Learning and Inference in Collective Knowledge Bases

Matthew Richardson

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

2004

Program Authorized to Offer Degree: Department of Computer Science and Engineering

University of Washington

Graduate School

This is to certify that | have examined this copy of a doctoral dissertation by

Matthew Richardson

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of Supervisory Committee:

Pedro Domingos

Reading Committee:

Pedro Domingos

Oren Etzioni

Daniel Weld

Date:

In presenting this dissertation in partial fulfillment of the requirements for the Doctoral degree at
the University of Washington, | agree that the Library shall make its copies freely available for
inspection. | further agree that extensive copying of this dissertation is allowable only for scholarly
purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying
or reproduction of this dissertation may be referred to Bell and Howell Information and Learning,
300 North Zeeb Road, Ann Arbor, MI 48106-1346, to whom the author has granted “the right
to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies of the

manuscript made from microform.”

Signature

Date

University of Washington
Abstract
Learning and Inference in Collective Knowledge Bases
Matthew Richardson

Chair of Supervisory Committee:
Professor Pedro Domingos
Computer Science and Engineering

Truly intelligent action requires large quantities of knowledge. Acquiring this knowledge has
long been the major bottleneck preventing the rapid spread of Al systems. Hand-building compre-
hensive knowledge bases is slow and costly. Machine learning can be much faster and cheaper,
but is limited in the depth and breadth of knowledge it can acquire. The spread of the Internet has
made possible a new solution: building large knowledge bases by mass collaboration, combining
information from a multitude of sources. While such collective knowledge bases (CKBSs) promise
a breakthrough in coverage and cost-effectiveness, they can only succeed if the quality, relevance,
and consistency of the knowledge is kept at acceptable levels.

This dissertation introduces an architecture for collective knowledge bases that addresses these
problems. It operates in two loops of interaction, one with users and one with contributors. Knowl-
edge from contributors is used to answer questions from users, and feedback from users is used to
evaluate the knowledge from contributors. By informing contributors what knowledge was used,
and what may be lacking, the CKB remains relevant to the needs of its users.

Because they are developed collectively, CKBs must deal with knowledge that is inconsistent
and noisy. To be of practical use, they must also be able to handle complex domains involving ob-
jects, relations, etc. Thus, this dissertation introduces Markov logic networks (MLNSs), a knowledge
representation that combines probability with the full power of first-order logic. MLNs are robust
to inconsistent knowledge because they view logical statements as soft constraints as opposed to

hard ones: when a world violates a formula in the KB it is less probable, but not impossible. This

dissertation introduces MLNs and develops algorithms for inference and learning in them.

The dissertation also provides an approach to combining weaker knowledge from multiple users
(specifically, knowledge about which variables in a domain depend on which others), and an ap-
proach to determining the quality of contributors when insufficient data from them is available (using
a web of trust among them). The utility of CKBs and the associated methods has been demonstrated
with experiments in real world domains, including a public bibliography server (www.bibserv.org),

a CKB about a university domain, and a CKB for printer troubleshooting.

TABLE OF CONTENTS

List of Figures iv
List of Tables vii
Chapter 1: Introduction 1
1.1 Challenges in Building Collective Knowledge Bases 2
1.2 Knowledge Representation 3
1.3 Is Collective Construction of Knowledge Bases Feasible? 5
1.4 Overview of this Dissertation 6
Chapter 2: Background 8
2.1 Propositional Logic 8
2.2 First-Order Logic 8
2.3 Bayesian Networks 11
24 Markov Networks 14
Chapter 3: Related Work 16
3.1 MassCollaboration e 16
3.2 Probabilistic First-Order Models 20
3.3 Knowledge-Based Model Construction 22
3.4 Stochastic Logic Programs 26
3.5 Probabilistic Relational Models 28
3.6 Recent Developments in Statistical Relational Learning 32
Chapter 4: An Architecture for Collective Knowledge Bases 34
4.1 Representation 34

4.2 Architecture e

4.3 Algorithms e e
4.4 Experimental Evaluation
45 Limitationsof KBMC
Chapter 5: Markov Logic Networks
51 MarkovLogic e e
5.2 Relationto First-Order Logic i
5.3 Markov Logic Subsumes SRL Approaches
5.4 Markov Logic Handles Key SRL Tasks
55 Implementation
56 EXperiments e e e
57 SUMMANY e e e
Chapter 6: Collective Determination of Dependency Structure
6.1 Approach e e
6.2 EXPeriments e e e
Chapter 7: Using Trust Propagation to Weight Contributions
7.1 Model
7.2 Path Algebra Interpretation
7.3 Probabilistic Interpretation
7.4 Similarity of Probabilistic and Path Interpretations
7.5 EXPEriments o e e e
7.6 Related Work
Chapter 8: Conclusion
8.1 Contributionsof thisThesis
8.2 FutureWork

49
49
54
55
58
60
68
74

78
78
85

End Notes
Bibliography

Appendix A: Addendum to Chapter 4 Experimental Section

A.1 Email Sentto Volunteers

A.2 Directions Givento Volunteers

Appendix B: Addendum to Chapter 5 Experimental Section

B.1 Directions Giventothe Volunteers.
B.2 Knowledge Base Produced by Volunteers

B.3 Algorithm Parameter Settings Used in the Experiments

Appendix C: Addendum to Chapter 6 Experimental Section

Appendix D: Proof of Theorem 7.2.1

117

120

134
134
135

139
140
143
148

152

171

11

2.1

3.1

3.2

3.3

3.4

3.5

4.1

4.2

5.1

LIST OF FIGURES

There are many levels of precision at which we would like to be able to accept

knowledge from contributors. L

Example Bayesian network. L o

Example Bayesian network formed for a query on the knowledge base shown in

table 3.1. . . . e

When there are multiple sources of evidence, they are combined using a node which

performs a function such as noisy OR. Above is an example Bayesian network for

Structure for the clause a(x) < b(X) remains the same regardless of query.
(a) Example SLP and (b) Associated SLD-tree fors(X).

Example PRM for a university domain (reproduced with the first author’s permis-

sion from Getooretal.[49]).

Input-output view of a collective knowledge base.

Results on synthetic knowledge bases.

Example ground Markov network M, o where L is given by the last two rows in

Table 5.1, and C' = {Anna,Bob} = {A,B}.

iv

45

52

5.3

5.4

6.1
6.2

6.3

6.4

7.1
7.2
7.3
7.4
7.5

Precision and recall for AdvisedBy(x, y), with all other predicates known (AllInfo).
Each line represents a model that was trained using a different technique: Monte-
Carlo maximum likelihood (ML), pseudo-likelihood (PL), or pseudo-likelihood with
early stopping (PL-E). The five graphs show the results on the five different test ar-
eas . From left to right, top to bottom, they are: Al, graphics, languages, systems,
andtheory. e e 72
Precision and recall for AdvisedBy(x,y), with all other predicates known (All Info
case). The five graphs show the results on the five different different test areas. From
left to right, top to bottom, they are: Al, graphics, languages, systems, and theory. 75
Precision and recall for AdvisedBy(x,y), with Professor(x) and Student(x) un-
known (Partial Info case). The five graphs show the results on the five different dif-
ferent test areas. From left to right, top to bottom, they are: Al, graphics, languages,

systems, and theory. 76

Learning with knowledge from multiple experts. 79
Error probability as a function of the number of experts and their noise level. Note
that pg = 0.05, so with no experts, the “best guess” is no edge between the pair of
nodes, leading to an error probability of 2py = 0.1 regardless of noise level. 83
Experimental results for simulated experts: varying training set size (left) and vary-
ing noise level (right). 86
Experimental results in printer domain: low expertise (left) and high expertise (right).
88

Path Algebra belief merging on an example web of trust. 94
Strong and weak invariance. e 95
Average precision (+o) for maximum and weighted average. 104
Effect of A on the precision when combining with weighted average. 105

Precision for various fractions of good people in the network, using maximum belief

combination. e e e 106

7.6 Effect of varying the quality of trust estimation. 107

Vi

2.1

3.1

4.1

4.2

51

52

5.3

54

6.1

LIST OF TABLES

Example of a first-order knowledge base. Fr() is short for Friends(), Sm() for

Smokes(), and Ca() for Cancer(). 9

(a) Some Horn clauses defining a simple BLP for a health domain. (b) Example

CPT foroneof theclauses. e 24

The CKB algorithms (using first-order Horn clauses and KBMC as the representa-

tion and reasoning technique). L 41

Printer troubleshooting results. “Volunteer ¢ is the system using the ith volunteer’s

rules. “CKB?” is the collective knowledge base. The accuracy of random guessing

Example of a Markov logic network. Fr() is short for Friends(), Sm() for Smokes(),
and Ca() for Cancer(). o 52

Network construction for inference in MLNs. M B(q) is the Markov blanket of ¢ in
Mrpc. . o 63

Algorithm used to generate flat attribute vectors for the propositional (Bayesian net-

work and Naive Bayes) learners. 73

Experimental results. CLL is the average conditional log-likelihood, and AUC is the

area under the precision-recall curve. The results are an average over the five test sets. 77

Parameters of the expert model, P(e;jls;).o 81

Vii

6.2

7.1

Network characteristics and results. p{ is the true probability of an arc between
two nodes. ¢; is the reduction in K-L distance achieved when using ¢ experts, as
a fraction of the maximum possible (difference between learning with the empty

network and learning with the the trueone).

Average precision and recall for various belief combination functions, and their stan-

dard deviations. e

viii

ACKNOWLEDGMENTS

First of all, thanks definitely go to my advisor, Pedro Domingos, for all your amazing help.
There is no way | would have accomplished this without you. You found me when | was wandering
around, unsure of what | wanted to research, and had the perfect area of work for me.

Thank you also to my committee. Your comments and encouragement were great. | am also
grateful to my mentor at IBM, Rakesh Agrawal, for always listening patiently and letting me explore
freely.

Thank you Julian Besag, Alon Halevy, Henry Kautz, Tian Sang, Dan Suciu, David Heckerman,
and Ramanathan Guha for fruitful discussions and help. Thanks Jimmy Lin for helping design
BibServ’s site, and for the hours on the phone talking about grad school.

Geoff Hulten, I received so much help from you that I don’t know where to begin thanking you.
Thanks for all the time you spent helping me with VFML, and for the VFML library itself. Also
for encouraging discussions at low times over the past 7 years. Anhai Doan, thank you for all the
encouraging conversations, both technical and not. Your advice was always great.

Sarina, you mean so much to me. You opened my heart to new things, and | will always remem-
ber that. Your caring advice, helpful conversations, and funny comments always lifted me up. We
will never lose contact.

Thank you all my wonderful friends who stuck through my highs and lows. Jeremy Hance,
you’re a great friend who | know | can always count on. Jeremy Tantrum, thank you so much for
the amount of time you have spent in the last couple of months discussing statistics and my thesis
with me. Your jokes were always welcome! Thank you also Natalie for the support | feel from you,
especially in the last days leading up to this final day. | appreciate all my friends at Intervarsity
Graduate Christian Fellowship. Your support and listening ears and smiling smiles were wonderful.

Last but not least. Thanks to my family. Brian, Daniel, mom: | am so lucky to have each one of

you in my life.

DEDICATION

For my Father. You are always in my heart.

Chapter 1

INTRODUCTION

Truly intelligent action requires large quantities of knowledge. Acquiring this knowledge has
long been the major bottleneck preventing the rapid spread of Al systems. Two main approaches
to this problem exist today. In the manual approach, exemplified by the Cyc project [82], human
beings enter rules by hand into a knowledge base. This is a slow and costly process. Although the
original goal was to complete Cyc in ten years, it has now been under development for twenty. In
the machine learning approach, exemplified by programs such as C4.5 [110], rules are automati-
cally induced from data. Although this approach has been extremely successful in many domains, it
has not led to the development of the large, diverse knowledge bases necessary for truly intelligent
behavior. Typical learning programs contain only very weak assumptions about the world, and as a
result the rules they learn are relatively shallow — they refer only to correlations between observable
variables, and the same program applied to two different data sets from the same domain will typi-
cally produce different rules. Recognizing this problem, researchers have invested substantial effort
into developing learning programs that can incorporate pre-existing knowledge, in effect combin-
ing the manual and automatic approaches (e.g., Pazzani & Kibler [101]). However, these programs
have not been widely adopted, largely due to the difficulty and expense of capturing knowledge —

the same bottleneck that has plagued purely manual solutions.

The rise of the Internet has made possible a third approach to the knowledge acquisition prob-
lem: building knowledge bases by mass collaboration, with thousands of volunteers contributing
simultaneously. One motivation for this approach is the open-source software movement, which has
shown that it is possible to develop very high quality software by accumulating contributions from
thousands of volunteers [111]. This surprising outcome, exemplified by the success of the Linux

operating system, is relevant to the construction of large-scale knowledge bases. If the work of a

large number of volunteers can be properly coordinated, knowledge bases as large as Cyc or larger
can be built in a much shorter period of time, at a fraction of the cost. Conversely, over a period
of a decade a knowledge base dwarfing any built so far can be inexpensively developed. We refer
to such knowledge bases as collective knowledge bases (CKBs). The construction, inference, and
learning of them is the subject of this dissertation.

The World-Wide Web itself can be seen as a large collective knowledge base. However, Web
pages are mostly written in natural language, over which it is difficult or nearly impossible to reason.
There are two complementary efforts underway which aim to surmount this problem: the Semantic
Web, and information extraction.

The goal of the Semantic Web [10] is to build something like the existing Web, but in a machine-
understandable format. Its main efforts to date have been in creating standards for the communi-
cation of data (XML), statements (RDF), ontologies (OWL), etc. We see the Semantic Web as
complementary to our collective knowledge base effort, in that each can benefit the other. The Se-
mantic Web can provide much of the infrastructure needed for collective knowledge bases (e.g.,
standard formats for knowledge). In turn, the methods described in this thesis can be used to guide
and optimize the development of the Semantic Web.

Information extraction (IE), on the other hand, aims to extract machine-understandable infor-
mation from the existing Web (e.g., Etzioni et al. [38]). Because this involves natural language
processing, the results of IE are typically noisy and inconsistent. The representation and reasoning
methods we develop in this thesis (see Chapter 5) are ideal for this type of knowledge. We thus see

information extraction systems as potential contributors to a collective knowledge system.

1.1 Challengesin Building Collective K nowledge Bases

While collective knowledge bases promise large improvements in the speed and cost of knowledge
base development, they also present many challenges. Helping to overcoming these is the primary

purpose of this thesis. They are:

Quality. Ensuring the quality of knowledge contributed by many different sources, when little is
known about most of them, is likely to be very difficult. We thus need mechanisms for au-

tomatically gauging the quality of contributions, and for making the best possible use of

knowledge of widely variable quality. This includes taking advantage of redundant or highly

overlapping contributions, when they are available.

Consistency. As the knowledge base grows in size, maintaining consistency between knowledge
entered by different contributors, or even by the same contributor at different times, becomes
increasingly difficult. In a traditional logic-based system, a single inconsistency is in principle
enough to make all inference collapse. This has been a major issue in the development of
Cyc, and will be a much more serious problem in a knowledge base built by many loosely-

coordinated volunteers.

Relevance. The initial Cyc philosophy of simply entering knowledge regardless of its possible uses
is arguably one of the main reasons it has failed to have a significant impact so far. In a
distributed setting, ensuring that the knowledge contributed is relevant — and that volunteers’

effort is productive — is an even more significant problem.

Scalability. To achieve its full potential, a collective knowledge base must be able to assimilate
the work of an arbitrarily large number of contributors, without the need for centralized hu-
man screening, coordination, or control becoming a bottleneck. Likewise, the computational
learning and reasoning processes carried out within the knowledge base must scale well in the

number of users, contributors, and contributions.

Motivation of contributors. To succeed, collective knowledge bases will depend on the unpaid
work of a large number of volunteers. Motivating these volunteers is therefore essential.
Following the example of open-source software, collective knowledge bases should allow
user-developers to enter knowledge that is first of all relevant to solving their own problems.
And, following the example of knowledge-sharing Web sites [39], collective knowledge bases

should incorporate a fair mechanism for giving volunteers credit for their contributions.

1.2 Knowledge Representation

One of the primary choices in building knowledge bases is selecting an appropriate knowledge

representation. The representation used by the CKB should be chosen to satisfy the following

desiderata:

Complexity. Many, if not most, real-world domains have complex structure. They contain multiple
entities, relations, properties, etc., which cannot be properly modeled using simple proposi-
tional logic. In order to have broad applicability, the collective knowledge base should use a

representation which can model these complex domains, such as first-order logic.

Uncertainty. Most real-world domains are full of uncertainty. A representation that does not ex-
plicitly model uncertainty will have very limited applicability. We thus desire a representation
for CKBs that allows encoding, and reasoning with, information that is uncertain, or proba-

bilistic, in nature.

Modularity. By its very nature, the knowledge contained in a collective knowledge base must be
modular. It must be easy to add, remove, or update pieces of knowledge without needing to

know, understand, or reorganize the entire collection.

Comprehensibility. Users will only contribute to something they understand. Either the repre-
sentation itself, or some transformation of it, must be comprehensible. For example, logical
statements can be translated into natural language, while neural networks are more difficult to

interpret. Between the two, we would prefer the logical statements for comprehensibility.

Inference. We must be able to perform inference efficiently, even if approximately.

Ideally, the knowledge base should be able to accept many forms of knowledge, at many levels
of precision (see Figure 1.1). This would make it possible to attract the most contributors. For
example, some may feel comfortable giving only very general information such as which variables
or predicates relate with which. Others may be able to give more precise statements of how they
relate. More precise still would be a contribution giving some of the probabilistic parameters for the
relation. All of these contributions provide potentially useful information. In Chapter 6, we present
an algorithm for merging knowledge about the structure relating variables in a domain, based on an

expert model that includes the probability that an expert reverses cause and effect, the probability

Generd
Clusters of

related variables

Dependencies ?‘.

Rules AOB=C

v Conditional
Specific probabilities

'P(C|A,B)=07]

Figure 1.1: There are many levels of precision at which we would like to be able to accept knowledge
from contributors.

that she adds a spurious relation, etc. We see this as a first step toward allowing collective knowledge

bases to consume knowledge of many forms at many levels of detail.

1.3 IsCoallective Construction of K nowledge Bases Feasible?

We may ask ourselves whether the large quantities of volunteer labor required to build large
CKBs will be available. Evidence for a positive answer comes from many quarters. On the Inter-
net today, there are hundreds of newsgroups devoted to computer troubleshooting. These, and the
thousands of other newsgroups across wide-ranging topics, demonstrate the willingness of people
to both ask, and answer, questions online. What is amazing about this phenomenon is the large
number of users that are willing to devote their time to answering other people’s questions, for little
or no benefit to themselves?. Such seemingly altruistic behavior is beneficial in the construction of
collective knowledge bases, and has been prevalent among Internet newsgroups, chat rooms, and
discussion forums throughout the Internet’s history.

Wikipedia (www.wikipedia.com) is another demonstration that users are very willing to con-
tribute knowledge. Wikipedia is an “open-content encyclopedia”, built, maintained, and edited
completely by visitors to the site. Any visitor may add articles to the encyclopedia, or modify ex-
isting ones. Interestingly, this does not result in chaotic or garbage data. In the three years since

it began, Wikipedia has amassed 261,000 articles by almost 7,000 contributors. The encyclopedia

receives approximately one to two million page requests per day, showing its usefulness as a public

source of quality information.

As mentioned, the open-source movement is another motivating factor in this research. Complex
open-source projects, such as the Linux operating system, Apache web server, and MySQL database
engine, demonstrate that programmers are willing to donate their time and money to create some-
thing that is given away for free. This philosophy that information systems should be free, prevalent

among internet users, is exactly that required for constructing a collective knowledge base.

Another encouraging sign comes from the Open Mind project [121] (www.openmind.org), which
seeks to build collective knowledge bases by contributions from ordinary Internet users. The com-
monsense portion of Open Mind [120] currently boasts 700,000 contributions from over 14,000
people, after only four years online. 75 of these users provided 1000 or more contributions each.

There seems to be no shortage of people willing to contribute to projects such as these.

This year, over 60% of all Americans are online. The result is a very diverse population of
Internet users and interests. This is evidenced by the variety of chat rooms, discussion forums, and
online support groups, ranging from Swedish literature to digital photography. Any such domain
is a potential application for collective knowledge bases. Ideal domains for CKBs are those which
have high interest and many knowledgeable people, but are too large to be easily encoded by a few.
We believe there are many such domains, such as computer troubleshooting, pop culture, medicine,
business, travel, cars, fashion, and food, to name a few.

1.4 Overview of this Dissertation

The next chapter reviews the basics of logic and probabilistic reasoning and inference. In Chapter 3,
we examine existing work on mass collaboration, building large knowledge bases, and combining
first-order logic with probability. We then present our basic architecture for collective knowledge
bases in chapter 4. The architecture addresses all of the challenges given in Section 1.1. In exper-
iments, we found that existing techniques for combining logic and probability were not sufficient
for our purposes, so we created a new representation called Markov logic, described in detail in
Chapter 5. As mentioned, we would like our knowledge base to be able to accept many forms
of knowledge, so we examine how to combine dependency information from multiple experts in

Chapter 6. The techniques that are introduced in Chapters 4, 5, and 6 assume that some amount of

training data is available for learning the quality of the contributors and/or contributions. We cannot
always make this assumption, so we developed methods for estimating the quality of contributors
without using training data. These techniques, which use a web of trust, are described in Chapter 7.

The dissertation concludes with an overview of its contributions and directions for future work.

Chapter 2

BACKGROUND

In this chapter, we review some of the basic concepts that are used throughout the rest of this
thesis. We begin with an overview of logic (propositional and first-order), including how logic pro-
grams may be learned from data. The second half of the chapter discusses probability, particularly
how graphical models (Bayesian networks and Markov networks) may be used to represent and

infer probability distributions, and how they are learned.

2.1 Propositional L ogic

In propositional logic, terms represent propositions: individual statements about the domain (e.g.
cat_in house, Anna_is hungry). Though general-purpose reasoning in propositional logic is NP-
complete [19], it can be done in polynomial time if the representation is limited to propositional
Horn clauses (see Section 2.2.2).

