Making Routers Last Longer with ViAggre

Hitesh Ballani, Paul Francis, Tuan Cao and Jia Wang

Cornell University and AT&T Labs–Research

NSDI 2009
Motivation: Rapid Routing Table Growth

Internet Routing Table Size vs. Year

282,000 prefixes (Sep'08)

(Data Credit: Geoff Huston)
Motivation: Rapid Routing Table Growth

![Graph showing the growth of Internet Routing Table Size from 1988 to 2014. The graph indicates a rapid future growth with markers for IPv4 exhaustion and IPv6 deployment.]

- Rapid future growth
 - IPv4 exhaustion
 - IPv6 deployment

Routing Table stored in Forwarding Information Base (FIB) on Routers

Large Routing Table \Rightarrow More FIB space on Routers
Does FIB Size Matter?

The problem is Scaling Properties of FIB memory (low volume, off-chip SRAM)

Technical concerns
- Power and Heat dissipation problems

Business concerns
- Low-volume, off-chip SRAM does not track Moore’s law
- Larger routing table \Rightarrow Less cost-effective networks
 - Price per byte forwarded increases
- Cost of router memory upgrades
Does FIB Size Matter?

Anecdotal evidence shows ISPs are willing to undergo some pain to extend the lifetime of their routers.
Virtual Aggregation (ViAggre)

A “configuration-only” approach to shrinking router FIBs

- Applies to legacy routers
- Can be adopted independently by any ISP

Real World Impact

- IETF Standards effort
- Huawei implementing ViAggre into routers

Key Insight: Divide the routing burden
A router only needs to keep routes for a fraction of the address space
Talk Outline

- Motivation
- Router Innards
- Big Picture
- ViAggre Design
- Design Concerns
- Evaluation
- Deployment
Router Innards

Control Plane
Participates in routing protocol
Router Innards

Control Plane
RIB is a table of routes and is stored on slow memory
Router Innards

Data Plane
Responsible for sending packets based on FIB (stored in fast memory)
Routing Scalability Problem Space

A few problems afflict Internet routing scalability
Lots of work to address these problems
Routing Scalability Problem Space

- [MapEncap’96]
- [GSE, ID’97]
- [Atoms, ’04]
- [CRIO, ICNP’06]
- [LISP, ID’07]
- [SIRA, ID’07]
- [TRRP, ’07]
- [APT, ID’07]
- [Six/One, MobiArch’08]
- [Francis, CNIS’94]
- [Deering, ID’00]
- [Hain, ID’02]
- [Krioukov, Arxiv’05]
- [Shim6, ID’07]
- [Multipath, ’08]

Separate edge from the core
Routing Scalability Problem Space

Geographical routing

- [MapEncap’96]
- [GSE, ID’97]
- [Atoms, ’04]
- [CRIO, ICNP’06]
- [LISP, ID’07]
- [SIRA, ID’07]
- [TRRP, ’07]
- [APT, ID’07]
- [Six/One, MobiArch’08]

- [Francis, CNIS’94]
- [Deering, ID’00]
- [Hain, ID’02]
- [Krioukov, Arxiv’05]
- [Shim6, ID’07]
- [Multipath, ’08]
Routing Scalability Problem Space

- MapEncap’96
- GSE, ID’97
- Atoms, ’04
- CRIO, ICNP’06
- LISP, ID’07
- SIRA, ID’07
- TRRP, ’07
- APT, ID’07
- Six/One, MobiArch’08
- Francis, CNIS’94
- Deering, ID’00
- Hain, ID’02
- Krioukov, Arxiv’05
- Shim6, ID’07
- Multipath, ’08

Compact routing
Routing Scalability Problem Space

Elimination Approaches

[FIB growth]
[RIB growth]

Routing Convergence,
Update Churn,

[MapEncap’96]
[GSE, ID’97]
[Atoms, ’04]
[CRIO, ICNP’06]
[LISP, ID’07]
[SIRA, ID’07]
[TRRP, ’07]
[APT, ID’07]
[Six/One, MobiArch’08]

[Francis, CNIS’94]
[Deering, ID’00]
[Hain, ID’02]
[Krioukov, Arxiv’05]
[Shim6, ID’07]
[Multipath, ’08]
Routing Scalability Problem Space

All require architectural change
So many good ideas, so little impact!
Routing Scalability Problem Space

Can we devise an incremental solution by focusing on a subset of the problem space?

