters

of the potential satisfying the constraints θmax ≥ θ0,θ1, and((
θmax ≤ θ0 +∑

i∈c
w0

i (1− xi)
)
∨
(
θmax ≤ θ1 +∑

i∈c
w1

i xi
))

= 1 ∀x ∈ {0,1}|c| (1.23)

where ∨ is a boolean OR operator. The transformation to a quadratic pseudo-boolean function requires the

addition of only two binary auxiliary variables making it computationally efficient.

Theorem The higher-order pseudo-boolean function:

f (xc) = min
(

θ0 +∑
i∈c

w0
i (1− xi),θ1 +∑

i∈c
w1

i xi,θmax

)
(1.24)

can be transformed to the submodular quadratic pseudo-boolean function:

f (xc) = min
m0,m1

(
r0(1−m0)+m0 ∑

i∈c
w0

i (1− xi)+ r1m1 +(1−m1)∑
i∈c

w1
i xi−K

)
(1.25)

by the addition of binary auxiliary variables m0 and m1. Here, r0 = θmax− θ0, r1 = θmax− θ1 and K =

θmax−θ0−θ1. (See proof in [55])

Multiple higher-order potentials of the form (1.22) can be summed together to obtain higher-order po-

tentials of the more general form

f (xc) = Fc(∑
i∈c

xi) (1.26)

where Fc :R→R is any concave function. However, if the function Fc is convex (as discussed in section 1.4)

then this transformation scheme does not apply. Kohli and Kumar [24] have shown how the minimization of

energy function containing higher-order potentials of the form with convex functions Fc can be transformed

to a compact max-min problem. However, this problem is computationally hard and does not lend itself to

conventional maxflow based algorithms.
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Transforming Pattern-based Higher-order Potentials We will now describe the method used in [26]

to transform the minimization of an arbitrary higher-order potential functions to the minimization of an

equivalent quadratic function. We start with a simple example to motivate our transformation.

Consider a higher-order potential function which assigns a cost θ0 if the variables xc take a particular

labeling X0 ∈ L |c|, and θ1 otherwise. More formally,

ψc(xc) =

 θ0 if xc = X0

θ1 otherwise.
(1.27)

where θ0 ≤ θ1, and X0 denotes a particular labeling of the variables xc. The minimization of this higher-

order function can be transformed to the minimization of a quadratic function using one additional switching

variable z as:

min
xc

ψc(xc) = min
xc,z∈{0,1}

f (z)+∑
i∈c

gi(z,xi) (1.28)

where the selection function f is defined as: f (0) = θ0 and f (1) = θ1, while the consistency function gi is

defined as:

gi(z,xi) =


0 if z = 1

0 if z = 0 and xi = X0(i)

inf otherwise.

(1.29)

where X0(i) denotes the label of variable xi in labeling X0.

Transforming Pattern-based Higher-order Potentials with Deviations The minimization of a pattern-

based potential with deviation functions (as defined in section 1.3.2) can be transformed to the minimization

of a pairwise function using a (t +1)-state switching variable as:

min
xc

ψc(xc) = min
xc,z∈{1,2,...,t+1}

f (z)+∑
i∈c

g(z,xi) (1.30)

where f (z) =

 θq if z = q ∈ {1, .., t}

θmax if z = t +1,
(1.31)

gi(z,xi) =

 wq
il if z = q and xi = l ∈ L

0 if z = t +1.
(1.32)

The role of the switching variable in the above mentioned transformation can be seen as that of finding which

deviation function will assign the lowest cost to any particular labeling. The reader should observe that the

last i.e. (t +1)th state of the switching variable z does not penalize any labeling of the clique variables xc. It

should also be noted that the transformation method described above can be used to transform any general

higher-order potential. However, in the worst case, the addition of a switching variable with |L ||c| states is

required, which makes minimization of even moderate order functions infeasible. Furthermore, in general

the pairwise function resulting from this transformation is NP-hard.
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1.6.2 Dual Decomposition

Dual decomposition has been successfully used for minimizing energy functions containing higher-order

potentials. The approach works by decomposing the energy functions into different parts, solving them

independently and then merging the solution of the different parts. Since the merging step provides a lower

bound on the original function, the process is repeated until the lower bound is optimal. For a particular task

at hand the main question is on how to decompose the given problem into parts. This decomposition can

have a major effect on the quality of the solution.