Propositional logic has two major limitations. First, propositions are always either known to
be true, known to be false, or completely unknown. This limits our ability to model and reason
in the real world, where uncertainty is prevalent. Probabilistic models, specifically graphical mod-
els, overcome this (see sections 2.3 and 2.4). The second limitation is that modeling a reasonably
complex domain can require an exponential number of propositions. For example, to represent who
is friends with whom among 20 people would require 20x20 propositions (Friends_Anna Bob,
Friends_Anna Maria, ...). This limitation can be overcome by using first-order logic, which al-

lows relations to be abstracted as predicates (e.g. Friends(x, y)).

2.2 First-Order Logic

Logic programs and logical inference are useful tools for knowledge representation and reasoning.

Here we give only a brief summary of the methods used in first-order logical deduction and induc-

Table 2.1: Example of a first-order knowledge base. Fr() is short for Friends(), Sm() for Smokes(),
and Ca() for Cancer|().

English First-Order Logic Clausal Form
Friends of friends are friends. | VxVyVz Fr(x,y) A Fr(y,z) —Fr(x,y) V —Fr(y, z)

= Fr(x, z) VFr(x,z)
Friendless people smoke. Vx (-(Jy Fr(x,y)) = Sm(x)) | Fr(x,g(x)) V Sm(x)
Smoking causes cancer. Vx Sm(x) = Ca(x) —Sm(x) V Ca(x)
If two people are friends, either | VxVy Fr(x,y) —Fr(x,y) V Sm(x) V =Sm(y),
both smoke or neither does. = (Sm(x) < Sm(y)) —Fr(x,y) V =Sm(x) V Sm(y)

tion. For more on logic, logic programming, and inductive logic programming, see [45], [85], and

[81], respectively

A first-order knowledge base (KB) is a set of sentences or formulas in first-order logic [45]
(see Table 2.1 for an example). Formulas are built using constants, variables, functions, and pred-
icates. Constants represent objects in the domain of interest (e.g., people: Anna, Bob, Chris,
etc.). An interpretation maps constants to domain objects. Variables range over the objects in
the domain. Functions (e.g., Mother0f(x)) output an object given other objects as arguments.
Predicates represent relations among objects in the domain (e.g., Friend(x, y)) or attributes of ob-
jects (e.g., Smokes(x)). Predicates can have constants, variables and functions as arguments (e.g.,
Friend(x,MotherOf(Anna))). A ground predicate is a predicate without variables. A predicate
with variables can be grounded by replacing all variables with constants. A world assigns a truth
value to each possible ground predicate, and is often represented compactly as a database or set
of ground predicates by making the closed world assumption: if a ground predicate is not in the

database, it is assumed to be false.

Formulas are recursively constructed from predicates using logical connectives and quantifiers.
A formula is satisfiable iff there exists at least one world in which it is true. The basic inference

problem in first-order logic is to determine whether a KB entails a formula =, i.e., if 7 is true

10

in all worlds where KB is true. This is often done by refutation: KB entails 7 iff KB U—m is
unsatisfiable. (Thus, if a KB contains a contradiction, all formulas trivially follow from it, which
makes painstaking knowledge engineering a necessity.) In domains with an infinite number of

constants, inference is semi-decidable; in finite domains, it is NP-complete.

2.2.1 Conjunctive Normal Form

For automated inference, it is often convenient to convert formulas to a more regular form, typically
clausal form (also known as conjunctive normal form (CNF)). A KB in clausal form is a conjunction
of clauses, a clause being a disjunction of literals (predicates or their negations). Every KB in first-
order logic can be converted to clausal form using a mechanical sequence of steps. Formulas in
clausal form contain no quantifiers; all variables are implicitly universally quantified. (They are
also standardized apart, i.e., no variable appears in more than one clause.) Existentially quantified
variables are replaced by Skolem functions. A Skolem function is a function of all the universally
quantified variables in whose scope the corresponding existential quantifier appears. Two widely
used methods for first-order inference, both using clausal form, are resolution and local satisfiability
search. The latter is applied after propositionalizing the KB (i.e., forming all ground instances of
first-order clauses), and proceeds by repeatedly flipping the truth values of propositions to increase

the number of satisfied clauses (e.g., WalkSat [119]).

2.2.2 Horn Clauses

Because of the complexity of inference, knowledge bases are often constructed using a restricted
subset of first-order logic where inference is more tractable. The most widely-used restriction is to
Horn clauses, which are clauses containing at most one positive literal. In other words, a Horn clause
is an implication with all positive antecedents, and only one (positive) literal in the consequent, or
head (e.g., aAb A c=-d). A program in the Prolog language is a set of Horn clauses. Prolog
programs can be learned from databases by searching for Horn clauses that (approximately) hold in

the data; this is studied in the field of inductive logic programming (ILP) [81].

11

2.2.3 Learning in First-Order Logic

Logic programs may be learned from examples. Given some background knowledge (B), and a set
of examples (E), the goal is to find a set of statements (H, the hypothesis) such that B U H entails
E. Notice that this is the reverse of logical deduction, and is called induction, or inductive logic
programming (ILP).

Most ILP methods can be classified into one of two categories: top-down or bottom-up. Top-
down approaches, exemplified by FOIL [109], begin with an initially empty hypothesis, which
is grown by adding clauses that cover positive examples. The clauses are specialized by adding
antecedents such that they cover the maximum number of positive examples while misclassifying a
minimum number of negative ones. This process is repeated until the hypothesis completely covers
the training set.

In bottom-up approaches, the hypothesis is formed by repeated generalization of the examples.
This generalization is done using inductive methods such as inverse resolution [93] (used by Cigol)
or mode directed inverse entailment [94] (used by Progol). Inductive methods can be thought of as
“running the proof backwards”, since their goal is to find the H that, if deductive methods were to
be used, entails E. It is interesting to note that bottom-up ILP has the potential to create concepts not
explicitly given to it. Naturally, the disadvantage of being able to create new concepts is the huge
search space that results. As a result, bottom-up ILP is usually directed by multiple constraints, such
as requiring that all clauses be range-restricted*.

Earlier, we argued that the ability to explicitly represent uncertainty is necessary to model real-

world domains. We now show how this can be done by using Bayesian networks.

2.3 Bayesian Networks

A Bayesian network (BN) [102] is a tuple B=<G,6>, where G is a directed acyclic graph with N
nodes, and 6 is a set of parameters. Each node represents a random variable X ;, and edges represent
probabilistic influence between nodes. A Bayesian network compactly represents the joint probabil-
ity distribution P(X1,X5,...,Xx). The graph structure defines probabilistic independence relations:
a node is probabilistically independent of its non-descendants, given its parents. As a result, the BN

needs only to define P(X;|par(X;)) for each node X; (where par(X;) is the set of parents of X).

12

Typically, this is done with a conditional probability table (CPT)2. If the variables are all Boolean,
the probabilistic independencies encoded by the network reduce the number of parameters needed to

max{|par(X;)|}

represent the full joint probability distribution from O(2™V) to O(2). Figure 2.1 shows

an example Bayesian network with four variables: A, B, C, and D.

P(A,B,C, D) = P(A)P(B)P(C|A, B)P(D|B)

Figure 2.1: Example Bayesian network.

Since a BN defines the joint probability distribution, it may be used to ask any probabilistic
query about any variables in the network, given the values of any other variables. Answering these
queries is the object of probabilistic inference, which is #P-complete in general [20]. To speed up
inference on large networks, approximate inference techniques such as Markov chain Monte Carlo

[53] or loopy belief propagation [95] are often used.

2.3.1 Learning with Bayesian Networks

There are two aspects of a Bayesian network that may be learned: the structure and the parameters.
The distinction between learning structure and learning parameters is one that will recur throughout
this thesis. When learning the parameters, the structure (G) is known and constant. The task then is
to learn, for each node in the network, a probabilistic model of that variable given the values of its
parents. The goal is typically to maximize the likelihood of the training data. If the training data is
complete, this is accomplished simply by counting the co-occurrences of the values of the node with
the various values of its parents3. When some of the data values are missing, the well-known EM
algorithm [28] can be employed. EM estimates the CPTs from the known data, then uses those to

estimate the missing values, then uses those to re-estimate the CPTSs, and repeats until convergence.

13

When the structure is unknown, the task is to learn both it and the corresponding parameters.
One of the most common methods for this is that of Heckerman et al. [61], which performs a search
over the space of network structures, starting from an initial network which may be random, empty,
or derived from prior knowledge. At each step, the algorithm generates all variations of the current
network that can be obtained by adding, deleting or reversing a single arc, without creating cycles,

and selects the best one using the Bayesian Dirichlet (BD) score

P(S, D) = P(S)P(D|S) @.1)
d ni) L Tngp + nige)
Zl_[ljl_[l I'(n + nij) 1_[1 L(n})

where S is a network structure, D is a training set of n iid examples without missing values, I'()
is the gamma function, ¢; is the number of states of the Cartesian product of z;’s parents, r; is the
number of states of x;, n;;;, is the number of occurrences of the kth state of z; with the jth state of
its parents, and n;; = ;" | nijx. P(S) is the prior probability of the structure, which Heckerman
et al. set to an exponentially decreasing function of the number of different arcs in .S and the initial
(prior) network. Each multinomial distribution for z; given a state of its parents has an associated

Dirichlet prior distribution with parameters n’ ., , with n‘ = 1nw,C These parameters can be

ijk?
thought of as equivalent to seeing n;jk occurrences of the corresponding states in advance of the
training examples. The BD score is the result of integrating over the resulting posterior distribution
for the parameters of each multinomial. The search ends, and returns the current network, when no

variation achieves a higher BD score.

Note that each time the network changes, the probabilistic parameters must be updated as well.
When there is no missing data, this may be done efficiently because edge additions or removals only
affect the nodes that are local to the change. When there are missing values, edge changes no longer
have a localized effect, in principle requiring EM to be re-run for each one. The structural EM
algorithm [42] addresses this problem by filling in the missing data values with their expected value
for each structural iteration. For a more thorough introduction to Bayesian networks, including how

they are learned, see Heckerman [62].

14

24 Markov Networks

As with Bayesian networks, a Markov network [102] (also known as a Markov random field) is a
graphical model for the joint distribution P(X) of a set of variables X = (X1, Xs,...,X,) €
X. Unlike BNs, the graph G is undirected, and the parameters are specified by a set of potential
functions ¢,. The graph has a node for each variable, and the model has a potential function for each
clique in the graph. A potential function is a real-valued function of the state of the corresponding

clique. The joint distribution represented by a Markov network is given by

P(X=x)= % I ok () (2.2)
k

where z ., is the state of the £th clique, and Z, known as the partition function, is given by
Z = ex i or(zq1y). Markov networks are often conveniently represented as log-linear mod-
els, with each clique potential replaced by an exponentiated weighted sum of features of the state,

leading to

P(X=z)= %GXP (Z wjfj(w)) (2.3)

Inference in Markov networks is #P-complete. The most widely used method for approximate
inference in Markov networks is Markov chain Monte Carlo (MCMC) [53], and in particular Gibbs
sampling, which proceeds by sampling each variable in turn given its Markov blanket. (The Markov
blanket of a node is the minimal set of nodes that renders it independent of the remaining network;
in a Markov network, this is simply the node’s neighbors in the graph.) Marginal probabilities are
computed by counting over these samples; conditional probabilities are computed by running the

Gibbs sampler with the conditioning variables clamped to their given values.

2.4.1 Learning with Markov Networks

As with Bayesian networks, there are two types of learning for Markov networks: structure learn-
ing and parameter learning. For parameter learning, maximum likelihood (ML) or maximum a
posteriori (MAP) Markov network weights cannot be computed in closed form, but, because the

log-likelihood is a concave function of the weights, they can be found efficiently using standard

15

gradient-based or quasi-Newton optimization methods [107]. Another alternative is iterative scaling
[27].

Structure learning corresponds to inducing features. One method for learning features from data
involves greedily constructing conjunctions of atomic features [27]. Other methods are based on
maximizing likelihood in a limited domain of graph structures. For example, Chow and Liu [18]
show how to use the maximum spanning tree algorithm to find the tree which best fits the data. A

more general method finds the approximately best treewidth-k graph (a tree has treewidth of 1) [69].

16

Chapter 3

RELATED WORK

In this chapter, we review research related to the work in this dissertation. We first review work
on mass collaboration and systems built for collective knowledge acquisition. As we will see, the
choice of knowledge representation is a major issue, so we then review the state-of-the art techniques

for combining first-order logic and probability.

3.1 Mass Collaboration

Gathering knowledge from experts using traditional interview methods can be time-consuming and
expensive. A cheaper alternative is to solicit it over an organization’s intranet, or from the relevant
community of interest over the Internet, with an appropriate interface for knowledge entry. This
avenue makes it possible to gather knowledge from more contributors at lower cost. This idea,
using mass collaboration to collect knowledge, is not new. We give some examples of existing work

in this area below.

3.1.1 Knowledge-Sharing Sites

In the introduction, we mentioned Wikipedia, an “open-content encyclopedia” which allows any
visitor to add or edit articles in the collection. Wikipedia is only one of many knowledge-sharing
sites [39], designed for the purpose of collecting, processing, and distributing knowledge. On such
sites, volunteers offer advice and product ratings or help other users, typically for free. Possibly the
best known knowledge-sharing site is Epinions (http://www.epinions.com). On Epinions, members
submit product reviews and ratings for any of over a hundred thousand products. The Open Direc-
tory Project (www.dmoz.org) and Everythings (www.everything2.com) are two other well-known
knowledge-sharing sites.

The advantages of knowledge-sharing sites are clear: By having users enter the information,

17

a much larger database (of product reviews, encyclopedia articles, etc) may be built, much more
rapidly than otherwise possible. The disadvantages are equally clear: the resulting knowledge base
will have information of highly variable quality, consistency, relevance, etc. As a result, some such
sites require editors or moderators to filter out low quality information. Many sites, such as Kuro5hin
(www.kuro5hin.org) distribute the moderation task itself, by letting the users themselves rate each
others’ postings [56]. Another approach (used by Epinions, and our own system, BibServ (www.-
bibserv.org)) is to use a web of trust, where users rate each others’ trustworthiness (see Chapter 7

for more on trust).

Perhaps the largest difference between knowledge-sharing sites and collective knowledge bases
is the lack of inference and reasoning in the former. Without reasoning, such sites may only answer
guestions that have been directly answered in the past. In contrast, a collective knowledge base
includes reasoning ability, allowing knowledge to be composed, and answers to be given that were
never explicitly entered in the system.

Some primitive “inference” is performed by collaborative filtering sites and online forecasting
markets. In the former, users give ratings to items (e.g. movies ratings, music tastes, etc), and the
collaborative filtering system makes recommendations on items they have not yet rated (e.g. which
movies to see, which CDs to buy) [112]. Similarly, Pennock et. al. studied how web-based artificial
markets combine the beliefs of their users and found that they form good predictors of events [104].
Knowledge-sharing sites and collaborative filtering systems can be viewed as primitive forms of

collective knowledge base. Their success is an indication of the promise of mass collaboration.

3.1.2 Open Mind

Another effort to harness the power of mass collaboration is the Open Mind Initiative (www.open-
mind.org [121]). One purpose of Open Mind is to gather training sets for learning algorithms (e.g.,
for handwriting and speech recognition). It also has a “common sense” component [120], whose
stated purpose is “to make computers smarter by making it easy and fun for people all over the world
to work together to give computers the millions of pieces of ordinary knowledge that constitute
‘common-sense.”’t. As mentioned in the introduction, this project has accumulated a large number

of contributions in a very short amount of time. However, the knowledge entered into the system

18

is in natural language (specifically, English), making it very difficult to reason over. Also, it does
not address the issues of quality, consistency, and relevance that are critical to the success of such
an enterprise. As with many of the other related works, we see Open Mind as complementary to
our collective knowledge base project. We believe the methods introduced in this thesis are directly
applicable to the Open Mind common sense knowledge base.

Cycorp (www.cyc.com) has recently announced its intention to allow contributions to Cyc from
the public (www.opencyc.org). However, its model is to have contributions screened by Cyc em-
ployees. This bottleneck prevents truly large-scale collaboration. There is also no mechanism for
motivating contributors or ensuring the relevance of contributions. Another key difference between
Cyc and our approach is that Cyc is an attempt to solve the extremely difficult problem of for-
mally representing all common sense knowledge, while our goal is to build knowledge bases for
well-defined, concrete domains where it should be possible to enter much useful knowledge using

relatively simple representations.

3.1.3 The Semantic Web

Another attempt to gather knowledge using mass collaboration is the Semantic Web [10]. The
Semantic Web’s goal can be summarized as making machine-readable information available on
the Web, so as to greatly broaden the spectrum of information-gathering and inference tasks that

computers can carry out unaided.

Issues of quality and consistency have been largely ignored by the Semantic Web community.
There has been some work [52] on computing trust on the Semantic Web using a complex, qualita-
tive measure of trust. Otherwise, trust is often considered a Boolean attribute, in the cryptographic
sense of identity verification. Our own work on trust (see Chapter 7) is equally applicable to the
Semantic Web or collective knowledge bases. Similarly, our work on reasoning and representation
in the presence of uncertainty, inconsistency, and low-quality of information (see Chapter 5) could
be used to perform inference on the Semantic Web. Thus, the Semantic Web can be viewed as
complementary to the work described in this thesis, in that each can benefit from the other. The
Semantic Web can provide much of the infrastructure needed for collective knowledge bases (e.g.,

standard formats for knowledge). In turn, the mechanisms described in this thesis can be used to

19

guide and optimize the development of the Semantic Web.

3.1.4 Distributed Knowledge-Base Development

As knowledge-bases grew, it became apparent that tools were needed to support distributed devel-
opment environments. Two examples of this are the Chimaera project [88] and Protege. One major
difficulty and area of research in this field is the issue of maintaining a shared vocabulary. Even
within a given field, different sub-communities use different terms with the same meaning, or the
same term to with different meaning. Merging ontologies built by these communities is a difficult
task, which may be done manually (as in McGuinness et al.[88]) or semi-automatically (see e.g.,

Doan et al. [30] and Dou et al. [34]).

3.1.5 The World-Wide Web

The World-Wide Web can be seen as a large collective knowledge base. Unfortunately, the majority
of the information contained on the Web is in the form of natural language. However, by using the
massive amounts of redundancy of this information, recent attempts at information extraction from
Web pages have been quite successful [38, 79]. We believe that these techniques could complement
our research on collective knowledge bases, in that information extracted from Web pages can be
treated as an input from an “expert” to the knowledge base.

One form of collective knowledge on the Web that is machine-understandable is the link struc-
ture. It is impossible for any one person, or even one organization, to systematically evaluate the
quality of every one of the over five billion pages on the Web today. Instead, by making the as-
sumption that a link to a page confers some degree of confidence in the quality of that page, we may
make use of the collectively-built link structure of the Web. The best-known techniques for this are
PageRank [99] and HITS [75]. PageRank in particular has shown its utility, as the basic algorithm

for ranking Web pages in the wildly successful search engine Google [14].

3.1.6 Model Ensembles and Belief Combination

Collective knowledge bases can be seen as combining the knowledge of many “weak” (i.e., not

very accurate) experts into a “strong” knowledge base. Thus, another area of related work is that

20

of model ensemble methods like bagging [13], boosting [41] and stacking [127]. In essence, these
methods combine many “weak” models into a “strong” one. This can produce surprisingly large
improvements in accuracy.

The combination of beliefs from multiple experts has also received some attention in the sta-
tistical literature [83, 40, 46, 103]. However, this literature assumes that each expert provides a
complete, self-contained probability distribution. This assumption is problematic, because human
beings are notoriously poor at estimating probabilities or reasoning with them [123]. In contrast, the
approach taken in this dissertation uses a division of labor between humans and machines that bet-
ter reflects their respective strengths and weaknesses (cf. Jaeger [66]): humans provide statements
that might be difficult for machines to discover unaided, and machines refine these statements and

compute parameter estimates from data.

3.2 Probabilistic First-Order Models

Many (if not most) real-world application domains are characterized by the presence of both un-
certainty and complex relational structure. For a collective knowledge base to support reasoning in
such domains, it needs a representation that can handle both uncertainty and complexity. The area
of statistical learning focuses on the former, and relational learning on the latter. Statistical rela-
tional learning (SRL) seeks to combine the power of both. Halpern [57] and Bacchus [7] initiated
work on the problem by laying some of the necessary theoretical groundwork. Since then, a series
of approaches combining features of logic and probability have been proposed, and in recent years
interest in this area has grown rapidly, with a series of workshops dedicated to the topic ([48], [47],
[36], [35], etc.).

Unfortunately, to our knowledge, no approach introduced so far retains the full power of both
first-order logic and probabilistic graphical models. Rather, current proposals typically focus on
restricted subsets of first-order logic, like Horn clauses, frame-based systems, or database query
languages. This is understandable, given that logic and probability in Al are each difficult and ac-
tive areas of research in their own right. Regardless, a large and growing number of SRL approaches
have been proposed, including knowledge-based model construction [126, 98, 73], stochastic logic

programs [90, 23], PRISM [118], probabilistic relational models [78, 43], relational Markov mod-

21

els [6], relational Markov networks [122], relational dependency networks [96], structural logistic
regression [106], relational generation functions [22], CLP(BN) [21], and others. Knowledge-based
model construction, stochastic logic programs, and probabilistic relational models are some of the
earliest and best-known of these approaches. For the remainder of the chapter, we discuss these
three in detail. First, we discuss the drawbacks to the simplest technique: propositionalizing the

domain and applying standard probabilistic reasoning techniques.

3.2.1 Why not just propositionalize?

The majority of existing data mining and machine learning algorithms are propositional in nature
(e.g. decision trees, Bayesian networks, etc.). As a result, one of the most common methods for
mining relational data is simply to “flatten”? it into a propositional form and then apply standard
mining algorithms to it. This approach has many problems. The first is that the size of a relational
knowledge base can increase dramatically when flattened. Also, learning a propositional model for
what is actually a first-order domain may work on one specific instance of the domain, but the model
will not generalize easily to instances of different sizes. In order to generalize to different instances,

the model itself needs to be relational.