- FIB growth
- RIB growth
- Routing Convergence, Update Churn,

References:
- [MapEncap’96]
- [GSE, ID’97]
- [Atoms, ’04]
- [CRIO, ICNP’06]
- [LISP, ID’07]
- [SIRA, ID’07]
- [TRRP, ’07]
- [APT, ID’07]
- [Six/One, MobiArch’08]
- [Francis, CNIS’94]
- [Deering, ID’00]
- [Hain, ID’02]
- [Krioukov, Arxiv’05]
- [Shim6, ID’07]
- [Multipath, ’08]
This Talk: Focuses on reducing FIB size
Talk Outline

- Motivation
- Router Innards
- Big Picture
- ViAggre Design
- Design Concerns
- Evaluation
- Deployment
Today: All routers have routes to all destinations
ViAggre: Basic Idea

Divide address space into Virtual Prefixes (VPs)

Notation: “/2” implies that the first two bits are used to group IP addresses. “0/2” represents addresses starting with 00.

\[i.e. \ 0/2 \Rightarrow 0.0.0.0/2 \Rightarrow [0.0.0.0 \text{ to } 63.255.255.255] \]
ViAggre: Basic Idea

Assign Virtual Prefixes to the routers
Green Aggregation Points maintain routes to green prefixes
ViAggre: Basic Idea

Routers only have routes to a fraction of the address space
ViAggre: Basic Idea

1. How to achieve such division of the routing table without changes to routers and external cooperation?
2. How do packets traverse even though routers have partial routing tables?
Control-plane needs to ensure that a router’s FIB only contains routes that the router is aggregating
ViAggre Control-Plane

Full Routing Table

External BGP Peers may advertise full routing table
ViAggre Control-Plane

Full Routing Table

Load full routing table into RIB

Supress all but blue routes from FIB

Simple Approach: FIB Suppression
Routers can load a subset of the RIB into their FIB

High Performance Overhead
ViAggre Control-Plane

Practical Approach: **Route-reflector Suppression**

External router peers with a route-reflector
Blue router receives only blue routes
ViAggre Control-Plane

Full Routing Table

Route Reflector

External Router

External Router

Practical Approach: Route-reflector Suppression
Route-reflectors exchange routes with each other
Consider packets destined to a prefix in the red VP.
Data-Plane paths

ViAggre path
Ingress (I) → Aggregation Pt (A) → Egress (E)
Ingress → Aggregation Point

Router I doesn’t have a route for destination prefix
Aggregation Points advertise corresponding Virtual Prefixes
Blue router has a route for the red Virtual Prefix
Aggregation Point → Egress

Aggregation Pt. A has a route for destination prefix
Router A **tunnels** packet to external router as intermediate routers don’t have route to dst. prefix. Original packet is encapsulated in tunnel header with X as dst.
Router A **tunnels** packet to external router as intermediate routers don’t have route to dst. prefix
Original packet is encapsulated in tunnel header with X as dst.
Egress Router strips the tunnel header off outgoing packets
Talk Outline

- Motivation
- Router Innards
- Big Picture
- ViAggre Design
- **Design Concerns**
- Evaluation
- Deployment
Failure of Aggregation Point

What if Aggregation Pt. A fails?
Failure of Aggregation Point

Router I installs the route advertised by A2
Failure of Aggregation Point

Packets are re-routed appropriately
ViAggre’s impact on ISP’s traffic

ViAggre paths can be longer than native paths
Traffic stretch, increased router and link load, etc.
Popular Prefixes