Let us explain the optimization procedure using the higher-order energy (1.14) for image segmentation.

The function has the form

E(x) = ∑
k

hk(n1
k)+ ∑

(i, j)∈E
wi j|xi− x j|︸ ︷︷ ︸

E1(x)

+h(n1)︸ ︷︷ ︸
E2(x)

, (1.33)

where hk(·) are concave functions and h(·) is a convex function. Recall that n1
k and n1 are functions of the

segmentation: n1
k = ∑i∈Vk

xi and n1 = ∑i∈V xi. It can be seen that the energy function (1.33) is composed of

a submodular part (E1(x)) and a supermodular (E2(x)) part. As shown in [19] minimizing function (1.33)

is an NP-hard problem.

We now apply the dual-decomposition technique to this problem. Let us rewrite the energy as

E(x) = [E1(x)−〈y,x〉]+ [E2(x)+ 〈y,x〉] , (1.34)

where y is a vector in Rn, n = |V | and 〈y,x〉 denotes the dot product between two vectors. In other words,

we added unary terms to one subproblem and subtracted them from the other one. This is a standard use of

the dual-decomposition approach for MRF optimization [56]. Taking the minimum of each term in (1.34)

over x gives a lower bound on E(x):

φ(y) = min
x
[E1(x)−〈y,x〉]︸ ︷︷ ︸

φ1(y)

+min
x
[E2(x)+ 〈y,x〉]︸ ︷︷ ︸

φ2(y)

≤min
x

E(x) . (1.35)

Note that both minima, i.e. for φ1(y) and φ2(y), can be computed efficiently. In particular, the first term can

be optimized via a reduction to an min s-t cut problem [25].

To get the tightest possible bound we need to maximize φ(y) over y. Function φ(·) is concave, therefore

one could use some standard concave maximization technique, such as a subgradient method which is

guaranteed to converge to an optimal bound. In [19] its is shown that in this case the tightest bound can be

computed in polynomial time using a parametric maxflow technique [47].
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1.7 Conclusions and Discussion

In this chapter we reviewed a number of higher-order models for computer vision problems. We showed how

the ability of higher-order models to encode complex statistics between pixels makes them an ideal candidate

for image labelling problems. The focus of the chapter has been on models based on discrete variables. It has

not covered some families of higher-order models such as Fields of Experts [17] and Product of Experts [57]

that have been shown to lead to excellent results for problem such as image denoising.

We also addressed the inherent difficulty in representing higher-order models and in performing infer-

ence in them. Learning of higher-order models involving discrete variables has seen relatively little work,

and should attract more research in the future.

Another family of models that are able to encode complex relationships between pixels are hierarchical

models which contain latent variables. Typical examples of such models include Deep Belief Nets (DBN)

and Restricted Boltzmann Machines (RBM). There are a number of interesting relationships between these

models and higher-order random fields [27]. We believe the investigation of these relationships is a promis-

ing direction for future work. We believe this would lead to better understanding of the modeling power

of both families of models as well as lead to new insights which may help in the development of better

inference and learning techniques.



Bibliography

[1] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and C. Rother, “A

comparative study of energy minimization methods for Markov random fields.” in ECCV, 2006, pp. 16–29.

[2] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts.” PAMI, vol. 23,

no. 11, pp. 1222–1239, 2001.

[3] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph cuts?.” PAMI, vol. 26, no. 2,

pp. 147–159, 2004.

[4] N. Komodakis, G. Tziritas, and N. Paragios, “Fast, approximately optimal solutions for single and dynamic

MRFs,” in CVPR, 2007.

[5] E. Boros and P. Hammer, “Pseudo-boolean optimization.” Discrete Applied Mathematics, vol. 123, no. 1-3, pp.

155–225, 2002.

[6] E. Boros, P. Hammer, and G. Tavares, “Local search heuristics for quadratic unconstrained binary optimization

(QUBO),” J. Heuristics, vol. 13, no. 2, pp. 99–132, 2007.

[7] P. Felzenszwalb and D. Huttenlocher, “Efficient Belief Propagation for Early Vision,” in Proc. CVPR, vol. 1,

2004, pp. 261–268.