Most propositional learning algorithms assume the training examples are independent of each
other. This is typically a reasonable approximation, but when the data is a result of flattening a
relational domain, this assumption becomes particularly incorrect. For example, given medical data
about a father and son, should the training data consist of two instances (one for the father, which
would include the son as an attribute, and then one for the son which would include the father as
an attribute) or just one instance (describing the two of them together)? The training set that results
from flattening relational data will often contain either duplicated data, or data which is ignored.
Either one can lead to statistical difficulties.

Finally, using a first-order model for learning can lead to the discovery of interesting relations,
or information about the relations, between entities in the model. It is very difficult to learn such
relationships from a propositional model. To do so would require including all possibly interesting
properties and all possibly related items as attributes in the training set, which is simply not feasible

for reasonably complex domains. For these reasons, it is important to find methods for data mining

22

with first-order reasoning and learning abilities. In the next section, we introduce the first of these,

knowledge-based model construction.

3.3 Knowledge-Based Model Construction

One way to combine probability and first-order logic is simply to augment an existing first-order
(Horn clause) knowledge base with probabilistic information. This is the approach taken by know-
ledge-based model construction (KBMC) methods, as exemplified by Koller and Pfeffer [77] and
by Kersting and De Raedt’s Bayesian logic programs [72], which derive from work by Ngo and
Haddaway [98] and earlier work surveyed by Wellman et al. [126]. Ng and Subrahmanian’s proba-
bilistic logic programs [97] are also in a similar vein. This is the approach we use in our initial CKB
system, presented in Chapter 4.

The various KBMC approaches differ in their details, but the basic idea is always the same: with
each clause in a knowledge base is associated a set of parameters that specify how the consequent
probabilistically depends on its antecedents. In the simplest case, this is a single parameter that
specifies the probability that the consequent holds given that the antecedents hold. In Kersting’s
Bayesian logic programs (BLPs), a complete conditional probability table (CPT) may be specified.

Table 3.1 gives an example BLP, and a CPT for one of the clauses. As can be seen, the probability
that a person exercises is 0.8 if she owns a gym membership and is 0.4 otherwise. Because the
clause is defined for all X, this probability distribution is the same for all people in the model.
This parameter sharing facilitates both a compact representation and learning. KBMC handles any
Horn clause, with relations of arbitrary arity, such as Uses(person, gym,machine)’ (which would
represent which machines a person uses to exercise).

To answer a query, KBMC extracts from the knowledge base a Bayesian network containing the
relevant knowledge. Each grounded predicate that is relevant to the query appears in the Bayesian
network as a node. Relevant predicates are found by using standard Prolog backward chaining tech-
nigues, except that rather than stopping when one proof tree is found, KBMC conceptually finds
every possible proof tree. Further, in order to find all relevant predicates, backward chaining is done
not only from the query predicate to the evidence predicates, but also from each evidence predicate

to the other evidence predicates and the query predicate. The result is a set of trees which together

23

form a DAG (directed acyclic graph) where each node of the DAG is a ground predicate. For exam-
ple, Figure 3.1 shows the Bayesian network that would result from the query “healthy(Mary)?”
given “eats_well(Mary)” and “gym member(Mary)”. The conditional probability of the node is
specified by the rule’s probabilistic parameters. Once the query has been converted into a Bayesian
network, any standard BN inference technique may be used to answer it. Notice that the size of the
Bayesian network produced by KBMC in response to a query is only proportional to the number of
rules and facts relevant to the query, not the size of the whole knowledge base.

When there are multiple relevant clauses that have the same ground consequent, KBMC employs
a combination function to compute the consequent’s probability. For example, consider the second
clause in Table 3.1: eats(x,y) A healthy food(y) = eats.well(x). If eats(Mary,carrots)
and eats(Mary, apples), both of which are healthy food(.), then what is the probability that
eats_well(Mary)? To answer this, an additional set of nodes are introduced in the Bayesian net-
work, one for each clause (e.g, E1 and E2 in Figure 3.2). The node corresponding to a clause rep-
resents the proposition “All of the clause’s antecedents are true,” and is thus a deterministic AND
function of those antecedents. For each (ground) predicate, the probability that the predicate holds
is a function of the “clause” nodes (e.g., E1) that have that predicate as the consequent. For example,
the predicate can be a noisy OR [102] of the clauses that have it as the consequent. Noisy OR is a
probabilistic generalization of the logical OR function; it makes the assumption that the probability
that one of the “causes” fails to produce the effect is independent of the success or failure of the
other causes. In general, the combination function can be any model of the conditional distribution
of a Boolean variable given other Boolean variables, and can be different for different predicates.
Besides noisy OR, other combination functions include linear pool [40][46], and logistic regression
[4].

For some combination functions (such as noisy OR with a leak node), a fact may have non-zero
probability even if none of the rules for which it is a consequent apply. When using such functions,
the results of inference are not complete: probabilities are only computed for facts that have at least
one applicable rule. Generally, non-derivable answers vastly outnumber the derivable ones, and ig-
noring them greatly reduces the computational complexity of query answering. This approximation
is often acceptable because the non-derivable answers will typically have low probability, rendering

them less important than the derivable ones.

24

Table 3.1: (a) Some Horn clauses defining a simple BLP for a health domain. (b) Example CPT for
one of the clauses.

eats_well(x) A exercises(x) = healthy(x) gym member | P(exercises)
eats(x,y) Ahealthy food(y) = eats_well(x) yes 0.8
gym member(x) = exercises(x) no 0.4

gym_member(mary)

Figure 3.1: Example Bayesian network formed for a query on the knowledge base shown in table
3.1

eats(mary,carrots)

eats(mary,apples)
healthy_food(carrots)

healthy food(apples)

combining function
(noisy or)
eats well(mary)

Figure 3.2: When there are multiple sources of evidence, they are combined using a node which
performs a function such as noisy OR. Above is an example Bayesian network for the query
“eats_well(mary)”?.

25

a(X) « b(X) d(X) « a(X)
b(X) « ¢(X) &(X) < aX)
9(X,Y) ~ a(X).aY)

Figure 3.3: Structure for the clause a(x) < b(X) remains the same regardless of query.

3.3.1 Learning with KBMC

There are two parts to a KBMC knowledge base: the set of clauses, and the set of probabilistic
parameters associated with them. These parts are analogous to the structure and parameters, respec-
tively, of a Bayesian network. As with BNs, we first consider how to learn the parameters given the

set of clauses.

KBMC takes as input a KB (with probabilistic parameters), evidence, and a query, and generates
a Bayesian network from them. Though the network may be different for each query, the structure
and CPT parameters associated with a clause will always be the same. Figure 3.3 shows this with a
simple logic program and the BN that results from three different queries. Each node in the network
is associated with at most one clause, and can be viewed as a separate “experiment” for it. As with
Bayesian networks, the counts for each clause are simply accumulated across the training examples
in order to compute its maximum likelihood parameterization. More details, along with a proof that
this is correct both with complete training data and without (in which case EM is employed), can be
found in Koller and Pfeffer [77] 3.

Though research on learning the “structure” (set of clauses) for KBMC has not yet been done,
Kersting et al. [74] propose using methods from inductive logic programming. We believe that a

heuristic search technique like those used for learning the structure of Bayesian networks, should

also work.

26

We now discuss another method for combining probability with first-order reasoning, stochastic

logic programs.

3.4 Stochastic L ogic Programs

As with KBMC, a stochastic logic program (SLP) [90][92][23][25] consists of a set of first-order
clauses, augmented with probabilities. However, the semantics of an SLP are very different from
those of KBMC. In KBMC, inference determines a probability distribution for the value of a grounded
predicate (e.g. What is the probability of healthy(Anna)?). With an SLP, inference results in a
probability distribution over the possible groundings of a given predicate (e.g. for healthy(x),
what is the probability that x = Anna vS. x = Bob?).

A stochastic logic program consists of a set of stochastic clauses, each of which has the form
p:C, where C is a first-order range-restricted Horn clause, and p is a probability. Note that here
we will consider only normalized, pure SLPs, that is, SLPs that have a probability associated with
each clause, and in which the probabilities for any given predicate sum to 1. For a more thorough
treatment, including methods for learning unnormalized and/or impure SLPs, we refer the reader to
Cussens [25].

SLPsare like a first-order extension of stochastic context-free grammars (CFGs) [80]. A stochas-
tic CFG is a CFG in which each production rule has an associated probabilistic parameter p. The
parameters provide a probability distribution over production rule firings, and hence affect the dis-
tribution of terminal symbols. Similarly, in an SLP, the p parameters determine the probability
distribution over first-order clause rewritings, and hence affect the distribution of ground predicates.

Inference is performed by SLD-refutation [85]. Figure 3.4 shows an example SLP and the
associated SLD-tree for the goal “s(x)?”. The SLD-tree consists of all refutations of a goal via
resolution. Each branch is a result of resolving with different clauses, and each path through the tree
represents one complete refutation (or failure to refute). The probability of a path is the product of
the probabilities of the clauses used at each branch. These probabilities are accumulated for each

grounding of the query predicate:

P(s(a)) < 0.4-0.3-0.3+0.6-0.2 = 0.156 | P(s(b)) xx 0.4-0.7- 0.7 + 0.6 - 0.8 = 0.676

To find the true probabilities, these are normalized, which results in P(s(a)) = 0.1875, and

27

0.4 : s(X) p(X), p(X). | 0.3: p(a). | 0.2:q(a).
0.6 : s(X) q(X). 0.7 : p(b). | 0.8: q(b).

Figure 3.4: (a) Example SLP and (b) Associated SLD-tree for s(X).

P(s(b)) = 0.8125 . The normalization is necessary if any of the paths in the SLD-tree end in
failure. Note that, in general, the SLD tree may be exponential in the number of nodes in the
network.

SLPs can be used to represent a variety of probabilistic models, such as Bayesian networks and
Markov random fields. To build these, each variable is represented by a predicate with at least
one parameter, which takes value 1 or 0, indicating that the variable is true or false respectively.
By computing a probability distribution over possible groundings of the predicate, SLP inference
indirectly computes the probability that the variable is true and the probability that it is false. For
example, to encode the predicate healthy(x), we would use the predicates healthy(0,x) and
healthy(1,x) instead. The probability that healthy(Anna) is true would then be:

P(healthy(1, Anna))
P(healthy(1,Anna)) + P(healthy(0, Anna))

3.4.1 Learning with Stochastic Logic Programs

As with BNs and KBMC, we distinguish between learning the structure and learning the parameters
of an SLP. To learn the structure, Muggleton [91] uses standard ILP techniques, such as his Progol4.5
[94], to induce a logic program as a basis for the SLP. The clauses in the induced logic program are

then augmented with uniform probabilities to create an SLP.

28

To learn the parameters of the SLP, Muggleton proposes a simple method which simply re-
estimates the probability labels by counting the fraction of times each clause is used in a successful
derivation of the goal. This simple strategy does increase the posterior probability of the model,
but is sub-optimal in that it does not attempt to search for nor does it find the parameter settings
which result in the highest posterior probability. It will induce the optimal parameter settings only
in the case where each positive example has a unique derivation in the logic program (a scenario we
believe is fairly uncommon).

Cussens [25] summarizes other techniques that have been developed for parameter estimation of
SLPs. One such technique is improved iterative scaling [27], an algorithm that iteratively updates
the parameter estimates until they converge. Riezler [115] has extended this to the case where data
is incomplete, using a method analogous to EM. When the SLP is normalized, Cussens’ Failure-
adjusted maximization algorithm may be applied.

So far, we have presented two techniques for combining probability and first-order logic. Al-
though the semantics are different, both techniques are based on a set of clauses augmented with
probabilistic information. We now present the third technique, probabilistic relational models
(PRMs), which take a different approach. Instead of adding probability to first-order logic models,
PRMs conceptually add first-order elements to probabilistic models. Specifically, they add objects

and relationships to Bayesian networks.

3.5 Probabilistic Relational Models

Bayesian networks have been a very successful tool for reasoning in probabilistic domains. How-
ever, they do have limitations. As a result of their propositional nature, the entirety of a domain
must be known in advance, and probabilistic parameters which could be shared may end up scat-
tered across many CPTs. For example, consider using a Bayesian network to model the processing
involved in a computer chip manufacturing plant. Such plants have many machines, each of which
may be affected by a variety of variables, such as the temperature of the room, the cleanliness of the
air, etc. Though some of the machines may be identical, in a (propositional) Bayesian network each
must be represented by its own set of nodes, with their own CPTs describing how the machine is

influenced. This redundancy can have a negative effect on the efficiency of inference, as well as on

29

Professor

Prof. Gump Student
Popularity Jane Doe

7?2?
Teaching Ability
?7??

Intelligence
7??

Ranking
77? Course

Rating

AVG

Registration Difficulty

#5639
» ‘ Grade

" 2?2
Satisfaction

Figure 3.5: Example PRM for a university domain (reproduced with the first author’s permission
from Getoor et al.[49]).

the ability to learn such models due to the increased number of parameters. Furthermore, using this
network to model the processing at a different plant would require adding and/or removing nodes

due to machine differences between the two.

What is needed is an abstract concept of a machine, which can be instantiated multiple times (or
none at all), for each type of machine in the plant. Each object would have various properties, and
also relations to other objects it affects (or is affected by). Such a model was proposed by Friedman
et al. [43] and is called a probabilistic relational model (PRM). PRMs are a form of probabilistic
frame-based systems, as introduced by Koller and Pfeffer [78]. Also related is Koller et al.’s earlier

work on a probabilistic description logic, P-CLASSIC [76].

A PRM consists of a set of classes {C1, Co, ..., Cy}. Each class C has a set of attributes A (C');
each attribute A is denoted C. A (For example, Person.height). Each class also has a set of reference
slots R(C'), where each reference slot p is denoted C.p, and points to an instance of the same or
another class (for example, Person.mother). Reference slots can be composed to form a slot chain

(for example, Person.mother.father refers to a person’s maternal grandfather).

A PRM also defines the probabilistic relationship between attributes of classes. An attribute may
depend on any attribute of the same class, or of a class that is reachable through some slot-chain.
Figure 3.5 shows an example PRM. Reference slots are denoted by dotted lines between classes (e.g.
Registration.course and Registration.student). As can be seen in the figure, PRMs allow relations as

simple as “A professor’s popularity depends on his teaching ability” or as complex as “A student’s

30

grade in a class depends on the difficulty of the class and the intelligence of the student”. Note
that slot chains are not always one-to-one. In the example PRM, a student’s ranking depends on
the grade he receives in a course, but since there are multiple courses, there must be some way
to combine them when determining the ranking of the student. For this, PRMs use the concept
of an aggregation function, which has a similar role to that of combining functions in KBMC. An
aggregation function combines a set of attributes into a single value. In this example, the student’s

ranking depends probabilistically on the average of the grades he received.

A PRM can be thought of as a template which, when given a specific domain of objects, is
“compiled” into a Bayesian network. Given a PRM and a set of objects, inference is performed by
constructing the corresponding Bayesian network of and applying standard inference techniques to

it (e.g., belief propagation).

3.5.1 Learning with Probabilistic Relational Models

As before, learning in PRMs can be divided into two tasks: learning the structure of the model, and
learning the parameters. For PRMs, the “structure” is the relational skeleton, which specifies the

parent set par(C.A) for all attributes A of all classes C'.

When the structure is known (along with the set of all objects in the domain and the relationships
between them), learning the parameters is nearly identical to learning the parameters of a standard
Bayesian network. The only difference is that some parameters are tied, or forced to take the same
value. The resulting likelihood function still decomposes into a product of terms which may be

individually maximized, as in BNs, using simple counts.

Structure learning is also similar to BNs. A hill-climbing procedure searches through the space
of possible structures using operations such as adding, deleting, or reversing edges in the PRM.
The search is directed by a model scoring function, as with standard Bayesian networks. However,
considering all possible connected variables would be intractable, so instead the search is done
in stages, first searching over slot-chains of length zero, then one, etc. For more details, such as

ensuring that the PRM always induces an acyclic BN, see [43].

31

3.5.2 Structural Uncertainty

A standard PRM has full knowledge of the relations between objects. Getoor et al. [50] relax
this requirement by introducing the probabilistic relational model Il (PRM2). A PRM2 allows two
types of uncertainty over the relationships between objects: reference uncertainty and existence

uncertainty.

In reference uncertainty, the objects in the domain are known, but the references between them
are not (though the number of relations is known). For each unknown reference slot, the PRM2
induces a distribution over objects, which determines the probability that the given object is assigned
to that slot. However, because the PRM2 must be able to generalize for any set of objects, it cannot
directly specify a probability distribution over the objects of the training set. Instead, it indirectly

selects objects according to their attributes.

For each reference slot, objects are first partitioned according to some of their attributes. Then,
from the training set, the PRM2 learns a probability distribution over partitions. This distribution is
just like the distribution of any other attribute, in that it is conditioned on some other set of attributes,
which may be in the same class or in some other class via a slot chain (these can be thought of as the
parents of the slot). Each slot has a CPT which specifies the probability distribution over partitions,
given its parents. The probability mass assigned to a partition is then uniformly distributed over the

objects contained within.

For example, consider the university domain given above in Figure 3.5. The relation Course.-
taught-by may be uncertain. The PRM2 defines some set of attributes, say {department,seniority},
by which to partition all of the professors (not shown in the figure). The probability distribution
over departments is specified by a CPT which may have as parents, for instance, Course.subject and
Course.difficulty. From the training set, the PRM2 may learn, for example, that the Course.taught-by
relation for easy computer courses is more likely to be filled by new professors in computer science

than by senior professors in linguistics.

If the partition attributes for each relation are provided, then a PRM2 may be learned in the same
manner as a standard PRM (with only slight modifications). However, the partition attributes are
not assumed to be known in advance. To find them, the hill-climbing structural search procedure is

augmented with two new actions: refine and abstract which add or remove (respectively) an attribute

32

from the partition set for a relation (which is initially empty).

The second type of structural uncertainty introduced in PRM2s is existence uncertainty. Recall
that, in reference uncertainty, the number of relations is known, but the relations between objects
are not. In existence uncertainty, not even the number of relations is known. To handle this, Getoor
et al. augment classes with an existence (E) attribute, which is true if the object exists and false if
it does not. C.F is treated as any other attribute, in that it may have parents, and is associated with
some CPT. The result is a probabilistic model for the existence of relations between objects.

For example, consider the student domain and suppose that the registration objects are undefined.
The Registration. £’ attribute may have, as parents, the student’s major and year of study, and also
the course subject. The associated CPT would likely represent that a registration object is more
likely to exist if the major and year of study of the student match the department and difficulty of
the course. The model (conceptually) instantiates all possible registration objects, assigning to each
a probability of existence based on this.

C.E is treated like any other attribute of the class, so learning a PRM2 with existence uncertainty
is also a simple modification of the standard PRM algorithm.

PRMs provide a useful framework for modeling domains that contain both uncertainty and re-
lational structure. Although PRMs can represent only a subset of first-order logic, their basis in
objects and relationships is a natural fit to the way in which domains are often understood and de-
scribed. As a result, they are a useful tool for modeling complex, real-world domains. PRMs have
also been extended recently to dynamic domains, where the objects and relations may change over

time [117].

3.6 Recent Developmentsin Statistical Relational L earning

In the past few years, interest in Statistical Relational Learning (SRL) has grown rapidly, resulting
in many new techniques, many of which are extensions to existing propositional methods. This

section gives an overview of a few of these.

Relational Markov models. In Anderson et al.’s RMMs, the states of the Markov model are
labeled with parameterized predicates [6]. By using a first-order representation for the state,

RMMs are, among other things, better able to use smoothing to combat data scarcity.

33

Relational Markov networks. RMNSs [122] are a combination of Markov networks and database
queries. The relational structure of the RMN is defined by relational clique templates, which
are essentially SQL queries, and their associated potential functions. Each clique template,
applied to a database, generates a set of tuples. Each tuple defines a clique in the “unrolled”
ground Markov network. RMNs have been shown to be useful in a collective classification
task. Because they use one parameter per state of the cliqgue, RMNSs are limited to fairly small

cliques.

Structural Logistic Regression. In structural logistic regression (SLR) [106], the predictors are

the output of SQL queries over the input data.

Plates. Plates are a convenient way to represent large graphical models that have repeated structure
[54]. A simple example of this is dynamic Bayesian networks, for which the entire time slice

is one plate. Embedding or overlapping plates allow the representation of relational structure.

Relational Dependency Networks. A relational dependency network is a dependency network in
which each node’s probability, conditioned on its Markov blanket, is given by a decision tree

over relational attributes [96].

34

Chapter 4

AN ARCHITECTURE FOR COLLECTIVE KNOWLEDGE BASES

In this chapter, we present our architecture for collective knowledge bases, which addresses the
five challenges outlined in the introduction. The architecture can in principle be applied with a vari-
ety of representations and inference methods; we initially used first-order Horn clauses and KBMC
(see Section 3.3). We demonstrate the utility of collective knowledge bases through experiments.
The chapter concludes by identifying some of the problems with the KBMC representation, leading

to the next chapter in which we present a novel representation that overcomes them.

4.1 Representation

In choosing a representation, we must keep in mind the five issues from Chapter 1: complexity,
uncertainty, modularity, comprehensibility, and inference. The first two suggest a method that com-
bines first-order logic with probability. As we saw in Chapter 3, there are many such methods. One
of them, SLPs, assumes that for a given consequent, only one rule can fire at a time. SLPs are
thus not a natural fit when multiple rules can function simultaneously as sources of evidence for
their common consequent. Another method, probabilistic relational models, lacks the modularity
required for construction by many loosely-coordinated individuals. The various relational methods
available today are mostly not as modular or comprehensible as, say, a collection of first-order rules.
Further, most of them did not yet exist at the time we were creating this architecture.

