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ABSTRACT

In this work we study the problem of network morphism, an effective learning
scheme to morph a well-trained neural network to a new one with the network
function completely preserved. Different from existing work where basic morph-
ing types on the layer level were addressed, we target at the central problem of net-
work morphism at a higher level, i.e., how a convolutional layer can be morphed
into an arbitrary module of a neural network. To simplify the representation of a
network, we abstract a module as a graph with blobs as vertices and convolutional
layers as edges, based on which the morphing process is able to be formulated as a
graph transformation problem. Two atomic morphing operations are introduced to
compose the graphs, based on which modules are classified into two families, i.e.,
simple morphable modules and complex modules. We present practical morphing
solutions for both of these two families, and prove that any reasonable module can
be morphed from a single convolutional layer. Extensive experiments have been
conducted based on the state-of-the-art ResNet on benchmark datasets, and the
effectiveness of the proposed solution has been verified.

1 INTRODUCTION

Deep convolutional neural networks have continuously demonstrated their excellent performances
on diverse computer vision problems. In image classification, the milestones of such networks can
be roughly represented by LeNet (LeCun et al.| [1989), AlexNet (Krizhevsky et al.l[2012)), VGG net
(Simonyan & Zisserman, 2014), GoogLeNet (Szegedy et al., 2014), and ResNet (He et al., [2015)),
with networks becoming deeper and deeper. However, the architectures of these network are signifi-
cantly altered and hence are not backward-compatible. Considering a life-long learning system, it is
highly desired that the system is able to update itself from the original version established initially,
and then evolve into a more powerful one, rather than re-learning a brand new one from scratch.

Network morphism (Wei et al.| [2016) is an effective way towards such an ambitious goal. It can
morph a well-trained network to a new one with the knowledge entirely inherited, and hence is
able to update the original system to a compatible and more powerful one based on further training.
Network morphism is also a performance booster and architecture explorer for convolutional neural
networks, allowing us to quickly investigate new models with significantly less computational and
human resources. However, the network morphism operations proposed in (Wei et al., 2016)), in-
cluding depth, width, and kernel size changes, are quite primitive and have been limited to the level
of layer in a network. For practical applications where neural networks usually consist of dozens or
even hundreds of layers, the morphing space would be too large for researchers to practically design
the architectures of target morphed networks, when based on these primitive morphing operations
only.

Different from previous work, we investigate in this research the network morphism from a higher
level of viewpoint, and systematically study the central problem of network morphism on the mod-
ule level, i.e., whether and how a convolutional layer can be morphed into an arbitrary modul

where a module refers to a single-source, single-sink acyclic subnet of a neural network. With this
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! Although network morphism generally does not impose constraints on the architecture of the child network,
in this work we limit the investigation to the expanding mode.
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modularized network morphing, instead of morphing in the layer level where numerous variations
exist in a deep neural network, we focus on the changes of basic modules of networks, and explore
the morphing space in a more efficient way. The necessities for this study are two folds. First, we
wish to explore the capability of the network morphism operations and obtain a theoretical upper
bound for what we are able to do with this learning scheme. Second, modern state-of-the-art convo-
lutional neural networks have been developed with modularized architectures (Szegedy et al., 2014;
He et al.| 2015), which stack the construction units following the same module design. It is highly
desired that the morphing operations could be directly applied to these networks.

To study the morphing capability of network morphism and figure out the morphing process, we
introduce a simplified graph-based representation for a module. Thus, the network morphing process
can be formulated as a graph transformation process. In this representation, the module of a neural
network is abstracted as a directed acyclic graph (DAG), with data blobs in the network represented
as vertices and convolutional layers as edges. Furthermore, a vertex with more than one outdegree
(or indegree) implicitly includes a split of multiple copies of blobs (or a joint of addition). Indeed,
the proposed graph abstraction suffers from the problem of dimension compatibility of blobs, for
different kernel filters may result in totally different blob dimensions. We solve this problem by
extending the blob and filter dimensions from finite to infinite, and the convergence properties will
also be carefully investigated.