[8] J. Pearl, “Fusion, propagation, and structuring in belief networks,” Artif. Intell., vol. 29, no. 3, pp. 241–288,

1986.

[9] Y. Weiss and W. Freeman, “On the optimality of solutions of the max-product belief-propagation algorithm in

arbitrary graphs.” Transactions on Information Theory, 2001.

[10] V. Kolmogorov, “Convergent tree-reweighted message passing for energy minimization.” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 28, no. 10, pp. 1568–1583, 2006.

[11] M. Wainwright, T. Jaakkola, and A. Willsky, “Map estimation via agreement on trees: message-passing and

linear programming.” IEEE Transactions on Information Theory, vol. 51, no. 11, pp. 3697–3717, 2005.

[12] N. Y. El-Zehiry and L. Grady, “Fast global optimization of curvature,” in CVPR, 2010, pp. 3257–3264.

[13] A. Fitzgibbon, Y. Wexler, and A. Zisserman, “Image-based rendering using image-based priors.” in ICCV, 2003,

pp. 1176–1183.

25



26 Image Processing and Analysing Graphs: Theory and Practice

[14] L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr, “Graph cut based inference with co-occurrence statistics,” in

ECCV, 2010, pp. 239–253.

[15] P. Kohli, M. Kumar, and P. Torr, “P3 and beyond: Solving energies with higher order cliques,” in CVPR, 2007.

[16] X. Lan, S. Roth, D. Huttenlocher, and M. Black, “Efficient belief propagation with learned higher-order markov

random fields.” in ECCV, 2006, pp. 269–282.

[17] S. Roth and M. Black, “Fields of experts: A framework for learning image priors.” in CVPR, 2005, pp. 860–867.

[18] B. Potetz, “Efficient belief propagation for vision using linear constraint nodes,” in CVPR, 2007.

[19] S. Vicente, V. Kolmogorov, and C. Rother, “Joint optimization of segmentation and appearance models,” in

ICCV, 2009, pp. 755–762.

[20] ——, “Graph cut based image segmentation with connectivity priors,” in CVPR, 2008.

[21] D. Tarlow, I. E. Givoni, and R. S. Zemel, “Hop-map: Efficient message passing with high order potentials,”

vol. 9, 2010, pp. 812–819.

[22] T. Werner, “High-arity interactions, polyhedral relaxations, and cutting plane algorithm for soft constraint opti-

misation (MAP-MRF),” in CVPR, 2009.

[23] O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon, “Global stereo reconstruction under second order smoothness

priors,” in CVPR, 2008.

[24] P. Kohli and M. P. Kumar, “Energy minimization for linear envelope MRFs,” in CVPR, 2010, pp. 1863–1870.

[25] P. Kohli, L. Ladicky, and P. Torr, “Robust higher order potentials for enforcing label consistency,” in CVPR,

2008.

[26] C. Rother, P. Kohli, W. Feng, and J. Jia, “Minimizing sparse higher order energy functions of discrete variables,”

in CVPR, 2009, pp. 1382–1389.

[27] C. Russell, L. Ladicky, P. Kohli, and P. H. S. Torr, “Exact and approximate inference in associative hierarchical

random fields using graph-cuts,” in UAI, 2010.

[28] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr, “Interactive image segmentation using an adaptive GMMRF

model,” in ECCV, 2004, pp. I: 428–441.

[29] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: interactive foreground extraction using iterated graph cuts,”

in SIGGRAPH, 2004, pp. 309–314.

[30] A. Blake, P. Kohli, and C. Rother, Advances in Markov Random Fields. MIT Press, 2011.

[31] S. Nowozin and C. Lampert, Structured Learning and Prediction in Computer Vision. NOW Publishers, 2011.

[32] A. Shekhovtsov, P. Kohli, and C. Rother, “Curvature prior for MRF-based segmentation and shape inpainting,”

Center for Machine Perception, K13133 FEE Czech Technical University, Prague, Czech Republic, Research

Report CTU–CMP–2011–11, September 2011.



Higher-order models in Computer Vision 27

[33] X. Ren and J. Malik, “Learning a classification model for segmentation.” in ICCV, 2003, pp. 10–17.