KBMC, on the other hand, fulfills all the desiderata. Horn clauses have the key feature of
high modularity: a new rule can be input without knowing what other rules are already in the
knowledge base. Horn rules are also very comprehensible: rules can be read as “if-then” statements,
making them natural for reading and writing. The only apparent drawback to using KBMC is its
use of Horn clauses instead of full first-order logic. In their defense, however, Horn clauses are

used in many expert system shells, and form the basis of the Prolog programming language. They

35

Inference

AP e
88 B SRS

S ——

Learning

LA

Figure 4.1: Input-output view of a collective knowledge base.

are an effective trade-off between expressiveness and tractability, and using them takes advantage
of extensive previous research on making Horn-clause inference efficient. We thus present the

architecture, and experiments with it, using KBMC for inference.

4.2 Architecture

Figure 4.1 shows an input-output view of the architecture. A collective knowledge base is a contin-

uously-operating system that receives three streams of information:

Rules and facts from contributors. Note that, although our current system requires entering knowl-
edge directly in Horn-clause form, this need not be the case in general. Allowing knowledge
entry via menu-driven interfaces, ontology browsers, and restricted forms of natural language
(e.g., using a particular syntax, or within specific domains) should greatly increase the num-
ber of individuals that are able to contribute. The extensive previous research on tools for

knowledge base development should be useful here (see Section 3.1.4).

Queries and evidence from users. Following conventional usage, a query is a predicate with open
variables (input directly, or obtained by translation from a user interface). Users also supply
evidence relevant to the queries in the form of a set of facts (ground instances of predicates).
These facts may be manually input by the user, or automatically captured from the outside

system the query refers to. (For example, if the query is a request to diagnose a malfunctioning

36

artifact such as a car or a computer, information on the state and configuration of the artifact
may be captured directly from it.) As in many knowledge-sharing sites, queries can also have
a “utility value” attached, reflecting how much the user is willing to “pay” (in some real or

virtual unit) for the answer.

Feedback on the system’s replies, from users (“Outcomes’). Given the answer or answers to a
query, the user takes actions, observes their outcomes, and reports the results to the knowledge
base. For example, if the query is “Where on the Web can | find X?” and the answer is
a URL, the user can go to that URL and report whether or not X was found there. In a
fault diagnosis problem, the user attempts to fix the fault where diagnosed, and reports the
result. The outcome can also be in the form of a utility rating for the answer. This rating
can be objective (e.g., time saved, number of “hits” in some task) or subjective (e.g., user’s
satisfaction on a five point scale). The rating could either be given explicitly (e.g., ask the
user directly) or implicity (e.g., assume that the problem was solved if the user does not ask

again).

In return, the collective knowledge base produces two streams of information:

Answers to queries. Answers to a query consist of instantiations of the open variables for which
the query predicate holds true. They are sorted by probability of correctness, in the same way
that search engines sort documents by relevance. Probabilities of correctness are computed as

described below.

Feedback to contributors. Contributors receive from the knowledge base feedback on the qual-
ity of their entries, in the form of accumulated (positive or negative) credit for their use in

answering queries. The credit assignment computation is described below.

The collective knowledge base is thus involved in two continuous loops of interaction, one with
contributors, and one with users (these two populations need not be disjoint). Contributors and
users, as a result, interact via the knowledge base. This interaction is in general not one-to-one, but

many-to-many: entries from many different contributors may be combined by inference to yield the

37

answer(s) to a query, and the feedback from a query’s outcome will in return be propagated to many
different contributors. Conversely, a single contribution may be used in answering many different
queries, and receive feedback from all of them.

A key feature of this architecture is that collective knowledge bases are built by an intimate
combination of human work and machine learning, and the division of labor between them reflects
their respective strengths and weaknesses. Human beings are best at making simplified, qualitative
statements about what is true in the world, and using their judgment to gauge the quality of the end
results produced by computers. They are notoriously poor at estimating probabilities or reasoning
with them [123]. Machines are best at handling large volumes of data, estimating probabilities, and
computing with them. Another key feature is that the knowledge base is not developed in open-loop
mode, with the knowledge enterers receiving no real-world feedback on the quality and correctness
of their contributions. Rather, the evolving knowledge base is subjected to constant reality checks in
the form of queries and their outcomes, and the resulting knowledge is therefore much more likely
to be both relevant and correct.

In current knowledge-sharing sites and knowledge management systems, questions are answered
from an indexed repository of past answers, or routed to the appropriate experts. Thus the only
guestions that can be answered automatically are those that have been asked and answered in the
past. In contrast, the architecture we propose here allows chaining between rules and facts provided
by different experts, and thus automatically answering potentially a very large number of questions
that were not answered before. This can greatly increase the utility of the system, decrease the cost
of answering questions, and increase the rewards of contributing knowledge.

The architecture answers the problems posed in the introduction:

Quality. By employing feedback and machine learning, we are able to determine which rules are
of high quality, and which are not. Further, since we are tracking the utility of knowledge

provided by users, they are more inclined to provide good rules.

Consistency. By using a probabilistic framework, we are able to handle inconsistent knowledge.

Relevance. Since the knowledge base is being built by users, for users, we expect the rules to be on

topics that the users find relevant and interesting. The credit assignment process rewards those

38

contributors whose rules are used (and produce correct answers), which provides incentive to

create rules that are relevant to users’ needs.

Scalability. For both training and query-answering, the most expensive portion of the computation
is the probabilistic inference on the Bayesian network. However, this computation depends
only on the size of the network, not of the entire knowledge base. The Bayesian network is
constructed out of only the relevant knowledge, which we expect (and confirm empirically in
the experimental section) will typically lead to relatively small networks even for very large

knowledge bases.

Motivation of contributors. By tracking the utility of rules and assigning credit to those which are
used to answer queries, we provide the means for motivating contributors (e.g. listing the top

ten, paying in some real or virtual currency, etc.)

In the next section, we present the CKB algorithms in more detail.

4.3 Algorithms

There are three primary algorithms necessary to implement the CKB architecture as introduced. The
first, inference, uses knowledge in the CKB to answer user queries. The second, learning, uses the
feedback from users to update its internal state and understanding of the domain. The third, credit
assignment, distributes credit among contributors according to the utility of their knowledge. In this
section we describe these three algorithms, with respect to our choice of knowledge representation:

first-order Horn clauses.

4.3.1 Inference

The goal of inference is to answer a query, given some set of evidences. In our case, inference is
performed using KBMC as described in Section 3.3. First, KBMC constructs a Bayesian network
that contains all of the relevant knowledge necessary to answer a query, and then uses standard
inference techniques on the Bayesian network to answer the query.

To understand KBMC, it helps to consider the full ground network induced by a knowledge base.

Given some first-order Horn-clause KB, let B(K B) be the Bayesian network that results from the

39

following process: create one node per ground clause, and one node per ground predicate. Let the
parents of a clause node be the clause’s antecedents, and the conditional probability of the node be
an AND of the antecedents. Let the parents of a predicate node be the clause nodes for which it is
the consequent; the conditional probability of the node may be any combination function, such as
noisy OR or logistic regression.

By performing Bayesian inference on B(K B), we may answer any query, given any evidence.
However, to do so would be highly intractable, due to the size of the network. Instead, KBMC
first aims to build the minimal BN that still represents the same conditional probability of the query
given the evidence.

Let R = {q, E'} be the set containing the query and evidence nodes. For each r € R, we find
all possible proofs of r by backward-chaining to nodes in R. Each proof forms a tree (with the
leaves being nodes in R); a path through the tree is an alternating sequence of ground predicates
and ground clauses — the ground predicate being the consequent of the clause that is next in the
path (toward the leaves), and the antecedent of the clause that was previous. Note that this tree will
necessarily be a subgraph of B(K B). The set of proof trees is converted to a graph by creating a
node for any ground predicate or ground clause that appears in the proofs, and adding the arcs found
in the proof trees. The resulting DAG is a subset of B(K B), and is the structure of the Bayesian
network on which inference is to be performed. The parameters of the Bayesian network come
directly from the KB.

Our implementation of KBMC uses gprolog, an open-source Prolog interpreter, to find the proof
trees via backward chaining. Since Prolog returns with an answer to a query, but not the proof of it,
it was necessary to augment each predicate with an additional “history” variable which maintained
a list of the clauses involved in the proof. Since each proof of the query resulted in a different
assignment to this variable, we could obtain the list of all proofs by requesting all solutions to the

query predicate with the history variable unbound.

4.3.2 Learning

The goal of learning is to find the clause weights that maximize the likelihood of the user feedback.

Again, imagine the full ground Bayesian network, B(K B). Each feedback instance consists of a

40

query predicate, evidence predicates, and the correct assignment to the query node. It is thus simply
an assignment to some of the variables in B(K B), leaving the rest unknown. The EM algorithm
[28] is the most well-known method for learning such problems with missing data, and is similarly
applied to learning KBMC weights. However, notice that multiple parameters in B(K B) corre-
spond to the same parameter in KB. This is an example of parameter tying; Koller and Pfeffer [77]
showed that with only a small modification, EM can be applied to this problem. Our implementation

uses this technique.

4.3.3 Credit Assignment

The goal of credit assignment is to distribute credit to contributors based on the quality of their
contributed knowledge. Given feedback on the correctness of the answer (entered by the user), the
utility of the corresponding query is propagated throughout its proof DAG. Credit is divided equally
among the proof trees, and, within each tree, among the rules and facts that were used in it. If a
rule or fact was used in multiple proof trees, it accumulates credit from all of them. Over many
queries, each rule or fact accumulates credit proportional to its overall utility, and each contributor
accumulates credit from all the queries his/her knowledge has helped to answer. If a rule or fact
tends to lead to incorrect answers, the consequent cost (or negative utility) will be propagated to it;

this will encourage contributors to enter only knowledge they believe to be of high quality.

The algorithms are summarized in Table 4.1. The function Inference builds the Bayesian net-
work neccessary to answer a particular query by first retrieving the necessary structure and then
assigning the associated parameters to that structure. It then uses Bayesian network inference on
that network to answer the query. In our implementation, we use likelihood-weighted sampling
for inference. Learn updates the parameters of the clauses in the KB so that the likelihood of the
feedback from users is maximized. It does this by using EM: In the expectation stage, the unknown
predicates are sampled, and in the maximization stage, the samples are used to maximize the KB pa-
rameters. BuildDAG finds all of the nodes that must be in the Bayesian network in order to answer
a particular query. It does this by backward-chaining from each evidence or query node to all the
other evidence or query nodes, and then combining these proof trees into a single graph. BuildBN

takes in a graph structure and assigns to it the necessary parameters to make it a Bayesian network.

41

Table 4.1: The CKB algorithms (using first-order Horn clauses and KBMC as the representation
and reasoning technique).

Function Inputs:

E Set of grounded predicates (evidence)

g A query predicate

F Feedback set { f1, f2, ...}, with f; = (E, ¢, a):
an evidence set, a query, and the correct answer.

G A graph structure

Global Variables:
KB Set of horn clauses with associated probabilities (knowledge base)

Inference(q, E)

Returns the probability P(q|E).
G=BuildDAG(q,E)
BN=BuildBN(G)

Return BN.Infer(P(q|E))

Learn(q, E)
Updates the parameters in KB to maximize the likelihood of the user feedback.
Foreach f; inF:
G; = BUildDAG(fi(q). £:(E))
Do while KB probabilities have not converged:
For each f; inF:
Samples = BN;.GenerateSamples()
E; = Samples.ExpectedValues()
KB = MaximizeLikelihood(E)

AssignCredit(F)
Assigns credit (or discredit) to contributors.
Foreach f; inF:
B={fiE).fi()}
For each b in B:
Trees = GetProofTrees(b,B\ b)
credit = [Trees]
If fi(q) # fi(a): credit = —credit
For each T'ree; in Trees
For each Clausey, in T'ree;
Assign <4t credit to contributor of Clausey,

|Treej|

42

BuildDAG(q, E)
Builds the graph structure needed to answer the query P(q|E).
G={}
B={Eq}
For each b in B:
Trees = GetProofTrees(b,B\ b)
For each tree; in Trees:
For each node in tree;: add node to G
For each arc in ¢ree;: add arc to G
Return G

BuildBN(G)
Takes in a graph structure and builds a BN using the parameters in the KB.
BN.structure = G
For each node; in G
If node; is a clause:
node;.parameters = “AND” of parents
If node; is a predicate:
node;.parameters = combination function of parents (which are ground clauses), using
weights of parents as parameters
Return BN

GetProofTrees(b, B)
Returns all proof trees of some predicate b given some other predicates B.
For each clause C; in KB:
D; = C; with additional history variables
H = Prolog(b, D U B)
Construct trees from H
Return trees

43

Each node which represents a ground clause is assigned a CPT representing the AND function of
its antecedents, and nodes which represent ground predicates are assigned a function based on the
user’s choice of combination function and the weights in KB. GetProofTrees calls Prolog to find all
of the proof trees of the given predicate and evidence. MaximizeLikelihood finds the parameters
of KB that maximize the likelihood of the expectations, E, computed in the E-step of EM. The im-
plementation of this function is dependent on the particular combination function being used. For

example, it may employ logisitic regression.

4.4 Experimental Evaluation

We performed two sets of experiments using our implementation of a collective knowledge base,
which uses logistic regression as a combination function, and likelihood-weighted sampling for
inference. In the first, we generated synthetic first-order rules and facts. In the second, we built a
printer troubleshooting knowledge base using contributions from real users. Logistic regression was

used as the evidence combination function in both experiments.

4.4.1 Synthetic Knowledge Bases

To our knowledge, there is currently no publicly-available knowledge base of the scope that would
be desirable for demonstrating the advantages of our system. We thus opted to simulate the contri-
butions of many different volunteers to a collective knowledge base, in the form of first-order rules
and facts.

We based our knowledge generation process on the assumption that a contributor is an expert in
a particular topic. We thus first generated a random taxonomy of topics, each of which contained
some number of predicates, variable types, and ground instances. An expert is likely to know not
just the concepts in a given topic, but also the general concepts of more specialized sub-topics. Each
topic was thus divided into general and specific predicates. An expert could form rules for a topic?
using as antecedents any of the topic’s predicates, or any of the general predicates of the immediate
sub-topics. We generated a random knowledge base of rules in this way.

We simulated an expert by choosing a random topic and sampling the knowledge base for rules

with consequents from nodes in the vicinity of that topic in the hierarchy. The probability that

44

an expert submitted a rule in a given topic decreased exponentially with the distance (number of
hops) between that topic and the expert’s one in the taxonomy. We randomly added and removed
antecedents from an expert’s rules to simulate noisy or incomplete knowledge.

Positive training and testing examples were generated by randomly choosing a consequent and
backward-chaining through rules in the knowledge base to find evidence that supported them. A
positive example was turned into a negative one by removing a single evidence item, which resulted
in “near-miss” examples that are easy to mistake as positive. Note that some samples thus required
only knowledge contained within one topic, while others required chains of inference that spanned
topics and subtopics, which we believe is often the case in the real world.

We modeled the accumulation of knowledge as proportional to the number of contributors to the
system, with 25 rules and 50 feedback instances per contributor. The ontology had 25 nodes, and
the “true” knowledge base had 50 rules per category. These and other parameters were constant
throughout the experiments, and set before seeing any test results. We tested with 500 queries. The
results are shown in Figure 4.2, where “Averaged Experts” is the performance obtained by estimat-
ing the probability of an answer as the average of the probabilities predicted by the relevant experts
(i.e., those that were able to answer the question). “Trained CKB” and “Untrained CKB” refer to
the performance obtained by using the architecture presented in this chapter, with or without using
the feedback to train. The performance measure (“Accuracy”) is the fraction of queries that were
answered correctly (with unanswered queries counting as failures). The advantage of the collective
knowledge base increases rapidly with the number of contributors. This is attributable to the increas-
ing number of connections that can be made between different contributions as the knowledge base
becomes increasingly densely populated. We also see that applying machine learning to estimate
the quality of knowledge further improves performance.

Although not optimized for speed, our current system is fairly efficient. The time required to
extract the Bayesian network for a query from the knowledge base was dominated by the time to
run probabilistic inference on the network. The size of the extracted Bayesian network grew sub-
linearly in the size of the knowledge base, from an average of 11 nodes for a collection of 10 experts
to 24 nodes for a collection of 50 experts. The average time spent on probabilistic inference for
a query asked of the pool of 50 experts was 400 milliseconds?; the time required to run EM was

approximately proportional to the product of this and the number of training examples.

45

——— Trained CKB
35 < Untrained CKB
,,,,, x—— Averaged Experts

Accuracy(%)
N
o

15 ¥ 1
10 1
5t : e) .
0 L L L

0 400 800 1200 1600

Number of Contributed Rules

Figure 4.2: Results on synthetic knowledge bases.

4.4.2 Printer Troubleshooting

A significant portion of Usenet newsgroups, FAQs, and discussion forums is devoted to the task
of helping others diagnose their computer problems. This suggests that an automated knowledge
base for this domain would be in high demand. This domain is also potentially well suited to
development using our collective knowledge base architecture, due to the availability of a large pool
of willing experts with some degree of formal knowledge, the availability of objective outcomes for
feedback purposes, the composable nature of the knowledge, the fact that evidence can potentially
be captured automatically from the machines being diagnosed, etc. As a first step in this direction,
we have carried out a pilot study demonstrating that knowledge obtained from real-world experts in

this domain can be merged into a system that is more accurate than the experts in isolation.

We used the Microsoft printer troubleshooting Bayesian network as a model of the domain.® (In
other words, examples generated from this network were used to simulate examples generated by
the real world.) The network consists of 76 Boolean variables. Seventy of these are informational,
such as “print spooling is enabled” and *“fonts are installed correctly”, and six are problem-related,

such as “printing takes too long”. Many of the variables are labelled as fixable and/or observable

46

with associated costs. We considered any variable whose cost of observation was less than one to
be evidence, and any proposition that was fixable but not evidence to be a cause, which resulted in

17 evidence variables and 23 causes.

The system attempted to identify the most likely cause of a problem, given the evidence and
problem nodes. To generate plausible problems a user may ask the system about, we generated
random samples from the network and accepted only those where exactly one cause was at fault and
at least one of the problem-related propositions was true. The system was then presented with the
resulting evidence and problem nodes and asked to diagnose which proposition was the cause of the
problem. As in the synthetic domain, the system may elect not to answer a question. We report two
measures of success. One is the fraction of queries whose cause was properly diagnosed (with unan-
swered queries counting as failures). The other is the average rank of the correct diagnosis in the
list of probable causes returned (with the most probable cause having rank one). This corresponds

to the number of actions a user would need to perform before the printer was functioning again.

We gave the definitions of the seventy-six variables to four volunteers, who were each asked to
write rules describing the printer domain to the best of their ability in a limited amount of time (see
Appendix A for the directions given to the volunteers). All four were computer users who have had
experience printing but did not have any particular expertise or training on the subject. Table 4.2
shows for each volunteer the time spent contributing knowledge, the number of rules contributed,
and the performance before and after learning rule weights. Two hundred examples were used for

training. Random guessing would have achieved an accuracy of 4.5%.

Table 4.2 also shows the results of combining the experts. The row labeled “Average” is the
result of averaging predictions as described before.* The “CKB” row shows the added advantage
of the collective knowledge base: it achieves higher accuracy than a simple combination of the
individual volunteers, both when the individual volunteers’ rule coefficients have been trained and
when they have not. Thus we observe once again that the collective knowledge base is able to benefit

from chaining between the rules of different volunteers.

47

Table 4.2: Printer troubleshooting results. “Volunteer ™ is the system using the ith volunteer’s rules.
“CKB” is the collective knowledge base. The accuracy of random guessing is 4.5%.

System Time | Num. Accuracy (%) Rank
(mins) | Rules | Untrained | Trained | Untrained | Trained

\olunteer 1 120 79 111 15.8 11.9 6.7
\olunteer 2 30 32 2.6 4.5 9.4 8.6
\olunteer 3 120 40 2.7 10.3 13.6 10.3
\olunteer 4 60 34 3.9 6.3 13.0 12.0
Average - - 2.2 17.6 13.3 6.7
CKB - - 4.6 34.6 12.7 5.7

4.5 Limitationsof KBMC

Although the architecture addresses the challenges of quality, consistency, relevance, scalability,

and motivation, we found that KBMC has some undesirable limitations:

Cycles. Because KBMC uses Bayesian networks for inference, the set of Horn clauses must be

acyclic. For example, the knowledge base may not have both A(x) = B(x) and B(x) = A(x)

in it. This limitation also arises in Prolog, and can sometimes require careful knowledge

engineering to surmount. Considering that our knowledge will come from multiple sources,

cycles are very likely to occur. People often confuse cause and effect, writing rules “back-

wards” (e.g. if you have cancer, then you smoke). We found this to be a significant issue

in our experiments in the printer domain: a few of the clauses entered by our experts cre-

ated cycles in the knowledge base and had to be manually removed. Worse still, in many

domains, there is no cause and effect, but rather implication is reasonable in either direc-

tion (e.g. both “Student(x) = —Professor(x)” and “Professor(x) = —Student(x)”

are reasonable expressions). Whatever the cause, cyclic knowledge is likely to be entered

to the knowledge base, and we would like to be able to handle it automatically in our reason-

ing framework.

48

Horn subset. Though much can be represented using Horn clauses, it is still only a subset of first-
order logic, and thus limits what may be represented. Even many simple statements, such as
“if you do not eat, you will be hungry” or “if you eat, you will either be satisfied or too full”
cannot be represented (the first statement requires a negation in the antecedent and the second

requires a disjunction in the consequent).

Direction of inference. Because KBMC uses Prolog and backward chaining, inference can only
proceed from antecedent to consequent. That is, if we have a rule A(x) = B(x) and are able
to prove —B(pie), Prolog cannot infer —A(pie). We would clearly prefer to allow inference

in both directions of the implication.

Ad-hoc combination function. KBMC requires the specification of a combination function to merge
the probabilities of multiple rules with the same consequent. Typically, the choice of com-
bination function is made somewhat arbitrarily, with noisy OR seeming to be the “default”
choice used by most authors. This ad-hoc selection of combination function is somewhat

unsatisfying.

In the next chapter, we introduce a novel representation and inference technique, called Markov
logic networks, which surmounts all of these limitations. The technique meets all of our representa-
tion challenges (complexity, uncertainty, modularity, comprehensibility, and inference), and allows
the use of full first-order logic, making it the ideal representation for our collective knowledge base

architecture.