Two atomic morphing operations are adopted as the basis for the proposed graph transformation,
based on which a large family of modules can be transformed from a convolutional layer. This
family of modules are called simple morphable modules in this work. A novel algorithm is proposed
to identify the morphing steps by reducing the module into a single convolutional layer. For any
module outside the simple morphable family, i.e., complex module, we first apply the same reduction
process and reduce it to an irreducible module. A practical algorithm is then proposed to solve
for the network morphism equation of the irreducible module. Therefore, we not only verify the
morphability to an arbitrary module, but also provide a unified morphing solution. This demonstrates
the generalization ability and thus practicality of this learning scheme.

Extensive experiments have been conducted based on ResNet (He et al.,[2015) to show the effective-
ness of the proposed morphing solution. With only 1.2x or less computation, the morphed network
can achieve up to 25% relative performance improvement over the original ResNet. Such an im-
provement is significant in the sense that the morphed 20-layered network is able to achieve an error
rate of 6.60% which is even better than a 110-layered ResNet (6.61%) on the CIFAR10 dataset,
with only around 1/5 of the computational cost. It is also exciting that the morphed 56-layered net-
work is able to achieve 5.37% error rate, which is even lower than those of ResNet-110 (6.61%) and
ResNet-164 (5.46%). The effectiveness of the proposed learning scheme has also been verified on
the CIFAR100 and ImageNet datasets.

2 RELATED WORK

Network Morphism. Network morphism originated from knowledge transferring for convolutional
neural networks. Early attempts were only able to transfer partial knowledge of a well-trained net-
work. For example, a series of model compression techniques (Bucilu et al.| 2006; |Ba & Caruanal,
2014; Hinton et al. 2015 [Romero et al.| 2014) were proposed to fit a lighter network to predict
the output of a heavier network. Pre-training (Simonyan & Zisserman, |2014) was adopted to pre-
initialize certain layers of a deeper network with weights learned from a shallower network. How-
ever, network morphism requires the knowledge being fully transferred, and existing work includes
Net2Net (Chen et al.,|2015) and NetMorph (Wei et al.,|[2016). Net2Net achieved this goal by padding
identity mapping layers into the neural network, while NetMorph decomposed a convolutional layer
into two layers by deconvolution. Note that the network morphism operations in (Chen et al.} 2015}
Wei et al., [2016) are quite primitive and at a micro-scale layer level. In this research, we study
the network morphism at a meso-scale module level, and in particular, we investigate its morphing
capability.

Modularized Network Architecture. The evolution of convolutional neural networks has been from
sequential to modularized. For example, LeNet (LeCun et al [1998)), AlexNet (Krizhevsky et al.,
2012), and VGG net (Simonyan & Zisserman, [2014)) are sequential networks, and their difference
is primarily on the number of layers, which is 5, 8, and up to 19 respectively. However, recently



Under review as a conference paper at ICLR 2017

TYPE-I TYPE-II
(a) Network morphism in depth. (b) Atomic morphing types.

Figure 1: Illustration of atomic morphing types. (a) One convolutional layer is morphed into two
convolutional layers; (b) TYPE-T and TYPE-II atomic morphing types.

proposed networks, such as GoogLeNet (Szegedy et al.| 2014} 2015) and ResNet (He et al., 2015)),

follow a modularized architecture design, and have achieved the state-of-the-art performance. This
is why we wish to study network morphism at the module level, so that its operations are able to
directly apply to these modularized network architectures.

3 NETWORK MORPHISM VIA GRAPH ABSTRACTION

In this section, we present a systematic study on the capability of network morphism learning
scheme. We shall verify that a convolutional layer is able to be morphed into any single-source,
single-sink DAG subnet, named as a module here. We shall also present the corresponding morph-
ing algorithms.

For simplicity, we first consider convolutional neural networks with only convolutional layers. All
other layers, including the non-linearity and batch normalization layers, will be discussed later in
this paper.