Traffic volume follows power-law distribution

- 95% of the traffic goes to 5% of prefixes
- Has held up for years

Install “Popular Prefixes” in routers

- Stable over weeks
- Mitigates ViAggre’s impact on the ISP’s traffic
Talk Outline

- Motivation
- Router Innards
- Big Picture
- ViAggre Design
- Design Concerns
- Evaluation
- Deployment
ViAggre’s impact on adopting ISP

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in FIB Size (% of global routing table)</td>
<td>Increase in path length (Stretch in msec)</td>
</tr>
<tr>
<td></td>
<td>Load Increase (Increase in traffic carried by routers)</td>
</tr>
</tbody>
</table>
ViAggre’s impact on adopting ISP

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in FIB Size (% of global routing table)</td>
<td>Increase in path length (Stretch in msec)</td>
</tr>
<tr>
<td></td>
<td>Load Increase (Increase in traffic carried by routers)</td>
</tr>
</tbody>
</table>

ViAggre deployment options

- Choosing Virtual Prefixes
- Choosing Aggregation Points
- Choosing Popular Prefixes

ISP can make these choices to tune +ves Vs -ves
ViAggre’s impact on adopting ISP

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in path length (Stretch in msec)</td>
<td></td>
</tr>
<tr>
<td>Reduction in FIB Size (% of global routing table)</td>
<td>Load Increase (Increase in traffic carried by routers)</td>
</tr>
</tbody>
</table>

ViAggre deployment options

- Choosing Virtual Prefixes
- Choosing Aggregation Points
- Choosing Popular Prefixes

ISP can make these choices to tune +ves Vs -ves
Choosing Aggregation Points

Assigning more routers to aggregate a virtual prefix

- Reduces Stretch imposed on Traffic (as there is a close-by aggregation point to send traffic to)
- Increases FIB size (as more cumulative FIB space is used)

ISP can choose aggregation points to trade-off

FIB Size Vs Stretch
Aggregation Point Assignment Problem

\[
\begin{align*}
\text{min} & \quad \text{Worst FIB Size} \\
\text{s.t.} & \quad \text{Worst Stretch} \leq \text{Constraint}
\end{align*}
\]

Constraint on Worst Stretch ensures

- ISP’s Service Level Agreements not breached
- Latency-sensitive traffic not hurt too much

Worst FIB Size

- Important for provisioning routers

Aforementioned Constraint Problem

- Can be mapped to MultiCommodity Facility Location
- NP-hard problem
- Logarithmic approximation algorithm [Ravi, Sinha, SODA’04]
Tier-1 ISP Study

We implemented a greedy approximation algorithm

Algorithm Input: Data from tier-1 ISP
 - Topology, Routing tables, Traffic matrix

Used our algorithm with varying stretch constraints
FIB Size reduces as Stretch constraint is relaxed
FIB Size Vs Stretch

FIB Size reduces as Stretch constraint is relaxed
Average Stretch is negligible
Average Stretch is negligible
ViAggre can extend lifetime of outdated routers by 7-10 years while imposing no stretch (Worst-case Stretch Constraint = 0ms)
Router Load

Naïve ViAggre deployment

- Traffic routed through aggregation points
- Can lead to substantial load increase across routers
- Alleviative: Use of Popular Prefixes
Naïve ViAggre deployment

- Traffic routed through aggregation points
- Can lead to substantial load increase across routers
- Alleviative: Use of Popular Prefixes

A lot of traffic destined to popular prefixes
Router Load

Worst FIB size (% of DFZ routing table)

<table>
<thead>
<tr>
<th>Load Increase (% of native load)</th>
<th>% of Popular Prefixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

Popular prefixes populated in all routers
5% Popular prefixes ⇒ Max. Load Increase = 1.38%
ViAggre Pros

10x reduction in FIB Size

- Negligible Traffic Stretch (<0.2 msec)
- Negligible Increase in Load (<1.5%)