49

Chapter 5

MARKOV LOGIC NETWORKS

In this chapter, we introduce Markov logic networks (MLNS), a novel approach that combines
the full power of first-order logic and probabilistic graphical models in a single representation. From
the point of view of probability, MLNs provide a compact language to specify very large Markov
networks, and the ability to flexibly and modularly incorporate a wide range of domain knowledge
into them. From the point of view of first-order logic, MLNs add the ability to soundly handle
uncertainty, tolerate imperfect and contradictory knowledge, and reduce brittleness. MLNs fulfill
all of our representational desiderata, without any of the limitations of KBMC (Section 4.5). They

also provide a unifying framework for statistical relational learning (SRL).

5.1 Markov Logic

Markov logic is a simple yet powerful combination of Markov networks and first-order logic. A
first-order KB can be seen as a set of hard constraints on the set of possible worlds: if a world
violates even one formula, it has zero probability. The basic idea in Markov logic is to soften these
constraints: when a world violates one formula in the KB it is less probable, but not impossible.
The fewer formulas a world violates, the more probable it is. Each formula has an associated weight
that reflects how strong a constraint it is: the higher the weight, the greater the difference in log
probability between a world that satisfies the formula and one that does not, other things being
equal.

We call a set of formulas in Markov logic a Markov logic network or MLN. In this chapter, we
make the assumption that we are in a finite domain. Extending Markov logic networks to infinite
domains is a topic of future work. MLNs define probability distributions over possible worlds [57]

as follows.

Definition 5.1.1 A Markov logic network L is a set of pairs (F;, w;), where F; is a formula in first-

50

order logic and w; is a real number. Together with a finite set of constants C' = {c1, c2, ..., ||},

it defines a Markov network M7, ¢ (Equation 2.3) as follows:

1. M;p, ¢ contains one binary node for each possible grounding of each predicate appearing in

L. The value of the node is 1 if the ground predicate is true, and 0 otherwise.

2. M7y, ¢ contains one feature for each possible grounding of each formula F; in L. The value

of this feature is 1 if the ground formula is true, and 0 otherwise. The weight of the feature is

the w; associated with F; in L.

Remarks:

1. The graphical structure of My, - follows from the above definition: there is an edge between

two nodes of My, ¢ iff the corresponding ground predicates appear together in at least one
grounding of one formula in L. Thus, the predicates in each ground formula form a (not

necessarily maximal) clique in My, c.

. An MLN can be viewed as a template for constructing Markov networks. In different worlds

(different sets of constants) it will produce different networks, and these may be of widely
varying size, but all will have certain regularities in structure and parameters, given by the
MLN (e.qg., all groundings of the same formula will have the same weight). We call each of

these networks a ground Markov network to distinguish it from the first-order MLN.

. When constants and variables are typed, variables are only grounded to constants of the same

type. Typing can vastly reduce the size of ground Markov networks.

. When a function appears in a formula, the value of the function will appear in groundings

of the formula (and corresponding features). For example, if Friend(x,Mother0f(x)) is a
formula in the MLN and Mother0f (Bob) = Anna, the ground network will have a feature for

the formula Friend(Bob, Anna).

. When a clause contains Skolem functions, each corresponding ground clause contains all the

literals formed by replacing each Skolem function with each constant in the domain (i.e.,

51

the disjunction implicit in existential quantification is made explicit). For example, if C' =
{Anna, Bob}, the unit clause Friend(x, g(x)) with Skolem function g(x) (meaning “Every-
one has a friend”) yields the two ground clauses Friend(Anna, Anna) V Friend(Anna, Bob)
and Friend(Bob, Anna) V Friend(Bob,Bob). If constants are typed, only constants of the

function’s output type are used.

. An infinite number of constants (|C| = oo) would lead to an infinite Markov network. We
believe our definition and algorithms for MLNs can be generalized to this case (see Jaeger

[65]), but this is an issue of chiefly theoretical interest, and we leave it for future work.

. Inlogic, a KB has the same meaning (i.e., it defines the same set of possible worlds) irrespec-
tive of how it is divided into individual formulas. Similarly, in the limit of infinite weights,
the distribution defined by an MLN does not depend on how it is broken up into formulas.
When the weights are not infinite, the MLN provides flexibility in defining the shape of the
probability distribution. The shape of the distribution depends on, among other things, how
the KB is split in to formulas (recall, each formula gets one weight, so this decision amounts
to selecting how many probabilistic parameters the model will have). At one extreme, we can
view the entire KB as one formula, and the MLN assigns the same probability to all worlds
inconsistent with it. At the other extreme, we can convert the KB into clausal form, and take
each clause as a formula. This may be a good default strategy, since it allows the greatest
flexibility in specifying distributions over worlds, and the most gradual decay in probability
as worlds diverge from the KB. This flexibility is a feature of MLNs that is lacking in some

other methods for combining logic and probability.

. In practice, we have found it useful to add each predicate to the MLN as a unit clause. Roughly
speaking, the weight of a unit clause can capture the marginal distribution of the correspond-
ing predicate, leaving the weights of the non-unit clauses free to model only dependencies

between predicates.

. An MLN without variables (i.e., containing only ground formulas) is an ordinary Markov

network. Any log-linear model over Boolean variables can be represented as an MLN, since

52

Table 5.1: Example of a Markov logic network. Fr() is short for Friends(), Sm() for Smokes(),
and Ca() for Cancer().

10.

11.

12.

English Clausal Form Weight

Friends of friends are friends. | —=Fr(x,y)V —Fr(y,z) V Fr(x,z)| 0.7

Friendless people smoke. Fr(x,g(x)) V Sm(x) 2.3
Smoking causes cancer. —Sm(x) V Ca(x) 15
If two people are friends, either| —=Fr(x,y) V Sm(x) V =Sm(y), 11
both smoke or neither does. —Fr(x,y) V =Sm(x) V Sm(y) 1.1

each state of a Boolean clique is defined by a conjunction of literals. (This extends trivially to

discrete variables, and to binary encoding of numeric variables.)

As weights increase, an MLN increasingly resembles a purely logical KB. In the limit of all
infinite weights, the MLN represents a uniform distribution over the worlds that satisfy the
KB. (A non-uniform distribution could easily be represented using additional formulas with

non-zero weights.)

If a knowledge base KB is satisfiable, the satisfying assignments are the modes of the distri-

bution represented by an MLN consisting of KB with all positive weights.

Unlike an ordinary first-order KB, an MLN can produce useful results even when it contains
contradictions. An MLN can also be obtained by merging several KBs, even if they are partly
incompatible. This is a crucial feature for a representation to be used in a collective knowledge

base.

A first-order KB can be transformed into an MLN simply by assigning a weight to each for-

mula.l For example, by adding weights to each formula of the KB from Chapter 2 (Table 2.1),

we obtain Table 5.1; the last two columns of which constitute an MLN. For the set of constants

C = {Anna,Bob} ({A,B} for short), the resulting Markov network M, ¢ is shown in Figure 5.1

(For simplicity of exposition, we omit the effect of the first two clauses).

53

Figure 5.1: Example ground Markov network M7y, o where L is given by the last two rows in
Table 5.1, and C' = {Anna, Bob} = {A,B}.

According to the MLN in Table 5.1, other things being equal, a world where n friendless people
are non-smokers is e23" times less probable than a world where everyone has friends. Notice that
all the formulas in Table 5.1 are false in the real world as universally quantified logical statements,
but capture useful information on friendships and smoking habits, when viewed as features of a
Markov network. For example, it is well known that teenage friends tend to have similar smoking
habits [86]. In fact, an MLN like the one in Table 5.1 succinctly represents a type of model that is a
staple of social network analysis [125]. This flexibility is crucial for our collective knowledge base
system. If we required rules to be absolutely true, then it would be nearly impossible to model any

non-trivial, real-world domain.

Markov logic networks thus satisfy our desire for a representation that handles complexity and
uncertainty. They are also clearly modular (being based on individual first-order statements) and
fairly comprehensible. Later in this chapter, we will demonstrate how inference in them may be
carried out efficiently. Besides satisfying our desiderata for a knowledge representation for collec-
tive knowledge bases, MLNs are powerful enough to have broad appeal. In the next two sections,
we show how popular SRL approaches like probabilistic relational models, knowledge-based model
construction and stochastic logic programs are special cases of Markov logic. We also show how
standard SRL tasks like collective classification, link prediction, link-based clustering, social net-

work modeling, and object identification can be concisely formulated in Markov logic.

54

5.2 Rélation to First-Order Logic

In this section, we show that for any given consistent, first-order knowledge base, it is possible to
construct a Markov logic network that, for any set of constants C, has the following properties in the
limit of infinite weights: (a) any formula entailed by the knowledge base has probability 1, and (b)
any world that does not satisfy the knowledge base has probability 0. We begin with some simple

definitions:

Definition 5.2.1 Given a conjunction of first-order formulas F' = {f1 A fa A ... A fx}, and a set of
constants C, let G(F, C) be the set of all possible ground formulas obtained by grounding each F;

using the constants in C.

Definition 5.2.2 Let the maximum consistent size of a conjunction of ground formulas G be the
maximum k such that there exists a G. C G with |G.| = k and at least one world satisfies the

conjunction of formulas contained in G..
Trivially, every conjunction of formulas has some such k (at worse, k£ = 0. At best, k£ = |G|).

Definition 5.2.3 Let KB be a knowledge base that is a conjunction of first-order formulas. Then we
define M LN (K B, [3) to be the Markov logic network defined by KB with a weight of 3 on each

formula.

The following lemma gives properties for Markov logic networks with infinite weights, built

from possibly inconsistent knowledge bases:

Lemma5.2.4 Let KB be a knowledge base that is a conjunction of first-order formulas £ =
{f1, f2, .-, fn}, and C be a set of constants, and G be the resulting set of ground formulas G =
G(F,C). Let k be the maximum consistent size of ;. Then M ;1 n ks, 5),c defines the unique prob-
ability distribution P(X) that gives equal, non-zero probability to every world that satisfies & of the

formulas in G, and, as § — oo, zero probability to every other world.

Proof of Lemma 5.2.4: Let X, represent a world that satisfies & formulas in G, and X, represent a

world that satisfies some number other than k formulas. Then P(X},) = + exp(k/3) (which implies

55

that every X, has equal, non-zero probability) and P(X) = %exp((k‘ —€)3). We know that
e > 0 because any X_;, must satisfy less than k formulas (since & is the maximum consistent size).
% = exp(—€f) — 0as — oo. Since Vyex P(x) > 0and >, P(x) = 1, this implies that
P(X4) — 0and P(X}) > 0as § — oo.

When the knowledge base is consistent, we derive the following Theorem:

Theorem 5.2.5 Let KB be a consistent knowledge base, and P(X') be the probability distribution
defined by Myrn(kB,g),c- Also, define P(f) to be the total probability of all worlds that satisfy

the first-order formula f. If KB is consistent, then:

1. Any world that satisfies KB has equal, non-zero probability. Any other world approaches

probability zero as 8 — oc.

2. If KB = fthen P(f) — 1as 3 — oc.
Proof of Theorem 5.2.5:

1. Since KB is consistent, the maximum consistent size is the number of ground formulas in
G(KB,C). Thus, from Lemma 5.2.4, P(X) gives equal, non-zero probability to any world
that satisfies every formula in G(K B, C), and, as 3 — oo, zero probability to every other
world. This directly implies that P(X') gives equal, non-zero probability to any world that

satisfies KB, and, as 8 — oo, zero probability to every other world.

2. Let Wi p be the set of worlds that satisfy KB, W be the set of worlds that satisfy f, and W
the set of all possible worlds. Since KB |= f, we know that Wxp C W/, and therefore
Ywewygp P(w) < Yyew, P(w). Recall that 3°, cyy P(w) = 1. From Theorem 5.2.4,

Part 1, as 8 — 00 X yew,, P(w) — 0, which implies that -, ¢y, ,, P(w) — 1, and
therefore 3°, ey, P(w) — 1

5.3 Markov Logic Subsumes SRL Approaches

Since Markov logic subsumes first-order logic and probabilistic graphical models, it subsumes all

representations used in SRL that are formed from special cases of them. It is enlightening to see

56

how these representations map into Markov logic, and here we informally do this for a few of the

most popular ones, which we previously surveyed in Chapter 3.

5.3.1 Knowledge-Based Model Construction

A KBMC model is translated into Markov logic by writing down a set of formulas for each first-
order predicate Pk(...) in the domain. Each formula is a conjunction containing Pk(...) and one
literal per parent of Px(...) (i.e., per first-order predicate appearing in a Horn clause having Px(...)
as the consequent). A subset of these literals are negated; there is one formula for each possible
combination of positive and negative literals. The weight of the formula is w = log[p/(1 — p)],
where p is the conditional probability of the child predicate when the corresponding conjunction of
parent literals is true, according to the combination function used. If the combination function is
logistic regression, it can be represented using only a linear number of formulas, taking advantage
of the fact that it is a (conditional) Markov network with a binary clique between each predictor and
the response. Noisy OR can similarly be represented with a linear number of parents.

MLNs have several advantages compared to KBMC: they allow arbitrary clauses (not just Horn
ones) and inference in any direction, they sidestep the thorny problem of avoiding cycles in the
Bayesian networks constructed by KBMC, and they do not require the introduction of ad hoc com-

bination functions for clauses with the same consequent.

5.3.2 Stochastic Logic Programs

It has been shown that SLPs are a special case of KBMC [108]. Thus, they can be represented in

Markov logic in the same way.

5.3.3 Probabilistic Relational Models

PRMs can be represented in Markov logic by defining a predicate S(x,v) for each (propositional
or relational) attribute of each class, where S(x, v) means “The value of attribute S in object x is
v.” A PRM is then translated into Markov logic by writing down a formula for each line of each
(class-level) conditional probability table (CPT) and value of the child attribute. The formula is a

conjunction of literals stating the parent values and a literal stating the child value, and its weight is

57

the logarithm of P(z|Parents(x)), the corresponding entry in the CPT.2 In PRMs, each attribute
must take exactly one value, so the MLN also contains formulas with infinite weights stating this.
Notice that this approach handles all types of uncertainty in PRMs (attribute, reference and existence
uncertainty).

As Taskar et al. [122] point out, the need to avoid cycles in PRMs causes significant repre-
sentational and computational difficulties. Also, PRMs require specifying a complete conditional
model for each attribute of each class, which in large complex domains can be quite burdensome.
In contrast, MLNs create a complete joint distribution from whatever number of first-order features

the user chooses to specify.

5.3.4 Relational Markov Networks

An RMN is simply an MLN with a formula (in particular, a conjunction of literals) for each possible
state of each clique template in the RMN, with the corresponding weight. RMNSs use all states of a
clique as features, which makes them exponential in clique size. MLNs can be viewed as improving
the scalability of RMNs by also specifying which features to use (namely, clauses defined on the

clique variables).

5.3.5 Structural Logistic Regression

In structural logistic regression (SLR) [106], the predictors are the output of SQL queries over the
input data. Just as a logistic regression model is a discriminatively-trained Markov network, an SLR

model is a discriminatively-trained MLN.3

5.3.6 Relational Dependency Networks

In a relational dependency network (RDN), each node’s probability conditioned on its Markov blan-
ket is given by a decision tree [96]. Every RDN has a corresponding MLN in the same way that every
dependency network has a corresponding Markov network, given by the stationary distribution of a

Gibbs sampler operating on it [60].

58

5.3.7 Plates

Large graphical models with repeated structure are often compactly represented using plates [54].
MLNs subsume plates as a representation language. In addition, they allow individuals and their
relations to be explicitly represented (see Cussens [24]), and context-specific independencies to be

compactly written down, instead of left implicit in the node models.

54 Markov Logic Handles Key SRL Tasks

In this section, we show how key SRL tasks can be concisely formulated in Markov logic, making it
possible to bring the full power of logical and statistical learning and inference approaches to bear

on them.

5.4.1 Collective Classification

The goal of ordinary classification is to predict the class of an object given its attributes. In collective
classification, we also take into account the classes of related objects. Attributes can be represented
in Markov logic as predicates of the form A(x,v), where A is an attribute, x is an object, and v
is the value of A in x. The class is a designated attribute C, representable by C(x,v), where v
is x’s class. Classification is now simply the problem of inferring the truth value of C(x,v) for
all x and v of interest given all known A(x,v). Ordinary classification is the special case where
C(xi,v) and C(xj,v) are independent for all xi and xj given the known A(x,v). In collective
classification, the Markov blanket of C(xi, v) includes other C(xj,v), even after conditioning on
the known A(x,v). Relations between objects are represented by predicates of the form R(x1i, xj).
A number of interesting generalizations are readily apparent, for example C(xi,v) and C(xj,v)
may be indirectly dependent via unknown predicates, possibly including the R(xi,xj) predicates
themselves. Background knowledge can be incorporated by stating it in first-order logic, learning

weights for the resulting formulas, and possibly refining them.

5.4.2 Link Prediction

The goal of link prediction is to determine whether a relation exists between two objects of interest

(e.g., whether Anna is Bob’s Ph.D. advisor) from the properties of those objects and possibly other

59

known relations. The formulation of this problem in Markov logic is identical to that of collective
classification, with the only difference that the goal is now to infer the value of R(x1i,xj) for all

object pairs of interest, instead of C(x, v).

5.4.3 Link-Based Clustering

The goal of clustering is to group together objects with similar attributes. In model-based clustering,
we assume a generative model P(X) = Y~ P(C)P(X|C), where X is an object, C' ranges over
clusters, and P(C|X) is X’s degree of membership in cluster C'. In link-based clustering, objects
are clustered according to their links (e.g., objects that are more closely related are more likely to
belong to the same cluster), and possibly according to their attributes as well. This problem can
be formulated in Markov logic by postulating an unobserved predicate C(x, v) with the meaning “x
belongs to cluster v,” and having formulas in the MLN involving this predicate and the observed ones
(e.g., R(xi, xj) for links and A(x, v) for attributes). Link-based clustering can now be performed by
learning the parameters of the MLN, and cluster memberships are given by the probabilities of the

C(x,v) predicates conditioned on the observed ones.

5.4.4 Social Network Modeling

Social networks are graphs where nodes represent social actors (e.g., people) and arcs represent
relations between them (e.g., friendship). Social network analysis [125] is concerned with building
models relating actors’ properties and their links. For example, the probability of two actors forming
a link may depend on the similarity of their attributes, and conversely two linked actors may be
more likely to have certain properties. These models are typically Markov networks, and can be
concisely represented by formulas like VxVyVv R(x,y) = (A(x,v) < A(y,v)), where x and y are
actors, R(x, y) is a relation between them, A(x, v) represents an attribute of x, and the weight of the
formula captures the strength of the correlation between the relation and the attribute similarity. For
example, a model stating that friends tend to have similar smoking habits can be represented by the
formula VxVy Friends(x,y) = (Smokes(x) < Smokes(y)). Notice that this formula is false as
a universally quantified statement in first-order logic, but is true in some domains as a probabilistic

statement in Markov logic [86]. As well as encompassing existing social network models, Markov

60

logic allows richer ones to be easily stated (e.g., by writing formulas involving multiple types of

relations and multiple attributes, as well as more complex dependencies between them).

5.4.5 Object Identification

Obiject identification (also known as record linkage, de-duplication, and others) is the problem of
determining which records in a database refer to the same real-world entity (e.g., which entries
in a bibliographic database represent the same publication). This problem is of crucial impor-
tance to many companies, government agencies, and large-scale scientific projects. One way to
represent it in Markov logic is by defining a predicate Same(x,y) with the meaning “x represents
the same real-world entity as y.” This predicate is applied both to records and their fields (e.g.,
Same(“ICML”, “Intl. Conf. on Mach. Learn.”)). The dependencies between record matches and
field matches can then be represented by formulas like VxVy Same(x,y) < Same(fi(x),£fi(y)),
where x and y are records and £i(x) is a function returning the value of the ith field of record x.
We have successfully applied this approach to de-duplicating the Cora database of computer sci-
ence papers [100]. Because it allows information to propagate from one match decision (i.e., one
grounding of Same(x, y)) to another via fields that appear in both pairs of records, it effectively per-
forms collective object identification, and in our experiments outperformed the traditional method
of making each match decision independently of all others. For example, matching two references
may allow us to determine that “ICML” and “MLC” represent the same conference, which in turn
may help us to match another pair of references where one contains “ICML” and the other “MLC.”
Markov logic also allows additional information to be incorporated into a de-duplication system eas-
ily, modularly and uniformly. For example, transitive closure is incorporated by adding the formula

VxVyVz Same(x,y) A Same(y, z) = Same(x, z), with a weight that can be learned from data.

55 Implementation

Probabilistic inference and first-order logical inference in a finite domain are both intractable, and
therefore the same is true of inference in MLNs. However, many of the large number of techniques
for efficient inference in either case are applicable to MLNs. Because MLNs allow fine-grained

encoding of knowledge, including context-specific independencies, inference in them may in some

61

cases be more efficient than inference in an ordinary graphical model for the same domain. On
the logic side, the probabilistic semantics of MLNs makes approximate inference possible, with the

corresponding potential gains in efficiency.

In principle, any inductive logic programming (ILP) approach can be used to learn the structure
of an MLN, and any approach for learning Markov network parameters (e.g., conjugate gradient or
iterative scaling) can be used to learn the weights. Likewise, any method for inference in Markov
networks (e.g., Markov chain Monte Carlo, belief propagation) can be used to perform inference
in grounded MLNSs, and logical inference methods can be used to construct the subsets of these

networks relevant to a particular query.

In this section, we describe one possible implementation of Markov logic, using MaxWalkSat
[119] and Gibbs sampling for inference, the CLAUDIEN ILP system [26] for structure learning, and

a pseudo-likelihood method for parameter learning [11].