[34] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextonBoost: Joint appearance, shape and context modeling

for multi-class object recognition and segmentation.” in ECCV (1), 2006, pp. 1–15.

[35] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis.” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619, 2002.

[36] Y. Boykov and M. Jolly, “Interactive graph cuts for optimal boundary and region segmentation of objects in N-D

images,” in ICCV, 2001, pp. I: 105–112.

[37] N. Komodakis and N. Paragios, “Beyond pairwise energies: Efficient optimization for higher-order MRFs,” in

CVPR, 2009, pp. 2985–2992.

[38] H. Ishikawa, “Higher-order clique reduction in binary graph cut,” in CVPR, 2009, pp. 2993–3000.

[39] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning low-level vision,” IJCV, vol. 40, no. 1, pp. 25–47,

2000.

[40] D. Cremers and L. Grady, “Statistical priors for efficient combinatorial optimization via graph cuts,” in ECCV,

2006, pp. 263–274.

[41] M. Bleyer, C. Rother, P. Kohli, D. Scharstein, and S. Sinha, “Object stereo: Joint stereo matching and object

segmentation,” in CVPR, 2011, pp. 3081–3088.

[42] S. Nowozin and C. H. Lampert, “Global connectivity potentials for random field models,” in CVPR, 2009, pp.

818–825.

[43] V. S. Lempitsky, P. Kohli, C. Rother, and T. Sharp, “Image segmentation with a bounding box prior,” in ICCV,

2009, pp. 277–284.

[44] M. Bleyer, C. Rother, and P. Kohli, “Surface stereo with soft segmentation,” in CVPR, 2010, pp. 1570–1577.

[45] A. Delong, A. Osokin, H. N. Isack, and Y. Boykov, “Fast approximate energy minimization with label costs,” in

CVPR, 2010, pp. 2173–2180.

[46] D. Hoiem, C. Rother, and J. M. Winn, “3d layoutcrf for multi-view object class recognition and segmentation,”

in CVPR, 2007.

[47] V. Kolmogorov, Y. Boykov, and C. Rother, “Applications of parametric maxflow in computer vision,” in ICCV,

2007, pp. 1–8.

[48] G. Gallo, M. Grigoriadis, and R. Tarjan, “A fast parametric maximum flow algorithm and applications,” SIAM J.

on Comput., vol. 18, pp. 18:30–55, 1989.

[49] Y. Lim, K. Jung, and P. Kohli, “Energy minimization under constraints on label counts,” in ECCV, 2010, pp.

535–551.

[50] O. Woodford, C. Rother, and V. Kolmogorov, “A global perspective on map inference for low-level vision,” in

ICCV, 2009, pp. 2319–2326.



28 Image Processing and Analysing Graphs: Theory and Practice

[51] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. . Weiss, “Tightening lp relaxations for map using

message passing,” in UAI, 2008.

[52] J. Yedidia, W. Freeman, and Y. Weiss, “Generalized belief propagation.” in NIPS, 2000, pp. 689–695.

[53] C. Chekuri, S. Khanna, J. Naor, and L. Zosin, “A linear programming formulation and approximation algorithms

for the metric labeling problem,” SIAM Journal of Discrete Mathematics, vol. 18, no. 3, pp. 608–625, 2005.

[54] D. Freedman and P. Drineas, “Energy minimization via graph cuts: Settling what is possible.” in CVPR, 2005,

pp. 939–946.

[55] P. Kohli, L. Ladicky, and P. H. S. Torr, “Robust higher order potentials for enforcing label consistency,” IJCV,

vol. 82, no. 3, pp. 302–324, 2009.

[56] L. Torresani, V. Kolmogorov, and C. Rother, “Feature correspondence via graph matching: Models and global

optimization,” in ECCV, 2008, pp. 596–609.

[57] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural Computation, vol. 14,

no. 8, pp. 1771–1800, 2002.


	Higher-order models in Computer Vision
	Introduction
	Higher-order Random Fields
	Patch and Region based potentials
	Label consistency in a set of variables
	Pattern-based potentials

	Relating appearance models and region-based potentials
	Global Potentials
	Connectivity Constraint
	Constraints and Priors on label statistics

	Maximum a Posteriori Inference
	Transformation based methods
	Dual Decomposition

	Conclusions and Discussion