3.1 BACKGROUND AND BASIC NOTATIONS

For a 2D deep convolutional neural network (DCNN), as shown in Fig. [Ta the convolution is defined
by:

Bj(c;) =Y _ Bi(ei) * Gi(cj, ca), (1)
where the blob B, is a 3D tensor of shape (C., H., W,) and the convolutional filter G; is a 4D
tensor of shape (Cj7 C;, K;, K;). In addition, C,, H,, and W, represent the number of channels,
height and width of B,. K is the convolutional kernel sizeﬂ

In a network morphism process, the convolutional layer G, in the parent network is morphed into
two convolutional layers F; and Fj4; (Fig. @, where the filters F; and Fjy; are 4D tensors of
shapes (Cy, C;, K1, K1) and (C}, C}, Ko, K3). This process should follow the morphism equation:

Gilcj,c) = Z Fi(cr,ci) * Fia(cj, a), (2)
(&)

where G’l is a zero-padded version of GG; whose effective kernel size is K =K1+ Ky —1> K.

showed a sufficient condition for exact network morphism:
max(ClC’in,CjClK%) Z C]Cl(K1 +K2 — 1)2. (3)

For simplicity, we shall denote equations and l) as B; = G; ® B; and Gl = Fj11 ® Fy, where
® is a non-communicative multi-channel convolution operator. We can also rewrite equation (3)) as
max(|F|,|Fi4+1]) > |Gi|, where | * | measures the size of the convolutional filter.

2Generally speaking, G| is a 4D tensor of shape (C;,Ci, K H KW ), where convolutional kernel sizes for
blob helgght and width are not necessary to be the same. However, in order to simplify the notations, we assume
that K7 = KV, but the claims and theorems in this paper apply equally well when they are different.
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3.2 ATOMIC NETWORK MORPHISM

We start with the simplest cases. Two atomic morphing types are considered, as shown in Fig. 1)
a convolutional layer is morphed into two convolutional layers (TYPE-I); 2) a convolutional layer is
morphed into two-way convolutional layers (TYPE-II). For the TYPE-I atomic morphing operation,
equation (2) is satisfied, while For TYPE-II, the filter split is set to satisfy

G =F'+ F}. 4)

In addition, for TYPE-II, at the source end, the blob is split with multiple copies; while at the sink
end, the blobs are joined by addition.

3.3 GRAPH ABSTRACTION

To simplify the representation, we introduce the following graph abstraction for network morphism.
For a convolutional neural network, we are able to abstract it as a graph, with the blobs represented
by vertices, and convolutional layers by edges. Formally, a DCNN is represented as a DAG M =
(V,E), where V = {B;}¥ | are blobs and E = {¢; = (B, B;)}L£_,are convolutional layers. Each
convolutional layer e; connects two blobs B; and B, and is associated with a convolutional filter
F,. Furthermore, in this graph, if outdegree(B;) > 1, it implicitly means a split of multiple copies;
and if indegree(B;) > 1, it is a joint of addition.

Based on this abstraction, we formally introduce the following definition for modular network mor-
phism:

Definition 1. Let My = ({s,t}, eg) represent the graph with only a single edge ¢ that connects the
source vertex s and sink vertex t. M = (V, E') represents any single-source, single-sink DAG with
the same source vertex s and the same sink vertex ¢t. We call such an M as a module. If there exists
a process that we are able to morph My to M, then we say that module M is morphable, and the
morphing process is called modular network morphism.

Hence, based on this abstraction, modular network morphism can be represented as a graph trans-
formation problem. As shown in Fig. module (C) in Fig. 2a] can be transformed from module
M by applying the illustrated network morphism operations.

For each modular network morphing, a modular network morphism equation is associated:

Definition 2. Each module essentially corresponds to a function from s to ¢, which is called a module
function. For a modular network morphism process from M to M, the equation that guarantees the
module function unchanged is called modular network morphism equation.