5.5.1 Inference

The inference algorithm proceeds in two phases, analogous to knowledge-based model construction.
Given a query @ (set of ground predicates with unknown truth values)* and evidence E (known
ground predicates, optionally via a closed world assumption), the first phase returns the minimal
subset of the ground MLN required to answer the query. The algorithm for this is shown in Table 5.2.
When the KB is in clausal form, the number of nodes returned can be reduced, and the algorithm
sped up, by noticing that any ground clause containing a true evidence literal is always true and can
be deleted beforehand. In the worst case, the algorithm returns O(|C|*) nodes, where « is the largest
predicate arity in the domain (recall C' is the set of constants in the domain), but in practice it may
return a much smaller set. In the second phase, we apply Gibbs sampling (see Section 2.4) to the
network composed of these nodes, all arcs between them in M, ¢, and the features and weights on
the corresponding cliques. Because the distribution is likely to have many modes, we run the chain
multiple times. To minimize burn-in time, we start each run from a mode found using MaxWalkSat,
a local search algorithm for the weighted MaxSat problem (i.e., finding a truth assignment that

maximizes the sum of weights of satisfied clauses).®

MLNSs may be used for logical inference, probabilistic (propositional) inference, and probabilis-

62

tic first-order inference. In all three, MLNs compare favorably to existing systems:

Efficiency of Logical Inference. A MLN may be used to do purely logical reasoning by us-

ing the MaxWalkSat initialization and taking no steps of MCMC. Stochastic search algo-
rithms such as MaxWalkSat have been shown to perform very well, even out-performing
traditional resolution-based first-order reasoning techniques in planning domains[70]. Thus,

using MLNs in this way compares favorably to traditional logical inference systems.

Efficiency of Propositional Probabilistic Reasoning. A MLN may be used to do probabilistic

reasoning in propositional domains by simply encoding a (propositional) Markov network.
Since inference is done on the resulting Markov network, it is as efficient as if a Markov
network was used for the model instead of MLNs. Most common probabilistic reasoning
techniques can be efficiently represented using Bayesian networks or Markov networks, and
inference in Bayesian networks is sometimes done by converting them first to Markov net-
works. Further, special cases in which inference is simpler (e.g., see [55]) can be explicitly
detected and handled appropriately. Hence, we conclude that MLNs can be as efficient as

most common probabilistic reasoning techniques.

Efficiency of Statistical Relational Reasoning. Probabilistic relational models, knowledge-based

model construction, and relational Markov networks are three of the most well-known SRL
methods. In all three, a graphical model (a Bayesian network for the first two, a Markov
network for the last) is generated on which probabilistic inference is performed. The graphical
model inference is generally the most time-consuming step of the computation. The Markov
network generated by MLNs will be comparable in size to the graphical models used by these
three methods, since all three aim to build the minimum model necessary to answer a given

query. Thus, MLNs are approximately as efficient as these three techniques.

We now show that inference on the Markov network that results from the algorithm given in

Table 5.2 gives the same result as inference on the complete network M7y, ¢.

Proposition 5.5.1 Let My, ¢« be a full ground Markov network (see Definition 5.1.1) and Mﬁ,o be

the Markov network that would be constructed by the algorithm given in Table 5.2 for the purposes

63

Table 5.2: Network construction for inference in MLNs. M B(q) is the Markov blanket of ¢ in
ML,C-

Procedure ConstructNetwork(Q, E)
Let M = Q.
While Q #
Forall g € Q
Ifqg E
Let @ = QU (MB(q) \ M).
Let M = M U MB(q).

Let@Q@=Q\ {q}.
Return M.

of answering a query P(Q|F) (Q and E are a set of query and evidence nodes, respectively). If
P(Q|E) is the conditional probability distribution defined by M, ¢, and P, 5(Q|E) is the condi-
tional probability distribution defined by M; ., thenV, .P(Q = q|E = ¢) = P} p(Q = q|E = e).

In the algorithm in Table 5.1.1, () maintains a list of the nodes which have been added to the
network, but whose Markov blanket may not have been added. At each step, a node in @ is removed
from @, and its Markov blanket added to the network. This continues until) is empty. Thus, by
examination of the algorithm, it is apparent that upon completion, for every node in the constructed
network, its Markov blanket is also in the constructed network (note that, the Markov blanket of
an observed node is the empty set, because it is already rendered independent of the rest of the
network). By the definition of Markov networks, a node is independent of the rest of the network
given its Markov blanket. Since, for all nodes in M’ (for exposition clarity, we drop the subscript
of My,), their Markov blanket is in M/’, we know that all nodes in M’ are independent of those

nodes in M that do not appear in M’, and hence their probability distribution is unaffected by them.

64

Therefore, the probability distribution P’(Q—E)

Note that this theorem is actually stronger than we need to answer a particular query. Indeed,
when the actual values of the query and evidence nodes are known, a more efficient algorithm that
only adds nodes which are involved in features with unknown value may be used. This algorithm

will sometimes generate a smaller network than that generated by the one given in Table 5.1.1.

5.5.2 Learning

We learn MLN weights from one or more relational databases. (For brevity, the treatment below is
for one database, but the generalization to many is trivial.) If there are n possible ground predicates,
a database is effectively a vector z = (z1,...,2y,...,x,) Where z; is the truth value of the [th
ground predicate. By the closed world assumption, x; = 1 if the [th ground predicate appears in
the database, and z; = 0 otherwise. Given a database, MLN weights can in principle be learned
using standard methods. If the ith formula has n;(z) true groundings in the data x, then its weight

w; appears n;(z) times in Equation 2.3, and the derivative of the log-likelihood with respect to it is

o8 Pu(X =) = i) 3 Pa(X =2') e (5.1)

x
where the sum is over all possible databases z’, and P,,(X =z') is P(X =2') computed using the
current weight vector w = (w1, ..., w;,...). In other words, the ith component of the gradient is
simply the difference between the number of true groundings of the ith formula in the data and its
expectation according to the current model. Unfortunately, counting the number of true groundings
of a formula in a database is a #P-complete problem, even when the formula is a single clause. The
proof of this (Due to Dan Suciu) is by reduction from counting satisfying assignments of monotone
2-CNF, which is #P-complete [116]. This problem can be reduced to counting the number of true
groundings of a first-order formula in a database as follows. Consider a database composed of
the ground predicates R(0,1), R(1,0) and R(1,1). Given a monotone 2-DNF formula, construct
a formula @ that is a conjunction of R(x;,x;) terms, one for each disjunct in the DNF formula.
(For example, (xz1 V x2) A (z3 V x4) would yield R(z1,z2) A R(z3,x4). There is a one-to-one
correspondence between the satisfying assignments of the 2-CNF and .

Thus, in large domains, we approximate these counts by uniformly sampling groundings of a

65

formula, and checking whether they are true in the data. In smaller domains, we use an efficient
recursive algorithm to perform the exact count.

A second problem with the equation above is that computing the expected number of true
groundings is also intractable, requiring inference over the model. To surmount this difficulty, we

use Monte-Carlo (MC) methods.

Monte-Carlo Maximum Likelihood

Following [51], we formulate the learning problem as one of finding the weights w which give the
maximum likelihood relative to the likelihood at a fixed set of weights w® (we make P(X) and Z’s

dependence on w explicit by notating them as P,,(X) and Z(w)) :

wyre(z,w®) = argmax, Lo (x, w;w’) , where (5.2)
0

This simplifies the problem from one of estimating Z (w) to one of estimating the ratio Z (w)/Z (w?).

It is clear that, since P, (x) is constant, wysc(z, w?) is the maximum likelihood estimate. To eval-
Z(w)

uate Equation 5.3,we need to compute VAL which can be done using Monte-Carlo sampling:
Z(w) 1 & 0 t
Z ") N ;exp (; (w; — w;)n;(x") (5.4)

where z¢ is the tth sample taken from the distribution P,0(X). The approximation error goes to

zero as m goes to infinity. Combining Equations 5.3 and 5.4 and taking the logarithm, we get

log Larc (z, wiw’) =

—log [% Zexp (Z (w; — wd)(ni () — n,(m)))] (5.5)
t=1 i
The gradient is
log Lyso(z, w;w®) = (5.6)

Owi
X exp (X (wi — w')(ni(2') — ni(2))) (ni(a') — na(x)) 5.7)
%1 exp (3 (wi — wO)(ni(a?) — ny(x))) '

66

Standard gradient ascent methods may be used to find the optimal w ;¢ (z, w"). However, note
that many samples may be required when w? is not near the true MLE. Hence, an iterative proce-
dure is often employed, beginning with some w?, and incrementally finding w" = wysc(z, w™™1)
until convergence. One problem with this is that the absolute magnitude of L ;¢ (w, z; w") keeps
changing as the w” changes (the 0-point is at w = w"). This may be corrected by subtracting
log Lo (z, w®; w"), since log Lasc(x, w; w®) = log Lysc(z, w;w”) —log Lasc(x, w®;w™). How-
ever, as w” moves away from w?, the approximation of log L ;¢ (x, w®; w"™) becomes worse. In-
stead, we use bridge sampling [44]:

log Lyso(x, w;w®) = log Ly (z, w;w") — z’”: log Lyso(z, w = w?) (5.8)
j=0
In this way, samples taken using w" are used only to estimate log L ;¢ (z, w"~1;w") and
log Lo (z, w™ 15 w™). It can also sometimes be useful to limit the distance between w” and w"**
to reduce the error in the approximation of L j;¢.
The summation in Equation 5.8 can be updated incrementally, which leads to the following

algorithm:

Select an initial set of weights, w°

r=0,¢=0

While not converged
Generate samples 2! ~ P, (z)
Find w™ ! = argmax,, log Lysc(z, w;w"™) — ¢
c=c+log Lyc(z,w",w)

r=r+1

The computational complexity is the same as it would be without bridge sampling, but in our
experience provides significant improvements in accuracy. Also note, some minimization methods,
such as conjugate gradient with line minimization, are unaffected by a change in the 0-point of the
function being minimized, so may be used without computing c. In our implementation, we use

limited-memory Broyden-Fletcher-Goldfarb-Shanno [84](L-BFGS) to find the MLE. The samples

67

are generated using MCMC (specifically, Gibbs sampling). To combat overfitting, we optionally
penalize the pseudo-likelihood with a Gaussian prior on each weight.

Finding the MLE in this way can be computationally expensive. A more efficient alternative,
widely used in areas like spatial statistics, social network modeling and language processing, is to

optimize instead the pseudo-likelihood.

Pseudo-likelihood

The pseudo-likelihood is defined as [11]:

Pi(X=xz) =[] Po(Xi=2|MB,(X))) (5.9)
=1

where M B,(X;) is the state of the Markov blanket of X in the data. The gradient of the pseudo-
log-likelihood is

0 wiv o
B, log Pp(X=x) =

S [na(e) — Pu(Xp=0|MBa(X0)) milpxey) — PulXi=11M Bo(X1)) mi(rpxa) (510
=1

where n;(z(x o)) is the number of true groundings of the ith formula when we force X; = 0
and leave the remaining data unchanged, and similarly for n;(zx—;). Computing this expres-
sion does not require inference over the model. The sum can be computed efficiently by ignoring
predicates that do not appear in the ith formula. Counts need only be computed once, and clause
groundings that contain at least two true literals in the data (typically the great majority) can be
ignored (since then n;(z(x—) = ni(z[x=) = ni(z) for all 7). Because weights are shared among
all groundings of a clause, each iteration of the search (after the initial one) requires only O(n *
(# of first order clauses)) computation, a significant improvement over O(# of ground clauses), the
number of features in the Markov network. As with MCMLE, we optimize the pseudo-log-likelihood
using L-BFGS, optionally penalizing the pseudo-likelihood with a Gaussian prior on each weight.
Although finding the maximum pseudo-likelihood is is less computationally expensive, it may
give bad estimates in situations where there are many strong dependencies in the data. In some
situations, the pseudo-likelihood is degenerate, and will lead to unpredictable results [58]. Ex-

perimentally, we found this to be a problem primarily when the model is trained to a very low

68

convergence threshold. To combat this overtraining, we do “early-stopping” by selecting, out of the
models generated by the training process, the one that has approximately the best likelihood on the
training data.

More specifically, let w", » € {1..k} be the model parameters found in the rth iteration of
optimizing the pseudo-likelihood. We would like to select the w" that maximizes the likelihood of
the training data: P, (x). Unfortunately, as discussed in Section 5.5.2, this is difficult. Instead, we
compute all the pairwise relative log-likelihoods: S;; = Lyc(x, w?;w') (see Equation 5.5). We
cannot directly compare one row of S to another, since they are taken from different sets of samples.
However, the elements in a row are all taken from the same set of samples, so we convert each row
into a rank-vector, giving the ranking of each w/ in the row. The w" with best average rank across
all rows is chosen as the final model. Note that computing S;; requires sampling k times, once per
row of the matrix. This can be reduced by considering only a subset of w” (in our experiments,
we consider only every 10" one). Also, one needs only enough samples to distinguish between
a good model and a poor one, which should be (and was confirmed empirically to be true in our

experiments) much less than the number of samples needed for methods such as MCMLE.

Structure learning

ILP techniques can be used to learn additional clauses, refine the ones already in the MLN, or learn
an MLN from scratch. Currently we use the CLAUDIEN system for this purpose [26]. Unlike most
other ILP systems, CLAUDIEN is able to learn non-Horn clauses, making it well suited to MLNs.
Also, by constructing a particular language bias, we are able to direct CLAUDIEN to search for
refinements of the MLN structure. In the future we plan to more fully integrate structure learning

into MLNSs, by generalizing techniques like Della Pietra et al.’s (1997) to the first-order realm.

5.6 Experiments

We tested MLNSs using a database describing the Department of Computer Science and Engi-
neering at the University of Washington (UW-CSE). The domain consisted of 24 predicates and
2707 constants divided into 11 types. Types included: publication (342 constants), person (442),

course (176), project (153), academic quarter (20), etc. Predicates included: Professor(person),

69

Student(person), Area(x, area) (with x ranging over publications, persons, courses and projects),
AuthorOf (publication, person), AdvisedBy(person, person), YearsInProgram(person,
years) CourseLevel(course, level) TaughtBy(course, person, quarter), TeachingAssi—
stant(course, person, quarter), etc.

Using typed variables, the total number of possible ground predicates (n in Subsection 5.5.2)
was 4,106,841. The database contained a total of 3380 tuples (i.e., there were 3380 true ground pred-
icates). We obtained this database by scraping pages in the department’s Web site (www.cs.washing-
ton.edu). Publications and AuthorOf relations were obtained by extracting from the BibServ
database (www.bibserv.org) all records with author fields containing the names of at least two de-
partment members (in the form “last name, first name” or “last name, first initial”).

We obtained a collective knowledge base for this domain by asking four volunteers to write
down formulas in first-order logic relating the predicates above. This yielded 95 formulas. The
complete KB, volunteer instructions, database, and algorithm parameter settings can be found in
Appendix B. Formulas in the KB include statements like: students are not professors; if a student is
an author of a paper, so is her advisor; advanced students only TA courses taught by their advisors;
each student has at most one advisor; at most one author of a given publication is a professor; etc.
Notice that these statements are not always true, but are typically true.

For training and testing purposes, we divided the database into five sub-databases, one for each
area: Al, graphics, programming languages, systems, and theory. Professors and courses were
manually assigned to areas, and other constants were iteratively assigned to the most frequent area
among other constants they appeared in some tuple with. Each tuple was assigned to the area of
the constants in it. Tuples involving constants of more than one area were discarded, to avoid train-
test contamination. The sub-databases contained, on average, 521 true ground predicates out of a
possible 58457.

We performed leave-one-out testing by area, testing on each area in turn while training on the
remaining four. The test task was to predict the AdvisedBy(x,y) predicate given (a) all others
(All Info) and (b) all others except Student(x) and Professor(x) (Partial Info). In both cases,
we measured the average conditional log-likelihood of all possible groundings of AdvisedBy(x,y)
over all runs, drew precision/recall curves, and computed the area under the curve. Note that this

task is an instance of link prediction, a problem that has been the object of much interest in the area

70

of statistical relational learning (e.g., Getoor & Jensen [48], etc.).

All KBs were converted to clausal form, and exact counting of clause groundings was used
throughout. We used a weight prior with mean of zero and variance of 1.0. For each inference we
carried out 10,000 cycles of Gibbs sampling, split into 10 restarts with a burn-in of 100 samples

each. (50,000 cycles and 50 restarts with a burn-in of 500 gave essentially identical results.)

5.6.1 Comparison of Learning Methods

We first compared pseudo-likelihood (PL), pseudo-likelihood with early stopping (PL-E), and
MCMLE (ML). For MCMLE, we used Gibbs sampling with 10 simultaneous chains, each ini-
tialized by letting each ground predicate be true with probability equal to the probability that the
corresponding first-order predicate is true in the data. We used the maximum of the Gelman criteria
[53] across formulas to determine when the chains had “forgotten” their initial state. In our case,
the statistics being gathered were the number of times each first-order formula was satisfied by the
sample.

In a step of Gibbs sampling, a ground predicate p is picked, and potentially flipped (from true
to false, or vice versa). From one step to the next only formulas that unify with p can be affected.
By ignoring the formulas that are irrelevant, this computation can be quite fast (on the UW-CSE
domain, our implementation takes 15ms per step of Gibbs sampling).

Rather than selecting p uniformly at random, we employed the following strategy: Before sam-
pling, mark the ground predicates that are true either in the training example or the initial state of
the chain. At each step of Gibbs, with probability ¢ uniformly select a marked predicate, and with
probability 1 — ¢ select an unmarked one. Preferentially selecting predicates that were true in the
example or the data helps ensure that we are picking predicates that are likely to change state, since
we expect most of the predicates to be false.

Despite these optimizations, the Gibbs sampler takes a prohibitively long time to reach a reason-
able convergence threshold. For large thresholds (e.g., R=2), the resulting models were poor. One
major difficulty is the initialization of the sample chains. In order to converge quickly, the chains
should be initialized at modes of the underlying probability distribution. If the models are reason-

ably modelling the domain, then a good initial state may be somewhere near the training example

71

itself.

Our best results were achieved by initializing the chains at the training example, and sampling
with no burnin period. This was motivated by the following intuition: Ideally, our model will assign
a high probability to the training example. So if a Gibbs sampler starts at the training example
and moves away in some direction, then such movement should be discouraged. By starting at the
training example and taking a few samples, the algorithm gets an idea of the primary direction in

which the chain is headed and corrects it by pushing the weights in the opposite direction.

Because pseudo-likelihood training is not based on sampling, it does not run in to the same
convergence issues. It is also significantly faster, taking 20 minutes, compared to 3.8 hours for
MCMLE. However, as mentioned, it can suffer from problems due to the fact that it only estimates

conditional probabilities.

The results for the Allinfo case are shown in Figure 5.2. The Partiallnfo case was qualitatively
the same. Notice that the graph for the Al area (upper-left) shows how early stopping improved the
pseudo-likelihood-trained model. The fully-trained pseudo-likelihood model is not even apparent

on the graph, while the early-stopping model out-performs MCMLE.

5.6.2 Comparison to Other Systems

We have also compared MLNSs to systems based on logic or probability alone. Logical inference is
problematic because the KB we obtained from volunteers is inconsistent. So we do the following:
Suppose we define the probability of a ground predicate in a KB as the fraction of W} in which
the ground predicate is true, where Wy, is the set of worlds which satisfy & clauses, and & is the
maximum consistent size of KB. In this case, in theory, we can do inference by finding the worlds
which maximally satisfy KB, and count the fraction of them in which the query predicate is true.
In order to approximate this, we use Gibbs sampling, initialized using walksat. The Gibbs update
step is: if the new sample satisfies more clauses than the current one, then take the step (since that
means the current sample should have 0 probability), if the new sample satisfies the same number
of clauses then take the step with 50% probability, and if the new sample satisfies less clauses, then
don’t take the step. Notice that this is equivalent to a MLN built from the KB and with infinite

weights.

72

1 T T T T 1 T T T T
ML —— ML ——
PL-E - PL-E -
0.8 PL . 08 r [T — g
& 06} 16 06F .
o . ‘@
Eé 04 § 04 e :
02} 02}]
O 0 1 1 |.-=;:;;:::::f -------
0 0 02 04 06 08 1
Recall
1 1 T T T T
ML ——
PL-E -
08 | 0.8 L 1
& 06} & 06 .
2 k2]]
g 04 r g 04 r ,:_‘1-«\ _
02 | 02 |]
O 0 Il Il Il \":!-“T: -------
0 0 02 04 06 08 1

Precision

Figure 5.2: Precision and recall for AdvisedBy(x,y), with all other predicates known (AllInfo).
Each line represents a model that was trained using a different technique: Monte-Carlo maximum
likelihood (ML), pseudo-likelihood (PL), or pseudo-likelihood with early stopping (PL-E). The five
graphs show the results on the five different test areas . From left to right, top to bottom, they are:
Al, graphics, languages, systems, and theory.

73

Table 5.3: Algorithm used to generate flat attribute vectors for the propositional (Bayesian network
and Naive Bayes) learners.

To generate the attribute vector for a ground target predicate 7'(¢1, t2, ..., tN):
For each predicate R(rq,rg,...,rar) Where R # T
Fori e {1.M}:
Forj e {1.N}:
Let S be the set of ground predicates where r;=t;.

Add an attribute which is the fraction of S that are true in the data

We also compared MLNSs to propositional probabilistic learners. Creating good examples for
propositional learners like naive Bayes and Bayesian networks in this highly relational domain is
a difficult problem. We used the following approach as a trade-off between incorporating as much
potentially relevant information as possible and avoiding extremely long vectors. We defined one
variable for each (a, b) pair, where a is an argument of AdvisedBy and b is an argument of some
predicate with the same value as a. The variable is the fraction of true groundings of this predicate
in the data, discretized into five equal-frequency bins. See Table 5.3 for the pseudocode. We used
two propositional learners: Naive Bayes[32] and Bayesian networks. This did not work very well,
so we added additional attributes: For the test predicate AdvisedBy(A,B) with constants A and B,
we considered all pairs of predicates Predi(...,A,...) and Pred2(...,B,...), and looked to see, in
the cases where the non-set slots of the predicate match (i.e., the ... have the same constants in
both Pred1 and Pred2), how often they were both true, both false, A true while B was false, and
A false while B was true. This allows the propositional learner to use attributes such as two people
publishing the same paper, or one person TAing the same course that another Teaches. This added
approximately 100 attributes. The extra attributes helped naive Bayes, but hurt the performance of

the Bayesian network. Below we report whichever they performed better on.