Advantages

- Can be incrementally deployed
- Can be deployed on a limited-scale
- Incentive for deployment
- No change to ISP’s routing setup
 - Does not affect routes advertised to neighbors
 - Does not restrict routing policies
ViAggre Cons

Control-plane hacks can impact

- Installation Time
- Convergence Time
- Failover Time

Planning Overhead

- Choosing virtual prefixes
- Assigning aggregation points
- Assuring network robustness

Configuration overhead of a configuration-only solution
ViAgrre Deployment on WAIL

Routes propagated using

- Status Quo
- ViAgrre (prefix lists for selective advertisement)
ViAggre Deployment on WAIL

ISP with ViAggre

AS2
PoP1
PoP2
AS3

Routes propagated using

- Status Quo
- ViAggre (prefix lists for selective advertisement)

Routes propagated using mesh of internal BGP peerings
ViAggre Deployment on WAIL

ISP with ViAggre

AS2 AS3
RR1 RR2
PoP1 PoP2

Routes propagated using
- Status Quo
- ViAggre (prefix lists for selective advertisement)

Prefix List size depends on # of popular prefixes
ViAggre Deployment on WAIL

ISP with ViAggre

AS2
PoP1
PoP2
AS3

Measuring Control-Plane Overhead

Restart external peering
Measure Installation Time
Installation Time on WAIL

ViAggre reduces Installation Time

Full Routing Table Installation Time
Status Quo = 273 sec, ViAggre (2% Popular Prefixes) = 124 sec
ViAggre management overhead

Developed Configuration Tool

- ~330 line python script
- Extracts information from existing configuration files
- Generates ViAggre configuration files
- Planning component in the works

Working with a router vendor (Huawei)

- Implement ViAggre natively
- IETF Draft
ViAggre Conclusion

ViAggre shrinks the FIB on routers

- Can be used by ISPs today!
- 10x reduction in FIB Size
- Negligible traffic stretch
- Negligible load increase

ISPs can extend lifetime of their routers

- Outdated routers can be used for 7-10 years

Is this a “complete” solution? No

- A simple and effective first step
Thank You!
<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tony Li [IAB Workshop’06]</td>
<td>DefaultOff [HotNets’05]</td>
</tr>
<tr>
<td>Vince Fuller [APRICOT’07]</td>
<td>AIP [SIGCOMM’08]</td>
</tr>
<tr>
<td>IAB Workshop [RFC 4984]</td>
<td>...</td>
</tr>
</tbody>
</table>
Does FIB Size Matter?

Yes
Tony Li [IAB Workshop’06]
Vince Fuller [APRICOT’07]
IAB Workshop [RFC 4984]

Maybe
Me

No
DefaultOff [HotNets’05]
AIP [SIGCOMM’08]

...
Does FIB Size Matter?

Yes
Tony Li [IAB Workshop’06]
Vince Fuller [APRICOT’07]
IAB Workshop [RFC 4984]

Maybe
Me

No
DefaultOff [HotNets’05]
AIP [SIGCOMM’08]

Other reasons to reduce FIB Size

- Rapid future multihoming
- To facilitate commodification of ISP business

Anecdotal evidence shows ISPs are willing to undergo some pain to extend the lifetime of their routers
Rapid Routing Table Growth

Internet Routing Scalability is based on hierarchy
Requires addressing to be aligned with topology
Rapid Routing Table Growth

Address ⇔ Topology Match
Sites \(a_{11}\) and \(a_{12}\) are addressed from the address block of \(a_1\) which is addressed from the address block of \(A\)
\[
\{a_{11}, a_{12}\} \subset a_1 \subset A
\]
Rapid Routing Table Growth

Routing should scale by:
Number of top-level ISPs and Fan-out
Routing state on A: \{B, C, a1, a2\}
Rapid Routing Table Growth

Big ISPs

Little ISPs

Sites

Address ⇔ Topology Mismatch
Multihoming, Load Balancing, Address Fragmentation, Bad Operational Practices