It is obvious that equations and (@) are the modular network morphism equations for TYPE-I
and TYPE-II atomic morphing types. In general, the modular network morphism equation for a
module M is able to be written as the sum of all convolutional filter compositions, in which each

composition is actually a path from s to ¢ in the module M. Let {(Fp 1, Fp2, -+, Fps,) @ p =
1,---, P, and i, is the length of path p} be the set of all such paths represented by the convolutional
filters. Then the modular network morphism equation for module M can be written as
Gi=) Fi,®Fp;, 1® - ®F,,. )
p

As an example illustrated in Fig. there are four paths in module (D), and its modular network
morphism equation can be written as

G=F0FR +F®(0F +F®F)+ F;® F, (6)

where (G, is the convolutional filter associated with eg in module M.

3.4 THE COMPATIBILITY OF NETWORK MORPHISM EQUATION

One difficulty in this graph abstraction is in the dimensional compatibility of convolutional filters or
blobs. For example, for the TYPE-II atomic morphing in Fig. [Ib we have to satisfy G, = F}! + F2.
Suppose that G; and F}? are of shape (64, 64, 3, 3), while F}' is (64, 64, 1, 1), they are actually not
addable. Formally, we define the compatibility of modular network morphism equation as follows:
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(a) Example modules. (b) Morphing process for module (C) and (D).

Figure 2: Example modules and morphing processes. (a) Modules (A)-(C) are simple morphable,
while (D) is not; (b) a morphing process for module (C), while for module (D), we are not able to
find such a process.

Definition 3. The modular network morphism equation for a module M is compatible if and only
if the mathematical operators between the convolutional filters involved in this equation are well-
defined.

In order to solve this compatibility problem, we need not to assume that blobs { B; } and filters { F} }
are finite dimension tensors. Instead they are considered as infinite dimension tensors defined with a
finite supporﬂ and we call this as an extended definition. An instant advantage when we adopt this
extended definition is that we will no longer need to differentiate G; and G, in equation (2), since
G is simply a zero-padded version of Gj.

Lemma 4. The operations + and ® are well-defined for the modular network morphism equation.
Namely, if F* and F? are infinite dimension 4D tensors with finite support, let G = F' + F? and
H = F?® F!, then both G and H are uniquely defined and also have finite support.

Sketch of Proof. It is quite obvious that this lemma holds for the operator +. For the operator ®, if
we have this extended definition, the sum in equation (]Z[) will become infinite over the index ¢;. It is
straightforward to show that this infinite sum converges, and also that H is finitely supported with
respect to the indices ¢; and c;. Hence H has finite support.

As a corollary, we have:

Corollary 5. The modular network morphism equation for any module M is always compatible if
the filters involved in M are considered as infinite dimension tensors with finite support.

3.5 SIMPLE MORPHABLE MODULES

In this section, we introduce a large family of modules, i.e, simple morphable modules, and then
provide their morphing solutions. We first introduce the following definition:

Definition 6. A module M is simple morphable if and only if it is able to be morphed with only
combinations of atomic morphing operations.

Several example modules are shown in Fig. @ It is obvious that modules (A)-(C) are simple
morphable, and the morphing process for module (C) is also illustrated in Fig. [2b]

For a simple morphable module M, we are able to identity a morphing sequence from M to
M. The algorithm is illustrated in Algorithm [T The core idea is to use the reverse operations
of atomic morphing types to reduce M to M,. Hence, the morphing process is just the reverse
of the reduction process. In Algorithm |1} we use a four-element tuple (M, e, {ea, €3}, type) to
represent the process of morphing edge e; in module M to {es, e3} using TYPE-<TyPE> atomic
operation. Two auxiliary functions CHECKTYPEI and CHECKTYPEII are further introduced. Both

3A support of a function is defined as the set of points where the function value is non-zero, i.e.,

support(f) = {z|f(x) # 0}.
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Algorithm 1 Algorithm for Simple Morphable Modules

Input: Mjy; a simple morphable module M
Output: The morphing sequence () that morphs My to M using atomic morphing operations
Q=10
while M # M, do
while CHECKTYPEI(M) is not FALSE do
Il Let (Myemp, €1, { €2, es}, type) be the return value of CHECKTYPEI(M)
Q'pTepend((Mtempa €1, {627 63}7 type)) and M <+ Mtemp
end while
while CHECKTYPEII(M) is not FALSE do
Il Let (Myemp, €1, {e2, es}, type) be the return value of CHECKTYPEII(A)
Q.prepend((Miemp, e1,{e2, es}, type)) and M < Micpp
end while
end while

