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1 The Integer Programming formulation, and its Linear
Relaxation

In this section we show, that the minimisation of the extended energy function

E(x) =
∑
c∈C

ψc(xc) + C(L(x)) (1)

can be formulated as an Integer Program (IP). First the objective function is linearised
using a vector z of binary indicator variables to represent the assignment of labels. z is
composed of zi;a∀a ∈ L,∀i ∈ V , and, zij;ab∀a, b ∈ L, (i, j) ∈ E where E is the set of
edges, to represent the state of variables xi, xj such that,

zi;a =

{
1 if xi = a

0 otherwise
, zij;ab =

{
1 if xi = a and xj = b

0 otherwise.
(2)

In addition z is composed of zL, there are indicator variables that show which subset
of labels L(x) is used for the assignment. There are 2|L| such variables in total, one
variable zL for every L ⊆ L. We write

zL =

{
1 if L = L(x)

0 otherwise.
(3)

This z is a binary vector of length |V| · |L|+ |E| · |L|2 + 2|L|.
The resulting IP can be written as

min
z

∑
i∈V,a∈L

ψi(a)zi;a +
∑

(i,j)∈E,
a,b∈L

ψi,j(a, b)zij;ab

+
∑
L⊆L

C(L)zL (4)
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2 Ladický, Russell, Kohli, Torr

such that ∑
a zij;ab = zj;b, ∀(i, j) ∈ E , b ∈ L, (5)∑
b zij;ab = zi;a, ∀(i, j) ∈ E , a ∈ L, (6)∑
a zi;a = 1, ∀i ∈ V, (7)∑
i∈V zi;a ≥ zL, ∀a ∈ L ⊆ L, (8)∑

L⊆L

zL = 1 (9)

∑
L3a zL ≥ zi;a, ∀i ∈ V, a ∈ L (10)

zi;a, zij;ab, zL ∈ {0, 1} ∀i ∈ V,∀(i, j) ∈ E ,
∀a, b ∈ L, ∀L ⊆ L. (11)

The marginal consistency and uniqueness constraints (5 - 7) are well-known and used in
the standard IP formulation of the labelling problem [3,4,7,8]. However, the constraints
(8,9, 10) are specific to our co-occurrence formulation, and enforce that zL = 1, if and
only if, L(x) = L.

Constraint (9) ensures that only one of the indicator variables corresponding to a
subset of the label set L is 1. Constraint (8) ensures that if zL = 1, then each label
a ∈ L should be taken by at least one variable i ∈ V , i.e. L ⊆ L(x). The constraint
(10) ensures that if zL = 1, then no variable is assigned a label not present in L(x) ie
L(x) ⊆ L. The last constraint (11) ensures that all indicator variables are binary.

The IP can be converted to a linear program (LP) by relaxing the integral constraints
(11) to

zi;a, zij;ab, zL ∈ [0, 1] ∀i ∈ V,∀(i, j) ∈ E ,
∀a, b ∈ L, ∀L ⊆ L. (12)

The resulting linear program can be solved using any general purpose LP solver.
That said, the size of the LP is a concern as a typical computer vision problem contains
a vast number of implicit variables and constraints, in the supplementary materials
we describe a reduction of the model complexity which allows these potentials to be
effectively solved by LP solvers, and standard energy minimisation algorithms such as
TRW-S.

While this approach allows co-occurrence to be computed effectively for small im-
ages, over large images the memory and time requirements of standard LP solvers make
this approach infeasible. We next show that, under a particular choice of relaxation,
the higher order energy C(L(x)) can be transformed into a pairwise energy function
with the addition of a single auxiliary variable L that takes 2|L| states. This approach
allows us to use the wide body of standard inference techniques [1,2,5] to minimise this
function.