We also wanted to compare to an ILP system to see if the experts were able to contribute knowl-

74

edge beyond what could be found through standard machine learning techniques. We chose to use
the CLAUDIEN ILP system, which induces first-order clauses rather than being restricted to first-
order Horn clauses. For detailed CLAUDIEN settings, see Appendix B.

Besides inducing clauses from the training data, we also investigated using CLAUDIEN’s lan-
guage bias to narrow the search space to the area “near” the KB. The language bias was constructed
such that, for each clause in the KB, CLAUDIEN could (1) remove any number of the literals, (2)
add up to n new literals, and (3) add up to v new variables. We ran CLAUDIEN for 24 hours on a
Sun-Blade 1000 with (v, n) being (1,2), (2, 3), and (3,4). All three gave nearly identical results,
so we used the (3, 4) case.

We compared twelve systems: the original KB with logical inference (KB), CLAUDIEN induc-
tion from data with logical inference (CL), CLAUDIEN using the language bias and logical infer-
ence (CLB), logical inference on the various unions of the above systems (KB+CL and KB+CLB),
and an MLN with each of these KBs (MLN(KB), MLN(CL), MLN(KB+CL), MLN(KB+CLB)),
naive Bayes (NB), and a Bayesian network learner (BN)[61],

The results obtained are summarized in Table 5.4, and precision/recall curves are shown in
Figures 5.3 and 5.4. MLNs are consistently more accurate than the alternatives, showing the promise
of this approach. CLAUDIEN performs poorly on its own, but can be helpful when added to the KB
in the MLN. The general drop-off in precision around 30% recall is attributable to the fact that the
database is very incomplete, and only allows identifying a minority of the AdvisedBy relations.®
MLNs are reasonably efficient, taking on average 4 hours to learn, and 24 minutes to infer all 4900

AdvisedBy predicates in the Partial Info case (23 for All Info).

57 Summary

Markov logic networks are a representation with the characteristics required by our collective knowl-
edge base architecture. They provide a simple way to combine probability and first-order logic with-
out sacrificing any of the power of either. MLNs allow a wide variety of SRL tasks and approaches
to be formulated in a common language, proving their general use. Experiments with knowledge

contributed by volunteers demonstrated that MLNs work well as a CKB representation language.

75

1 T T 1 T T
MLN(KB) —— MLN(KB) ——
MLN(KB+CLB) ——
0.8 - R g
KB+CLB -
& 06 CL 16
o . NB o)
BN
8 o 18
02 | o 1
0
0
Recall
1
08 |
5 06 5
k%) K%
2 o4l B
02}
0
0

06|

Precision

04

02

Figure 5.3: Precision and recall for AdvisedBy(x,y), with all other predicates known (All Info
case). The five graphs show the results on the five different different test areas. From left to right,
top to bottom, they are: Al, graphics, languages, systems, and theory.

76

1 T T 1 T T
MLN(KB) —— MLN(KB) ——
08F YRR e 4 08 F N T TR e
& 06} & 06 \ - CL -
o s | T~ NB
g oal z
02}
0
O 02 04 06 08 1
1 Recall
' MLN(KB) ——
08 |
S 06 5
k2 g2
8 oal 2
02 f
0
0
' MLN(KB) ——
08 |
S5 06
g2
§ 04 |
02 |
0
0

Figure 5.4: Precision and recall for AdvisedBy(x,y), with Professor(x) and Student(x) un-
known (Partial Info case). The five graphs show the results on the five different different test areas.
From left to right, top to bottom, they are: Al, graphics, languages, systems, and theory.

77

Table 5.4: Experimental results. CLL is the average conditional log-likelihood, and AUC is the area
under the precision-recall curve. The results are an average over the five test sets.

System All Info Partial Info
AUC CLL AUC CLL
MLN(KB) 0.310 —-0.058 | 0.292 —0.059
MLN(KB+CLB) | 0.296 —0.074 | 0.278 —0.075
MLN(KB+CL) 0.111 -0.768 | 0.086 —0.733
MLN(CLB) 0.007 —0.353 | 0.008 —0.691
MLN(CL) 0.034 —-0.380 | 0.036 —0.723
KB+CLB 0.093 —0.056 | 0.076 —0.051
KB+CL 0.057 —0.205 | 0.019 —-0.124
KB 0.104 —-0.073 | 0.075 —0.290
CLB 0.007 —0.052 | 0.030 —0.598
CL 0.047 —0.431 | 0.043 —0.849
NB 0.126 —1.246 | 0.101 —-1.170
BN 0.006 —0.177 | 0.010 —0.043
BN 0.032 —-0.073 | 0.025 —0.216

78

Chapter 6

COLLECTIVE DETERMINATION OF DEPENDENCY STRUCTURE

Up to this point, we have looked only at knowledge in the form of logical statements. As
mentioned in the introduction, we actually wish to allow contributors to provide information at all
levels of detail. For instance, an expert may not know exactly how some predicates interrelate, and
hence would be unable to write specific clauses in Markov logic. But the expert may be able to
at least provide some information as to which predicates affect which others, without claim as to
exactly how they do so (e.g. saying “smoking is somehow related to friends” instead of “if x and y
are friends, then either both smoke or both don’t smoke™). Such general structural information can
still be very useful, as this chapter will show.

In this chapter, we present a method for learning the structure of a Bayesian network from
multiple experts. Specifically, we compute the prior distribution P(S) over possible structures,
from expert statements. Data is then used to refine the structure and estimate parameters. A simple
analysis shows that even relatively few noisy experts can produce high-quality knowledge when
combined.

With both simulated and real experts, our method produces networks that are more accurate than
the main alternatives: purely empirical learning, learning with knowledge from a single expert, and
learning a separate model from each expert plus data and combining these. Note that this structure
task is based on (propositional) Bayesian networks. Having demonstrated success in this, applying

the same techniques to MLNs is the subject of future work.

6.1 Approach

Our approach is summarized in Figure 6.1. The world, assumed modelable by some Bayesian
network, generates both data and the imperfect knowledge of m experts about the structure of the

network. The expert knowledge (a directed graph from each expert) is used to compute a probability

79

Structure
+

World ——W—— Structure Learner

=N
| Expen2]

Parameters

Figure 6.1: Learning with knowledge from multiple experts.

distribution over structures. Given the most probable structure and the data, we learn the parameters
of the network. Optionally, given the data and the expert-induced distribution over structures, the
learner finds the a posteriori most probable structure and the posterior distribution over parameters.

(Ideally, the learner would average over all structures, but this is computationally infeasible.)

6.1.1 Basic Framework

We represent the structure of a Bayesian network with d nodes as a vector S = (s1,...,5j,...,Sa)
of d’ = d(d — 1)/2 structure variables, where s; corresponds to the jth node pair in some arbitrary
ordering of all the possible node pairs. For any two nodes X and Y, only one of the two pairs
(X,Y) and (Y, X) is considered, the choice of which being arbitrary. Pairs of the form (X, X) are
not considered. If s; corresponds to the pair (X,Y"), then s; = () if there is no arc between X and
Y in the network, s; =— if there is an arc from X to Y, s; =« if there is an arc from Y to X,
and s; =« if there is an arc from to X to Y and an arc from Y to X. (Although the latter cannot
happen in a real network, it may be stated by a noisy expert, and therefore we need to allow for it.)

We assume we have a pool of m experts, and the ith expert provides a vector E; = (e;1,. ..,
€ij, - -, €iqr), Where e;; € {0, —,«, —} states the expert’s belief about the existence of an arc
between the nodes in the jth pair. Thus all the expert knowledge available is contained in the
matrix £ = (E1, ..., E;, ..., Ey). In other words, each expert tells us what s/he believes are the
dependencies in the domain. Because an expert’s knowledge of the world is imperfect, F; is a noisy

version of S. We will often slightly abuse notation and consider F; to “be” the ith expert.

80

A Bayesian network is composed of a structure S and a parameter vector ©. Our goal is to
induce a posterior distribution over (S, ©) given expert knowledge E and a training set D. This
distribution can then be used to find the most probable network (S*, ©*), or to compute probabilities
of interest by averaging over the possible networks, weighted by their posteriors. To make the

problem tractable, we introduce a number of simplifying assumptions. By Bayes’ theorem,

P(S,0|E,D) = aP(S,0)P(E,D|S,0)

— aP(S)P(©|S)P(E|S,0)P(D|E, S,0) (6.1)

We use « throughout to represent a normalizing constant (not necessarily always the same one).
We assume that P(E|S,©) = P(E|S) (i.e., expert statements about structure depend only on the
structure, not the parameters) and that P(D|E, S,0) = P(D|S, ©) (i.e., the data is independent of
the experts given the actual structure and parameters). Substituting these equalities into Equation 6.1

and integrating both sides over © yields the posterior over structures

P(S|E,D) = aP(E|S)P(S,D)
— aP(S)P(E|S)P(D|S) (6.2)

where P(S, D) is the standard Bayesian Dirichlet (BD) score (see Equation 2.1). The quantity
P(E|S)P(S, D) is the new BD score, extended to take expert statements into account by replacing
the prior P(S) with the “post-expert” prior P(S|E) = aP(S)P(E|S) (i.e., the distribution over
structures after consulting the experts but before seeing any data). It can be used as the scoring

function in any algorithm that learns a Bayesian network by searching over structures.

6.1.2 Expert Model

P(E|S) is the generative model for expert statements, and is the key new quantity we introduce. It
can be represented by a “meta-level” Bayesian network with nodes {s1,...,s4,€e11,...,e1a,-..,
€m.1s- -, Ema }, Where the s; nodes have known values and no parents. Thus, if par(e;;) denotes

the parents of node e;;,

81

Table 6.1: Parameters of the expert model, P(e;;|s;).

Sj eij
(Z) — — —
0 | 1—2pa—py Pa Pa Py
- Pd 1_pd_p7”_pc Dr DPe
— Pd Dr 1=pa—pr—pc De
m d
P(EIS) =[] I] Pleijlpar(es)) (6.3)
i=1j=1

We assume the simplest useful case, which is that par(e;;) = {s;}. In other words, an expert’s
probability of stating that an arc exists depends only on whether the actual arc or its reverse exist,
and not on what other experts state, or what the expert states about other arcs. In particular, this
implies that the experts are independent given the actual structure (i.e., that they “distort reality” in
independent ways; note that this is is quite different from the experts being unconditionally inde-
pendent). These assumptions obviously oversimplify the behavior of real experts, but may lead to
better performance than more realistic ones whose parameters would be hard to estimate.

The expert model is thus fully specified by specifying P(e;;|s;) forall (z, j). We assign the same
a priori values to these parameters for all (i, j).> The natural parameters to state P(e;;|s;) in terms
of are: p,, the probability that the expert adds an arc in a particular direction where there was none;
P4, the probability that the expert deletes an arc; p.., the probability that the expert reverses an arc;
p, the probability that the expert creates a cycle (arcs in both directions) where there was no arc;
and p., the probability that the expert creates a cycle where there was an arc. The resulting values
of P(e;j|s;) for all (z,7) are shown in Table 6.1. (Since s; =« cannot occur, it is not necessary
to specify P(e;;|s;) for this case.) A simple and possibly very useful extension is to have different
values of the parameters for each expert (i.e., P(e;;|sj) = pai, etc.).

Notice that there is nothing to preclude an expert from specifying a structure with cycles. Even

if incorrect, such a structure will in general still contain useful information, and our method allows

82

us to extract it.

We also need to specify a prior P(.S) over structures. In this thesis we assume that each pair
of nodes independently has some probability pg of being connected by an arc in a given direction.
We also know that Bayesian networks must be acyclic, and so set P(.S) = 0 for any .S containing

cycles:

d/
P(S) =aC(S) [] P(sy) (6.4)
j=1
where C'(S) = 0 if S contains a cycle and C(S) = 1 otherwise, and P(s;) = 1 — 2pg if S; = 0,
P(sj) = po it S =— or S§; =«, and P(s;) = 0 if S; =«. Combining Equations 6.3 and 6.4
yields

i=1

d m
P(S|E) = aP(S)P(E|S) = aC(S) I] P(s;) [T Plesjls;) (6.5)
j=1

6.1.3 Analysis

We now derive an expression for the probability that our method incorrectly predicts the value of
a structure variable s;, assuming that the expert model and parameters it uses are correct. Viewed
another way, this is the expected fraction of incorrect arcs in the structure predicted by the ensemble
of experts. More precisely, if 5; is the value of s; with highest p; = P(s;) ;% P(ei;|s;) (see
Equation 6.5), the expression is for the probability that 5; # s; (i.e., for the probability of making an

incorrect prediction before breaking cycles). P(5;#s;) can be expanded as follows:

P(3;#s;) = > P(sj=v;)P(3;#sj|sj=vj) (6.6)

Uje{@7—>,<—,<—>}

Inturn, P(5;#s;|s;=v;) can be expanded thus:

m
P(3;#sjlsj=v) = > P(3;#sjlerm.j, s=v;) [| Pleijlsj=v;) (6.7)
£ i=1
where the sum is over the set £ of all 4™ possible vectors of expert statements 1., j = (€15, - - -, €m;)

about s;. The probabilities P(e;;|s; = v;) can be obtained from Table 6.1. P(5;#s;|e1.m,j,5; =

vj) = 0 if p; is higher for v; than for any other value (i.e., the correct prediction is made), and

83

025 ——
0.1 wox 0%
\ 075 -~
.. 008 |
2 006 |
[e]
&
S 004 T
Lu 3
0.02 |
0 A 2SS

15 20
Number of Experts

Figure 6.2: Error probability as a function of the number of experts and their noise level. Note that
po = 0.05, so with no experts, the “best guess” is no edge between the pair of nodes, leading to an
error probability of 2py = 0.1 regardless of noise level.

P(5;#s;le1.m,j,sj=v;) = 1 otherwise. Replacing this into Equation 6.7 and the latter into Equa-
tion 6.6, we obtain a long but straightforward expression for the error probability P(5;#s;). (The
number of terms in Equation 6.7 can be greatly reduced by counting and combining all terms with
the same number of experts predicting each value of s;.) This probability as a function of the num-
ber of experts and the noise level is plotted in Figure 6.2. A noise level of p is defined as the expert
parameter settings in which the expert removes or reverses a fraction p of the arcs, and adds the same
number between unrelated nodes. We expect edge deletion to be much more frequent in practice
than edge reversal, so we let p; = 4p,.. We set pg (the probability that a pair of nodes is connected
in a given direction) to 0.05. As can be seen, the error probability is low even with few experts and
a substantial noise level. See also the analyses of model ensembles in Hansen & Salamon [59] and

Perrone & Cooper [105].

84

6.1.4 Algorithm

We use the hill-climbing search algorithm of Heckerman et al. [61] to find the best structure, initial-
izing it with the structure that maximizes P(S|E), and replacing P(S) by P(S|E) in the BD score
(Equation 2.1), as described in the previous section. However, learning the structure of a Bayesian
network can be computationally expensive. A common alternative, if the expert knowledge is of
sufficient quality, is to take the structure given by the expert(s) as the “true” one, and simply fit
parameters to this structure. In our context, this means taking the structure with highest P(S|E) as

the “true” one, and learning parameters. We also explore this alternative in our experiments.

Consider Equation 6.5, and ignore for the moment the problem of cycles (i.e., the C'(S) term).
Because the term for each structure variable s is independent of all others, the structure with highest
P(S|E) can be found in O(d*m) time simply by setting each s; to the value with highest p; =
P(s;)ITi%, P(eij|s;). If we assume that the structures provided by the experts have some sparse
number of arcs e < d?, and the expert parameters (p,, pq, - - .) are set reasonably so that an arc can
only be introduced between a pair of nodes j if 3i s;; # (), then this computation takes only O(em)
time. However, the structure .S’ found in this way may contain cycles. We thus heuristically find the
structure with highest P(S|E) by breaking all cycles in S’ while minimally reducing its score [] p;.
We use the procedure of Hulten el al. [64], which finds the set of arcs involved in cycles by finding
the graph’s strongly connected components, and breaks cycles by greedily removing the component
arcs with lowest p;. Though not guaranteed to find the acyclic structure with highest probability, in

our experience this quickly finds an acyclic structure using very few arc removals.

We set the parameters pq, pa, Pr, Pb, Pe t0 Optimize log-likelihood, measured by two-fold cross-
validation. Optimization is done either by sequentially trying a pre-determined set of values for each

parameter, or by Powell’s method [107].

A further issue that arises is that the available data may be insufficient to reliably fit the pa-
rameters of the structure with highest P(S|E), leading to poor performance, even if this structure
is the “correct” one. In this case an oversimplified structure (with fewer parents per node, and
thus more data for each CPT entry) might perform better. We address this issue by performing
shrinkage of the parameters as follows. For each node x;, we order the parents par(z;) as fol-

lows: pari(x;) is the parent with highest mutual information with respect to x;; pary(x;) is the

85

parent with highest mutual information given {pari(x;),...,parp—1(x;)}. Let p;jro be the un-
shrunken estimate of p;;, = P(z; = k | par(z;) = j) (i.e., conditioning on all parents). Let
Dijks DE the estimate obtained by ignoring the last s parents in the ordering. The shrunken es-
timate is then p;jr = Z‘SI’:"S(“)‘ AsDijks- The shrinkage coefficients A are found using the EM
algorithm, as described in McCallum et al. [87]. The shrinkage is incorporated into the parameter

estimation and structure search by appropriately setting the Dirichlet parameters (see Equation 2.1):

n;jk = (’I’LU/AQ) ZLZ:I(IZ)‘ /\sp,'jks + 1.

6.2 Experiments

We performed two sets of experiments. In the first, we used simulated experts and data generated
from benchmark Bayesian networks to study the effect of training set size, number of experts, and
noise level on our algorithm. In the second, we used knowledge of printer troubleshooting from

nine computer users, and data from the Microsoft Windows printer diagnosis network.

6.2.1 Simulated Experts

We used four networks from the Bayesian network repository at http://www.cs.huji.ac.il/labs/comp-
bio/Repository/ as our ground truths. Table 6.2 lists the networks and some of their characteristics.
Since the correct prior probability of an edge, pg, is unknown in practice, we set p, to be 0.05 for all
networks. Expert parameters were set as in Section 6.1.3. Unless specified, the default noise level
is 0.5 (p, = 0.025, pg = 0.4, p. = 0.1, p. = 0, pp = 0), and the training set size is 100 examples.

We generated expert statements from the true networks according to the model described in the
previous section. The parameters for the structure inference algorithm were not set to the true values,
but optimized as they would need to be in a real-world situation.? After optionally performing
a search over structures (guided by P(S|E, D)), the resulting network was evaluated using two
measures: a) the average K-L distance from the true network, estimated using 100k samples, 2 and
b) the structural difference between the learned network and the true one, measured as the number
of arcs added or removed, with reversals counting as two differences.

We compared expert combination with three other cases: zero experts (purely empirical learning,

starting from an empty network), one expert (the network provided by one expert), and true (purely

86

Parameter Learning

20 P 50— |
' 100 -----x----
@ 500 -k @
15 N 1 Q
S e 8
% LT ko]
O 10 Ko K . 4 0O
o - 5
X i ST OR— 4
5 B “x T
0
0 1 3 5 10 20 True
Number of Experts
Structure Learning
8 8
g g
o B
a a
! =
N4 %
0 1 3 5 10 20 True
Number of Experts
Structure Learning
180
@ 160 Q
o 140 o
I 120 k2
g 60 =
2 40 >
B 20]

0 1 3 5 10 20 True

Number of Experts

Parameter Learning

3 5 10 20 True
Number of Experts

o
[EEN

Structure Learning

0
0 1 3 5 10 20 True

Number of Experts
Structure Learning

128 [0.5 = |

0.75
120 | - i
100 [N e 1

3 5 10 20 True
Number of Experts

o
=

Figure 6.3: Experimental results for simulated experts: varying training set size (left) and varying
noise level (right).

87

empirical learning, starting from the true network). For these we used the same prior P(S) as
Heckerman et al. [61], which is a discount of a factor of « for every structural change from the
initial model. We searched for the best « in {0.01,0.1,0.2,...,0.8,0.9,0.99} using two-fold cross-
validation.* Results are averaged over 20 runs; each has independent training sets and experts, but
all share the test set. Results for each run were on varying subsets of a fixed set of 20 experts. Within
each run, each successively larger set of experts was obtained by adding randomly-chosen experts
to the previous (smaller) set.

Results were qualitatively similar in all four domains. Table 6.2 shows summary results for
parameter learning in the four domains. A single expert is useful, but still quite error-prone. In
contrast, ten experts are sufficient to essentially recover the true network. Full results for hailfinder,
the most complex domain, are shown in Figure 6.3.> The top graphs were obtained by finding
the best structure using our method with 3 to 20 experts, and estimating parameters for it. “0” is
the empty structure, “1” is a single expert’s structure (with cycles removed), and “True” is the true
structure. The middle and bottom graphs were obtained by finding the initial structure and prior over
structures using our method with 3 to 20 experts, and applying Heckerman et al.’s (1995) structure-
learning algorithm. In “0” the initial structure is empty, in “1” it is a single expert’s structure, and
in “True” it is the true structure; in these three cases, Heckerman et al.’s algorithm was applied with
their prior. In all cases, network parameters were learned with shrinkage.

With or without structure learning, multiple experts systematically outperform a single expert,
as well as purely empirical learning, in both K-L distance and structural difference. This illustrates
the potential of our approach. A single expert outperforms structure learning in K-L distance but
not in structural difference, suggesting that using multiple experts is particularly important when the

goal is to understand the structure of the domain, rather than just obtain accurate predictions.

6.2.2 Real Experts

For real experts, we used the same domain as in Chapter 4. the Microsoft printer troubleshooting
Bayesian network. Note though that rather than asking experts for rules, this time we simply asked

for structural information. The network has 76 nodes and 112 edges, and p = 0.02.