Algorithm 2 Algorithm for Irreducible Modules

Input: Gy; an irreducible module M
Output: Convolutional filters {F;}? ; of M
Initialize { F;}?_, with random noise.
Calculate the effective kernel size of M, expand G to GG; by padding zeros.
repeat
for j =1tondo ~
Fix {F; : i # j}, and calculate F; = deconv(Gy,{F; : i # j})
Calculate loss [ = |G} — conv({F;}™ )|
end for
until [ = 0 or maxzIter is reached

of them return either FALsE if there is no such atomic sub-module in M, or a morphing tuple
(M, eq,{ea, e3}, type) if there is. The algorithm of CHECKTYPEI only needs to find a vertex sat-
isfying indegree(B;) = outdegree(B;) = 1, while CHECKTYPEII looks for the matrix elements
> 1 in the adjacent matrix representation of module M.

Is there a module not simple morphable? The answer is yes, and an example is the module (D) in
Fig. A simple try does not work as shown in Fig. In fact, we have the following proposition:

Proposition 7. Module (D) in Fig. [2d|is not simple morphable.

Sketch of Proof. A simple morphable module M is always able to be reverted back to My. However,
for module (D) in Fig. @ both CHECKTYPEI and CHECKTYPEII return FALSE. O

3.6 MODULAR NETWORK MORPHISM THEOREM

For a module that is not simple morphable, which is called a complex module, we are able to apply
Algorithm [T] to reduce it to an irreducible module M first. For M, we propose Algorithm [2] to
solve the modular network morphism equation. The core idea of this algorithm is that, if only
one convolutional filter is allowed to change with all others fixed, the modular network morphism
equation will reduce to a linear system. The following argument guarantees the correctness of
Algorithm 2]

Correctness of Algorithm[2] Let G; and {F;}!'_; be the convolutional filter(s) associated with M

and M. We further assume that one of {F}}, e.g., F, is larger or equal to G}, where G} is the zero-
padded version of G (this assumption is a strong condition in the expanding mode). The module
network morphism equation for M can be written as

G=C®F;®Cy+Cs, (7)
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Figure 3: Detailed architectures of the ResNet module and the morph_1c1 module.

(a) ResNet module:

(b) morph_1c1 module:

3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
_______________ * 05 05 1x1 1x1
1x1 1x1
(a) ResNet (b) morph_1c1 (c) morph_3c1 (d) morph_3c3 (e) morph_1c1_2branch

Figure 4: Sample modules adopted in the proposed experiments. (a) and (b) are the graph abstrac-
tions of modules illustrated in Fig. Eka) and (b).

where C1, Co, and C3 are composed of other filters {F; : i # j}. It can be checked that equation

is a linear system with |G| constraints and |Fj| free variables. Since we have |Fj| > |G|, the
system is non-deterministic and hence solvable as random matrices are rarely inconsistent.

For a general module A/, whether simple morphable or not, we apply Algorithm|[T|to reduce M to an
irreducible module M’, and then apply Algorithmto M'. Hence we have the following theorem:

Theorem 8. A convolutional layer can be morphed to any module (any single-source, single-sink
DAG subnet).

This theorem answers the core question of network morphism, and provides a theoretical upper
bound for the capability of this learning scheme.

3.7 NON-LINEARITY AND BATCH NORMALIZATION IN MODULAR NETWORK MORPHISM

Besides the convolutional layers, a neural network module typically also involves non-linearity lay-
ers and batch normalization layers, as illustrated in Fig. @ In this section, we shall describe how do
we handle these layers for modular network morphism.