2 Pairwise Representation of Co-occurrence Potentials

To encode the above IP as a pairwise model, we write the sub-cost
∑
c∈C ψc(xc) repre-

sented by equations (5-7), as a standard MRF, with unary and pairwise potentials defined
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over a graph of size |V|. We represent the state of all zL, as one multi-state random vari-
able Z taking 2|L| states. Such that each state of Z, which is an element of the power set
of L, thus any state of L defines a corresponding label set L. We form the Lagrangian
constraint that L = L(x) (which follows from a combination of (3), and constraints
(8,10) ). In place of (1) we write

E(x, L) =
∑
c∈C

ψc(xc) + C(L) + λT1(x, Z) + λT2(x, Z), (13)

where, as λ→∞, the function T1(·) enforces that L(x) ⊆ L, while T2(·) enforces that
L ⊆ L(x) providing the following inequalities hold

T1(x, Z) =

{
0 if L(x) ⊆ L,
kx,Z > 0 otherwise

T2(x, Z) =

{
0 if l ⊆ L(x)

k′x,Z > 0 otherwise.
(14)

T1(·) can be embedded as a sum of pairwise expressions of the form

ψZ,i(l, xi) =

{
0 xi ∈ L
1 xi 6∈ L

∀i ∈ V (15)

by choosing T1(·) as
T1(Z,x) =

∑
i∈V

ψZ,i(L, xi). (16)

Similarly, we can encode the cost T2(·) by the addition of |L| random variables,
each taking |V| + 1 states. Denoting each new variable as {Yl : ∀l ∈ L} and the set of
states taken by each of these variables as V ∪{V̄} we associate the set of pairwise costs

ψYl,i(yl, xi) =

{
1 if yl = i and xi 6= l

0 otherwise,
(17)

and

ψYl,H(yl, h) =

{
1 if yl = V̄ and l ∈ h
0 otherwise.

(18)

It can be readily be seen that

min
y

(∑
l∈L

ψYl,H(yl, h) + ψyl,i(yl, xi)

)
(19)

satisfies the second set of constraints 14, and that T2(·) is expressible as the minimum
of a pairwise energy.

Owing to the large number of states required, inference over the construction of
T2(·) carries too high a computational cost (violating the efficiency requirement (iii)),
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and we instead choose to remove it. This is equivalent to a relaxation which removes
constraint (8), that L ⊆ L(x).

However, a minimal cost labelling of the relaxed energy

Er(x, L) =
∑
c∈C

ψc(xc) + C(L) + λT1(x, Z), (20)

will satisfy constraint (10), that L(x) ⊆ L. This relaxation allows labels in L not to
occur in the labelling x.

Theorem 1. Minimisation ofEr(x, Z) is equivalent to the minimisation of the original
energy E(x) if and only if the cost function C(L) is monotone increasing with respect
to L.

A relaxation, or removal of a constraint, from an integer or linear program is said
to be tight, if the cost of the minimal labelling does not change with the removal of the
constraint.

Assume C(L(x)) is monotone increasing, then given any fixed x,

lim
λ→∞

min
L⊆L

(C(L) + λT1(x, Z)) = min
L(x)⊆L⊆L

C(L) = C(L(x)). (21)

For the only if case, we assume thatC(·) is not monotone increasing, i.e. there exists
some L,L′ ∈ L such that

C(L) < C(L ∪ L′). (22)

Then, picking any x such that L(x) = L we find

lim
λ→∞

min
S⊆L

(C(L) + λT1(x, Z)) = min
L(x))⊆L⊆L

C(L) 6= C(L(x))ut (23)

Note that by (23) if C(·) is not monotone increasing, the solution to the new relaxation
is equivalent to the solving the original IP formulation where the cost C(·) is replaced
with a new expression

C ′(L(x)) = min
L(x)⊆L⊆L

C(L(x)), (24)

which is monotone increasing.

3 Efficient Representation of Cost Functions

In this section, we describe an LP formulation which requires relatively very few aux-
iliary variables making it feasible for some small graphs to be solved exactly. This
approach leads to a more compact representation of the costs C(L(x)), necessary for
the efficient application of LP solvers, and was used in the experimental comparison
with α expansion. It can also be applied to the to the pairwise formulation of section
4, enabling a more efficient use of reparameterisation based methods such as TRW-S or
BP.
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Explicitly assigning a cost to each and every possible set of labels is both compu-
tationally difficult and prone to over-fitting. This is particularly important when we are
dealing with a large label space. To overcome these difficulties, we can restrict the form
of the cost function C(L(x)). One simple choice is to represent C(L(x)) as the sum of
costs based on the occurrence of some smaller set of labels. For instance, consider the
representation

C(L(x)) =
∑
l∈L

wl∆(l ∈ L(x)) (25)

where ∆(l ∈ L(x)) takes the value 1 if label l is present in the set L(x), and 0 oth-
erwise. This formulation assigns a cost wl if the label l is present in the image and
corresponds to a scene based label cost, similar to the work of Torralba[6] discussed in
section 2.2. Such a representation can be formulate as an IP as we show below.