For the non-linear activation layers, we adopt the solution proposed in (Wei et al., [2016)). Instead
of directly applying the non-linear activations, we are using their parametric forms. Let ¢ be any
non-linear activation function, and its parametric form is defined to be

P-o = {0 Haep.) = {(1 — a) - ¢ + apiatlacpo,1- ®)

The shapes of the parametric form of the non-linear activation ¢ is controlled by the parameter a.
When a is initialized (a = 1), the parametric form is equivalent to an identity function, and when the
value of a has been learned, the parametric form will become a non-linear activation. In Fig. Ep, the
non-linear activation for the morphing process is annotated as PReLU to differentiate itself with the
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Table 1: Experimental results of networks morphed from ResNet-20, ResNet-56, and ResNet-110
on the CIFAR10 dataset. Results annotated with T are from (He et al.| [2015).

Net Arch. Intermediate Error Abs. Perf. | Rel. Perf. | ) b (million) | Rel. FLOP
Phases Improv. Improv.
resnet20f - 8.75% - - 40.8 1x
morph20_1lcl - 7.35% 140% | 16.0% 440 1.08x
5 7.10% 1.65% | 18.9%
morph20-3cl Tl 6.83% 192% | 21.9% 265 1.38x
5 6.97% 1.78% | 20.3%
morph20.-3¢3 1T, 301 6.66% 2.09% | 23.9% 69.1 1.69x
- 7.26% 149% | 17.0%
morph20_1cl_2branch ToT, half 6.60% >15% 33.6% 47.1 1.15x
resnet56' - 6.97% - - 125.7 1x
morph56 1clhalf n 5.68% 129% | 18.5% 132.0 1.05x
- 5.94% 1.03% | 14.8%
morph56.1cl Toihalf | 537% | 1.60% | 23.0% 138.3 1.10x
resnet1107 - 6.61%=+0.16 - - 253.1 1x
morphl10_1cl_half - 5.74% 0.87% 13.2% 267.3 1.06x
5 5.93% 0.68% | 10.3%
morphl10.lcl Toihalf | 550% | LI1% | 168% 279.9 L1x

other ReL.U activations. In the proposed experiments, for simplicity, all ReLUs are replaced with
PReLUs.

The batch normalization layers (loffe & Szegedy, |[2015) can be represented as

data —
newdata = “e2 AN gamma + beta. 9

Vvvar + eps

It is obvious that if we set gamma = \/var + eps and beta = mean, then a batch normalization
layer is reduced to an identity mapping layer, and hence it can be inserted anywhere in the network.
Although it is possible to calculate the values of gamma and beta from the training data, in this
research, we adopt another simpler approach by setting gamma = 1 and beta = 0. In fact, the
value of gamma can be set to any nonzero number, since the scale is then normalized by the latter
batch normalization layer (lower right one in Fig. Bp). Mathematically and strictly speaking, when
we set gamma = 0, the network function is actually changed. However, since the morphed filters
for the convolutional layers are roughly randomized, even though the mean of data is not strictly
zero, it is still approximately zero. Plus with the fact that the data is then normalized by the latter
batch normalization layer, such small perturbation for the network function change can be neglected.
In the proposed experiments, only statistical variances in performance are observed for the morphed
network when we adopt setting gamma to zero. The reason we prefer such an approach to using the
training data is that it is easier to implement and also yields slightly better results when we continue
to train the morphed network.

4 EXPERIMENTAL RESULTS

In this section, we report the results of the proposed morphing algorithms based on current state-of-
the-art ResNet (He et al., 2015), which is the winner of 2015 ImageNet classification task.

4.1 NETWORK ARCHITECTURES OF MODULAR NETWORK MORPHISM

We first introduce the network architectures used in the proposed experiments. Fig. shows the
module template in the design of ResNet (He et al., [2015)), which is actually a simple morphable
two-way module. The first path consists of two convolutional layers, and the second path is a
shortcut connection of identity mapping. The architecture of the ResNet module can be abstracted
as the graph in Fig. fp. For the morphed networks, we first split the identity mapping layer in
the ResNet module into two layers with a scaling factor of 0.5. Then each of the scaled identity
mapping layers is able to be further morphed into two convolutional layers. Fig. |3p illustrates the
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Table 2: Experimental results of networks morphed from ResNet-20, ResNet-56, and ResNet-110
on the CIFAR100 dataset.

Net Arch. Intermediate Error | AP Perf | Rel-Perf o} o million) | Rel. FLOP
Phases Improv. Improv.
resnet20 - 32.82% - - 40.8 1x
morph20_1cl - 31.7% 1.12% 3.4% 44.0 1.08x
resnet56 - 29.83% - - 125.8 1x
morph56_1cl lcl_half | 27.52% | 2.31% 7.7% 138.3 1.10x
resnetl110 - 28.46% - - 253.2 1x
morphl10_1cl | 1cl_half | 26.81% 1.65% 5.8% 279.9 1.11x
10 I resnet I morphnet 2 [ resnet [ morphnet
. 32.82
~ 9 == —~ 32 31.70
X 8 X
L7 6.60 6.97 6.61 2 30 29.83
© : : o 28.46
5 6 537 5.50 5 28 27.52
% 5 E 26.81
4 26
3 24
20-layer 56-layer 110-layer 20-layer 56-layer 110-layer
(a) CIFAR10 (b) CIFAR100

Figure 5: Comparison results of ResNet and morphed networks on the CIFAR10 and CIFAR100
datasets.

case with only one scaled identity mapping layer morphed into two convolutional layers, and its
equivalent graph abstraction is shown in Fig. [dp. To differentiate network architectures adopted in
this research, the notation morph_<k1>c<k2> is introduced, where k1 and k2 are kernel sizes
in the morphed network. If both of scaled identity mapping branches are morphed, we append a
suffix of ‘_2branch’. Some examples of morphed modules are illustrated in Fig. i} We also use
the suffix ‘_half’ to indicate that only one half (odd-indexed) of the modules are morphed, and the
other half are left as original ResNet modules.

4.2 EXPERIMENTAL RESULTS ON THE CIFAR10 DATASET

CIFAR10 (Krizhevsky & Hinton, [2009) is a benchmark dataset on image classification and neural
network investigation. It consists of 32x32 color images in 10 categories, with 50,000 training
images and 10,000 testing images. In the training process, we follow the same setup as in (He et al.,
2015). We use a decay of 0.0001 and a momentum of 0.9. We adopt the simple data augmentation
with a pad of 4 pixels on each side of the original image. A 32x32 view is randomly cropped from
the padded image and a random horizontal flip is optionally applied.

TableE] shows the results of different networks morphed from ResNet (He et al.,[2015)). Notice that it
is very challenging to further improve the performance, for ResNet has already boosted the number
to a very high level. E.g., ResNet (He et al., 2015) made only 0.36% performance improvement
by extending the model from 56 to 110 layers (Table[I). From Table [I] we can see that, with only
1.2x or less computational cost, the morphed networks achieved 2.15%, 1.60%, 1.11% performance
improvements over the original ResNet-20, ResNet-56, and ResNet-110 respectively. Notice that
the relative performance improvement can be up to 25%.

Except for large error rate reduction achieved by the morphed network, one exciting indication from
Table [I] is that the morphed 20-layered network morph20_3c3 is able to achieve slightly lower
error rate than the 110-layered ResNet (6.60% vs 6.61%), and its computational cost is actually less
than 1/5 of the latter one. Similar results have also been observed from the morphed 56-layered
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Table 3: Experimental results of networks morphed from ResNet-18 on the ImageNet dataset.

Net Arch. Eval. Mode | Top-1 Error Abs. Perf. | Rel. Perf. | ) b billion) | Rel. FLOP
Improv. Improv.
1-view 32.56% - -
resnetl18 T0-view 30.86% - - 1.814 1x
1-view 31.69% 0.87% 2.7%
morphl8.lel —aey 2000% | 0.96% | 3.1% 1917 1.06x

network. It is able to achieve a 5.37% error rate, which is even lower than those of ResNet-110
(6.61%) and ResNet-164 (5.46%) (He et al.,2016). These results are also illustrated in Fig. Eka).