To formulate the problem efficiently, we consider a family of functions F such that
each fi ∈ F maps to and from the power-set of L. More formally

F = {f : P(L)→ P(L)} (26)

We associate each f ∈ F with a unique cost function Cf : F → <+
0 , and subject all f

to the additional requirement that if L ⊆ L′ ⊆ L then

f(L) ⊆ f(L′) (27)

These functions allow cost functions to be described compactly, for example: to assign
the same cost k to L(x) for all L(x) ⊆ S ⊆ L choose some f such that

f(s′) = f(S)∀s′ ⊆ S. (28)

and assign a sparse cost

Cf (L) =

{
k if L = S

0 otherwise.
(29)

We can use this to represent C as an approximate sum of these new functions Cf

C(L(x)) ≈
∑
f∈F

Cf (f(L(x))) (30)

Having decomposed the cost function into a set of symmetric distributions, we alter the
integer program of equations refeg:ip as follows: Letting Sf = {f(L) : L ⊆ L} for all
f , we write

min
z

∑
i∈V,a∈L

ψi(a)zi;a +
∑

(i,j)∈E,
a,b∈L

ψi,j(a, b)zij;ab

+
∑

Lf∈Sf ,
f∈F

Cf (Lf )zf ;L (31)



6 Ladický, Russell, Kohli, Torr

Such that ∑
a zab;ij = zb;j , ∀(i, j) ∈ E , b ∈ L,∑
b zab;ij = za;i, ∀(i, j) ∈ E , a ∈ L,∑
a za;i = 1, ∀i ∈ V,∑
f(a)∈Lf∈Sf

zf ;Lf
≤
∑
i∈V zi;a, ∀a ∈ L, (32)

zf ;L ≥ za;i, ∀i ∈ V, a ∈ L : a ∈ f(L) (33)
za;i ∈ {0, 1}, zab;ij ∈ {0, 1} ∀i ∈ V (34)
∀(i, j) ∈ E , ∀a, b ∈ L,
zf ;Lf

∈ {0, 1}, ∀f ∈ F , Lf ⊆ f(L). (35)

Where the new term within the cost function (31), Cf (Lf ), represents the cost associ-
ated with f(L(x)) = Lf . The terms (32, 33, 35) are an application of the constraints (13
- 15 main paper) to each cost function {Cf : ∀f ∈ F}, enforcing the constraint that
f(L(x)) = Lf .

This approach can be used to build a first order approximation of a cost over a label
space. We take the sum of cost functions Cβ defined over β and L\{β} ∀β ∈ L and
approximate C(L(x)) as follows

C(L(x)) ≈
∑
β∈L

Cβ(fβ(L)) (36)

where

fβ(L) =

{
L\{β} if β /∈ L
L otherwise,

(37)

and

Cβ(fβ(L)) =

{
kβ if fβ(L) = β

0 otherwise
(38)

Such a first order approximation is an occurrence potential, which captures the fre-
quency with which each label is likely to occur.

Similarly, a second order approximation can be formed as follows

C(L(x)) ≈
∑
β∈L

Cβ(fβ(L)) +
∑

β1,β2∈L

Cβ1,β2
(fβ1,β2

(L)) (39)

where Cβ , fβ is defined as above,

fβ1,β2(L) =


L\{β1, β2} if β1 /∈ L
L\{β2} if β1 ∈ L, β2 /∈ L
L otherwise

(40)

and

Cβ1,β2
(fβ1,β2

(L)) =

{
kβ1,β2 − kβ1 − kβ2 if β1, β2 ∈ L
0 otherwise,

(41)
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These second order approximations are co-occurrence potentials that as well as captur-
ing the relative occurrence of each label, also express the likelihood of pairs of labels
occurring together.

This combination of first order occurrence potentials and second order co-occurrence
potentials is equivalent to a Taylor series based approximation ofC(·) truncated beyond
the second degree.

While the above simplification of the initial formulation allow for more efficient
inference, it still requires a large linear program to be solved, and does not scale effi-
ciently. In some sense we are hampered by the fact that standard LP solvers are ill-suited
for inference over many large problems encountered in computer vision, necessitating
the use of the alternate methods of inference.
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