Several different architectures of the morphed networks were
also explored, as illustrated in Fig. 4] and Table[I] First, when 60

the kernel sizes were expanded from 1x 1 to 3 x 3, the morphed 55 resnet18
networks (morph20_3c1 and morph20_3c3) achieved bet- morph18_tct
ter performances. Similar results were reported in (Simonyan
& Zisserman, 2014)) (Table 1 for models C and D). However,
because the morphed networks almost double the computa-

tional cost, we did not adopt this approach. Second, we also 35
tried to morph the other scaled identity mapping layer into 0w w0 40 50 s 70
two convolutional layers (morph20_1cl_2branch), the er- epoch

ror rate was further lowered for the 20-layered network. How-
ever, for the 56-layered and 110-layered networks, this strategy ~ Figure 6: Evaluation errors on the
did not yield better results. ImageNet dataset.

Finally, we also found that the morphed network learned with

multiple phases could achieve a lower error rate than that learned with single phase. For exam-
ple, the networks morph20_3cl and morph20_3c3 learned with intermediate phases achieved
better results in Table |1} This is quite reasonable as it divides the optimization problem into se-
quential phases, and thus is possible to avoid being trapped into a local minimum to some extent.
Inspired by this observation, we then used a 1c1_half network as an intermediate phase for the
morph56_1cl and morphl110_1c1 networks, and better results have been achieved.

4.3 EXPERIMENTAL RESULTS ON THE CIFAR100 DATASET

CIFAR100 (Krizhevsky & Hintonl [2009) is another benchmark dataset for tiny images that consists
of 100 categories. There are 500 training images and 100 testing images per category. The proposed
experiments on CIFAR100 follows the same setup as in the experiments on CIFAR10. The experi-
mental results are illustrated in Table 2 and Fig. [5(b). As shown, the performance improvement is
also significant: with only around 1.1x computational cost, the absolute performance improvement
can be up to 2% and the relative performance improvement can be up to 8%. For the morphed
56-layered network, it also achieves better performance than the 110-layered ResNet (27.52% vs
28.46%), and with only around one half of the computation.

4.4 EXPERIMENTAL RESULTS ON THE IMAGENET DATASET

We also evaluate the proposed scheme on the ImageNet dataset (Russakovsky et al.l 2014). This
dataset consists of 1,000 object categories, with 1.28 million training images and 50K validation
images. For the training process, we use a decay of 0.0001 and a momentum of 0.9. The image is
resized to guarantee its shorter edge is randomly sampled from [256,480] for scale augmentation. A
224 x 224 patch or its horizontal flip is randomly cropped from the resized image, with the image
data per-channel normalized. We train the networks using SGD with a batch size of 256. The
learning rate starts from 0.1 and is decreased with a factor of 0.1 for every 30 epochs. The networks
are trained for a total of 70 epochs.

The comparison results of the morphed network morphl18_1c1 and original ResNet-18 are illus-
trated in Table [3]and Fig. [} As shown in Table[3] morph18_1c1 is able to achieve a lower error
rate than ResNet-18, and the absolute performance improvement can be up to 1%. We also draw the

10
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evaluation error curves in Fig. [6] which shows that the morphed network morph18_1c1 is much
more effective than the original ResNet-18. Due to the time and computational resource constraints,
we have not yet carried out experiments for deeper ResNets on the ImageNet dataset, which will be
completed soon.

5 CONCLUSIONS

This paper presented a systematic study on the problem of network morphism at a higher level, and
tried to answer the central question of such learning scheme, i.e., whether and how a convolutional
layer can be morphed into an arbitrary module. To facilitate the study, we abstracted a modular
network as a graph, and formulated the process of network morphism as a graph transformation
process. Based on this formulation, both simple morphable modules and complex modules have
been defined and corresponding morphing algorithms have been proposed. We have shown that
a convolutional layer can be morphed into any module of a network. We have also carried out
experiments to illustrate how to achieve a better performing model based on the state-of-the-art
ResNet with minimal extra computational cost on benchmark datasets. The experimental results
have demonstrated the effectiveness of the proposed morphing approach.
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