We used the same experimental procedure as in the previous section. Our “experts” were nine

88

Parameter Learning Parameter Learning
12 12
lo “\“ 10 i:
8 gl " 8 gl
g g
a ¢ a o7
- -
v 4 v 47
2r ', 2 r
0 1 1 1 1 1 O 1 1 1 1 1
0 1 3 5 7 9 True 0 1 3 5 7 9 True
Number of Experts Number of Experts
Structure Learning Structure Learning
10 100 -----weme 10 100 - .
Q gl 500 - o |8 gl 500 - Koo |
g 7
a 67 18 8 1
- -
c 4 < ! ?\
21 2r 9 T &
0 0 ‘
0 1 3 5 7 9 True 0 1 3 5 7 9 True
Number of Experts Number of Experts
Structure Learning Structure Learning
300 £ 300 £
) ‘]
e 250 e 250
o o
I 200} T 200}
0 150 2 150
T T
g 100 . g 100 -
= Y o2
1)) 50 r ‘\\’ [0p] 50 r \;
0 ‘,‘ 0 }
0 1 3 5 7 9 True 0 1 3 5 7 9 True
Number of Experts Number of Experts

Figure 6.4: Experimental results in printer domain: low expertise (left) and high expertise (right).

89

Table 6.2: Network characteristics and results. pg is the true probability of an arc between two
nodes. ¢; is the reduction in K-L distance achieved when using i experts, as a fraction of the
maximum possible (difference between learning with the empty network and learning with the the
true one).

Network | Nodes Edges Do o1 d10
Alarm 37 46 0.035 | 47% 93%
Hailfinder 56 66 0.021 | 55% 98%
Insurance 27 52 0.074 | 57% 98%
Water 32 66 0.067 | 51% 98%

computer users who were familiar with printing but not intimately knowledgeable about the details
of Windows printing. Each expert was given a list of the domain variables and asked to list the
direct causes of each. To simulate more knowledgeable experts, we let each expert then study the
true structure of the network for a period of time, asking them to try to understand the reason why
certain variables were causes of other variables (we assisted in this task by providing an explanation
for each). The experts’ instructions are in Appendix C. After this, the experts were asked again
to list the causes of each variable. We call these two cases “low-expertise” and “high-expertise”
respectively. The experts spent from two to five hours on the task. We set po = 0.02, and tried
optimizing the parameters of the expert model both globally and separately for each expert. The

latter alternative (with Powell’s method) performed slightly better, and is the one we report.

The results, averaged over 20 runs, are shown in Figure 6.4. In each run, the subset of experts
used for each number of experts was randomly chosen. The boxes represent the scores of the indi-
vidual experts with 100 examples, averaged across runs. Without structure learning, experts always
produced better networks than the purely empirical approach, and multiple experts combined us-
ing our method outperformed using a single one, on average. With structure learning, all methods
performed similarly in K-L distance. This can be seen to be due to the lack of room for improve-
ment between purely empirical learning and starting with the true network, and can be attributed to
the simplicity of the domain. We expect the benefits of our approach to be more visible on large,

complex domains where the data is generated by the real world, instead of by a model network. Ex-

90

perts outperformed purely empirical learning, and multiple experts outperformed one, in structural
difference, showing the potential advantages of our method for obtaining insight.

The average K-L distance of the boxes (in the left and middle plots) is the K-L distance that
would result from combining expert predictions with a logarithmic pool [40] (i.e., from combining
the models that would result from fitting parameters separately to each expert structure). Without
structure learning, the combined experts outperformed the logarithmic pool, and all but the best of
the individual experts. This shows that our method can be preferable to standard model combination
techniques. With structure learning, the K-L distances of our method and the logarithmic pool were
similar, for the reasons described above. Even in this case, our method may still be preferable, be-
cause it produces a single comprehensible structure, in contrast to the multiple structures maintained
by a posteriori combination methods.

Even on these simple networks, structure learning was an order of magnitude slower than param-
eter learning. In domains with many thousands of variables, where expertise combination is likely
to be most useful, structure learning may simply not be feasible. Our method with only parameter
learning is likely to be the best choice in this case. Given that structure learning is likely to be faster
when starting closer to the true network, there may also be cases where our method with structure
learning is feasible, while purely empirical structure learning is not.

In this and previous chapters, we have assumed there is some amount of training data available,
either for learning parameters of the contributed knowledge, or for learning parameters about the
experts themselves. What can we do if we have no such data? In the next chapter, we tackle this
problem by using a web of trust to infer the quality of users based on how much they are trusted by

other users known to the system.

91

Chapter 7

USING TRUST PROPAGATION TO WEIGHT CONTRIBUTIONS

In previous chapters, the purpose was to combine knowledge, particularly in the form of logical
assertions, using inference and learning. Learning, in particular, was used to update the probabilistic
parameters of the knowledge contained in the collective knowledge base. A problem thus arises if
we have little or no training data with which to learn these parameters. In such a situation, how can

the CKB determine the quality of the knowledge it has been given?

We tackle this problem by employing a web of trust, in which each user maintains trusts in a
small number of other users. We then compose these trusts into trust values for all other users. We
define properties for combination functions which merge such trusts, and define a class of functions
for which merging may be done locally while maintaining these properties. We give examples of
specific functions and apply them to data from Epinions (www.epinions.com), and our BibServ
bibliography server. Experiments confirm that the methods are robust to noise, and do not put
unreasonable expectations on users.

In the next section, we formulate a model that explicitly has the dual notions of trust and belief.
We then define the meaning of belief combination under two different interpretations, and show an
equivalence between the two. We also show a correspondence between combining beliefs and trusts
that allows the use of whichever is more computationally efficient for the given system. We then
give experimental results that show that our methods work across a wide variation of user quality

and noise levels

71 Modd

It is important to note that our focus here is not on deriving beliefs for new statements given an initial
set of statements. Rather, we propose a solution to the problem of establishing the degree of belief

in a statement that is explicitly asserted by one or more sources in our collective knowledge base.

92

These beliefs can then be used by an appropriate calculus to compute beliefs in derived statements.

Our basic model is that a user’s belief in a statement should be a function of her trust in the
sources providing it. Given each source’s belief in the statement and the user’s trust in each source,
the user’s belief in the statement can be computed in many different ways, corresponding to differ-
ent models of how people form their beliefs. The framework presented in this chapter supports a
wide variety of combination functions, such as linear pool [40][46], noisy OR [102], and logistic
regression [4]. We view the coefficients in these functions (one per source) as measuring the user’s
trust in each source,! and answer the question: how can a user decide how much to trust a source
she does not know directly? Our answer is based on recursively propagating trust: if A has trust
w in B and B has trust v in C, then A should have some trust ¢ in C that is a function of « and v.
We place restrictions on allowable methods for combining trusts that enable the efficient and local
computation of derived trusts. Similar restrictions on belief combination allow it to also be done
using only local information.?

Consider a system of N users who, as a whole, have made M statements. Since we consider
statements independently, we introduce the system as if there is only one.

Beliefs. Any user may assert her personal belief in the statement, which is taken from [0,1].
A high value means that the statement is accurate, credible, and/or relevant. Let b; represent user
1’s personal belief in the statement. If user ¢ has not provided one, we set b; to 0. We refer to the
collection of personal beliefs in the statement as the column vector b (using more complex beliefs
and trusts is part of our plans for future work).

Trusts. User < may specify a personal trust, ¢;;, for any user j. Trust is also a value taken from
[0,1], where a high value means that the user is credible, trustworthy, and/or shares similar interests.
If unspecified, we set ¢;; to be 0. Note that ¢;; need not equal ¢;;. The collection of personal trusts
can be represented as a NxN matrix T. We write t; to represent the row vector of user i’s personal
trusts in other users. In the future, we would like to investigate more complex (e.g., topic-specific)
trusts (see Section 8.2.4).

Merging. The web of trust provides a structure on which we may compute, for any user, their
belief in the statement. We will refer these as merged beliefs (B), to distinguish them from the user-
specified personal beliefs (b). The trust between any two users is given by the merged trusts matrix

(T, as opposed to the user-specified personal trusts matrix (T).

93

7.2 Path Algebra Interpretation

In order to compute merged beliefs efficiently, we first make the simplifying assumption that a
merged belief depends only on the paths of trust between the user and any other user with a personal
belief in the statement. In Section 7.3 we consider an alternative probabilistic interpretation. For the
moment, we consider only acyclic graphs (we generalize later to cyclic graphs).

Borrowing from generalized transitive closure literature [2], we define merged beliefs under the

path algebra interpretation with the following conceptual computation (see Figure 7.1):

1. Enumerate all (possibly exponential number of) paths between the user and every user with a

personal belief in the statement.

2. Calculate the belief associated with each path by applying a concatenation function to the

trusts along the path and also the personal belief held by the final node.

3. Combine those beliefs with an aggregation function.

Some possible concatenation functions are multiplication and minimum value. Some possible
aggregations functions are addition and maximum value. Various combinations lead to plausible
belief-merging calculations such as measuring the most-reliable path or the maximum flow between
the user and the statement.

Let o and <> represent the concatenation and aggregation functions respectively. For example,
tir, oty is the amount that user 7 trusts user j via k, and the amount that 7 trusts j via any single other
node is {(Vk : i oty;). If & is addition and o is multiplication, then &(VE = ¢, 0t5) = 3o tite;.
We define the matrix operation C=AeB such that C;; = $(VE : A, o By;). Note that for the

previous example, AeB is simply matrix multiplication.

7.2.1 Local Belief Merging

The global meaning of beliefs given above assumes a user has full knowledge of the network in-
cluding the personal trusts between all users, which is unreasonable in practice. Can we instead

merge beliefs locally while keeping the same global interpretation? Following Agrawal et al. [2],

94

concatenate
A-C D | “(mutiply) 0.504 - 0.7
aggregate

Figure 7.1: Path Algebra belief merging on an example web of trust.

let well-formed decomposable path problems be defined as those for which <> is commutative and
associative, and o is associative and distributes over <> (The above examples for <> and o all re-
sult in well-formed path problems). These may be computed using generalized transitive closure

algorithms, which use only local information. One such algorithm is as follows:
1. 80 =p

2. B = TeB1) or alternatively, B™ = O(Vk : £y, 0 BU"™)

3. Repeat step 2 until B = g1

(where =10 represents the value of B in iteration 7. Recall B are the merged beliefs)
Notice that in step 2, the user needs only the merged beliefs of her immediate neighbors, which
allows her to merge beliefs locally while keeping the same global interpretation. We will use the

term belief combination function to refer to the above algorithm and some selection of o and .

7.2.2 Strong and Weak Invariance

Refer to Figure 7.2 (Case 1). Suppose a node is removed from the web of trust, and the edges to

it are redirected to its trusted nodes (combining the trusts). If the merged beliefs of the remaining

95

© (@

© © (B A A Casel
(weak invariance)

o (D (E
B

@ Casell

(strong invariance)

Figure 7.2: Strong and weak invariance.

users remain unchanged, we say the belief combination function has weak global invariance. The
path interpretation has this important property.

We can imagine another property that may be desirable. Again refer to Figure 7.2 (Case II). If
we add an arc of trust directly from A to C, and the trust between A and C is unchanged, we say that
the belief combination function has strong global invariance. Any belief combination function with
weak invariance for which the aggregation function is also idempotent (meaning, {(z,z) = {(x))
will have strong invariance. This follows from the fact that the aggregation function is associative.
Interestingly, whether or not the aggregation function must be idempotent is the primary difference
between Agrawal et al.’s well-formed decomposable path problems [2] and Carre’s path algebra
[15] (also related is the definition of a closed semiring in [5]). One example of a belief combination

function with strong global invariance is the one defined with <> as maximum and o as multiplication.

7.2.3 Merging Trusts

The majority of the belief merging calculation involves the concatenation of chains of trust. Beliefs
only enter the computation at the endpoint of each path. Instead of merging beliefs, can we merge
trusts and then reuse these to calculate merged beliefs?

We define the interpretation of globally merged trusts in the same way as was done for beliefs:

96

the trust between user ¢ and user j is an aggregation function applied to the concatenation of trust
along every path between them. It falls directly from path algebra that, if <> is commutative and
associative, and o is associative and distributes over <>, then we can combine trusts locally while

still maintaining global meaning:
1. 70 =T
2. 7 = Teg(n=1)
3. Repeat step 2 until 7 = 7=

(T () s the value of T in iteration 7. Recall that T is the matrix of merged trusts). To perform the
computation, a user needs only to know her neighbors’ merged trusts. This leads us to the following
theorem, which states that, for a wide class of functions, merging trusts accomplishes the same as

merging beliefs (the proof is in Appendix D)

Theorem 7.2.1 If {> is commutative and associative, and o is associative and distributes over <,

and T, 7, b, and B are as above, then TeB = Teb.

7.24 Cycles

Thus far, we have assumed the graph is acyclic. However, it is improbable that a web of trust
will be acyclic. Indeed, the Epinions web of trust (see Section 7.5) is highly connected and cyclic.
Borrowing terminology from path algebra, we define a combination function as cycle-indifferent if
it is not affected by introducing a cycle in the path between two users. With cycle indifference, the
aggregation over infinite paths will converge, since only the (finite number of) paths without cycles

affect its calculation.

Proposition 7.2.2 Theorem 7.2.1 is applicable to cyclic graphs if <> and o define a cycle-indifferent

path problem.

On cyclic graphs, a combination function that is not cycle-indifferent has the questionable prop-

erty that a user may be able to affect others’ trusts in him by modifying her own personal trusts.

97

However, requiring a cycle-indifferent combination function may be overly restrictive. In Sec-
tion 7.3 we explore an alternative interpretation that allows the use of combination functions that

are not cycle-indifferent.

7.2.5 Selection of Belief Combination Function

The selection of belief combination function may depend on the application domain, desired belief
and cycle semantics, and the expected typical social behavior in that domain. The ideal combination
function may be user-dependent. For the remainder of the chapter, we will always use multiplica-
tion for concatenation, though in the future we would like to explore other functions (such as the
minimum value). The following is a brief summary of three different aggregation functions we have

considered.

e Maximum Value. Using maximum to combine beliefs is consistent with fuzzy logic, in
which it has been shown to be the most reasonable function for performing a generalized or
operation over [0,1] valued beliefs [9]. Maximum also has the advantages that it is cycle-
indifferent, strongly consistent, and naturally handles missing values (by letting them be 0).
With maximum, the user will believe anything believed by at least one of the users she trusts

— a reasonable, if not overly optimistic, behavior.

e Minimum Value. Minimum is not cycle-indifferent. In fuzzy logic, minimum value is used
to perform the and operation. With minimum, the user will only believe a statement if it is

believed by all of the users she trusts.

e Average. Average does not satisfy the requirements for a well-formed path algebra outlined
above (average is not associative). However, average can still be computed by using two
aggregation functions: sum and count (count simply returns the number of paths by summing
1’s). By passing along these two values, each node can locally compute averages. Average is

not cycle-indifferent.

98

7.2.6 Computation

Since cycle-indifferent, weakly consistent combination functions yield well-formed path problems,
B and T may be computed using standard transitive closure algorithms. The simplest of these is the
semi-naive algorithm [8], which runs in O(N*) time, and essentially prescribes repeated application
of the belief update equation. If running as a peer-to-peer system, the semi-naive algorithm may be
easily parallelized, requiring O(N®) computations per node [3]. Another algorithm is the Warshall
algorithm [124], which computes the transitive closure in O(N3). Some work on parallel versions of
the Warshall algorithm has been done in Agrawal & Jagadish [3]. There has also been much research
on optimizing transitive closure algorithms, such as for when the graph does not fit into memory [2].
In practice most users will specify only a few of the users as neighbors, and the number of iterations
required to fully propagate information is much less than N, making the computation quite efficient.
Theorem 7.2.1 allows us to choose whether we wish to merge trusts or merge beliefs. The most
efficient method depends on, among other things, whether the system is implemented as a peer-
to-peer network or as a server, the number of neighbors for a given user, the number of users, the

number of statements in the system, and the number of queries made by each user.

7.3 Probabilistic Interpretation

In this formulation, we consider a probabilistic interpretation of global belief combination. The
treatment is motivated by random walks on a Markov chain, which have been found to be of practical
use in discovering high-quality web pages [99]. In what follows, we assume the set of personal trusts

for a given user has been normalized (i.e., it sums to one).

Imagine a random knowledge-surfer hopping from user to user in search of beliefs. At each step,
the surfer probabilistically selects a neighbor to jump to according to the current user’s distribution
of trusts. Then, with probability equal to the current user’s belief, it says “yes, | believe in the
statement”. Otherwise, it says “no”. Further, when choosing which user to jump to, the random
surfer will, with probability A\; € [0, 1], ignore the trusts and instead jump directly back to the
original user, . We define a combination method to have a global probabilistic interpretation if it

satisfies the following:

99

1. T;; is the probability that, at any given step, user :’s random surfer is at user j.
2. ‘B, is the probability that, at any given step, user i’s random surfer says “yes”.

The convergence properties of such random walks are well studied; B and T will converge as long
as the network is irreducible and aperiodic [89]. A; can be viewed as a self-trust, and specifies the
weight a user gives to her own beliefs and trusts. The behavior of the random knowledge-surfer
is very similar to that of the intelligent surfer presented in Richardson & Domingos [113], which
is a generalization of PageRank that allows non-uniform transitions between web pages. What
personalizes the calculation to user ¢ is the random restart, which “grounds” the surfer to 4’s trusts.

The resulting trusts may be very different than using PageRank.

7.3.1 Computation

User ¢’s trust in user j is the probability that her random surfer is on a user &, times the probability
that the surfer would transition to user j, summed over all k. Taking A; into account as well, we

have
Tij = Nid(i — j) + (L = N) Zk Jiktrj (7.1)
where 6(0) = 1 and é(z # 0) = 0 and each row of T is normalized. In matrix form:

T, = >\z’Ii + (1 —)\z) {Ii‘T, (72)

where 1; is the 5*" row of the identify matrix. In order to satisfy the global probabilistic interpreta-
tion, B; must be the probability that user i’s random surfer says “yes”. This is the probability that it

is on a given user times that user’s belief in the statement:

B; = kakbk, or, B, = T;b (7.3)

7.3.2 Local Belief and Trust Merging

As in section 7.2.1, we wish to perform this computation using only local information. We show

that this is possible in the special case where \; = X is constant. Unrolling Equation 7.2;

T=A [i (1—A)me]. (7.4)

m=0

100

Note that 70 = I. Substituting into Equation 7.3,
B=2A\ [Z (1-\" Tm] b, (7.5)
m=0

which is satisfied by the recursive definition:
B=Xb+(1-NTB (7.6)

Thus we find that in order to compute her merged belief, each user needs only to know her personal
belief, and the merged beliefs of her neighbors. Besides having intuitive appeal, this has a proba-
bilistic interpretation as well: user 4 selects a neighbor probabilistically according to her distribution
of trust, t;, and then, with probability (1—\), accepts that neighbor’s (merged) belief, and with prob-
ability A\ accepts her own belief. Further, Equation 7.4 is also equivalent to the following, which

says that a user may compute her merged trusts knowing only the merged trusts of her neighbors:
T=AN+(1-MNTT (7.7)

The probabilistic interpretation for belief combination is essentially taking the weighted average of
the neighbors’ beliefs. We will thus refer to this belief combination as weighted average for the
remainder of the chapter. Note that for weighted average to make sense, if the user has not specified
a belief we need to impute the value. Techniques such as those used in collaborative filtering [112]
and Bayesian networks [17] for dealing with missing values may be applicable. If only relative

rankings of beliefs are necessary, then it may be sufficient to use 0 for all unspecified beliefs.

7.4 Similarity of Probabilistic and Path Interpretations

There are clearly many similarities between the probabilistic and path interpretations. In both,
beliefs may be merged by querying neighbors for their beliefs, multiplying (or concatenating) those
by the trust in each neighbor, and adding (or aggregating) them together. Both interpretations also
allow the computation of merged beliefs by first merging trusts. If we let the aggregation function be
addition, and the concatenation function be multiplication, then the only difference between the two
interpretations is due to the factor, A. If A = 0, then Equation 7.6 for computing B is functionally

the same as the algorithm for computing B in the path algebra interpretation. However, consider

101

this: If X\ is 0 then Equation 7.2 for computing T; simply finds the primary eigenvector of the
matrix T. Since there is only one primary eigenvector, this means that 7; would be the same for
all users (assuming the graph is aperiodic and irreducible). How do we reconcile this with the path
algebra interpretation, in which we expect different trust vectors per user? The answer is that the
corresponding path algebra combination function is not cycle indifferent, and as a result the user’s
personal beliefs will get “washed out” by the infinite aggregation of other users’ beliefs. Hence, as
in the probabilistic interpretation, all users would end up with the same merged beliefs.

Both methods share similar tradeoffs with regards to architectural design. They may easily be
employed in either a peer-to-peer or client-server architecture. We expect the system to be robust
because a malicious user will be trusted less over time. Further, since the default trust in a user is 0,
it is not useful for a user to create multiple pseudonyms, and users are motivated to maintain quality
of information.

The web of trust calculation is not susceptible to “link-spamming,” a phenomenon in PageRank
whereby a person may increase others’ trust in him by generating hundreds of virtual personas which
all trust him. In PageRank, the uniform random jump of the surfer means that each virtual persona
is bestowed some small amount of PageRank, which they “give’ to the spammer, thus increasing her
rank. With a web of trust, this technique gains nothing unless the user is able to convince others to
trust her virtual personas, which we expect will only occur if the personas actually provide useful

information.

7.5 Experiments

In this section, we measure some properties of belief combination using the methods presented
above. We present two sets of experiments. The first uses a real web of trust, obtained from Epinions
(www.epinions.com), but uses synthetic values for personal beliefs and trusts. We wanted to see
how maximum (path interpretation) compared with weighted average (probabilistic interpretation)
for belief combination. We also wanted to see what quality of user population is necessary for the
system to work well, and what happens if there is a mix of low and high quality users. Finally,
these methods would have little practical use if we required that users be perfect at estimating

trusts of their neighbors, so we examine the effect that varying the quality of trust estimation has

102

on the overall accuracy of the system. For the second experiment, we implemented a real-world
application, now available over the web (BibServ, www.hibserv.org). BibServ provides us with both

anecdotal evidence and experimental results.

7.5.1 Experiments with the Epinions Web of Trust

For these experiments, we used the web of trust obtained from Epinions, a user-oriented product
review website. In order to maintain quality, Epinions encourages users to specify which other users
they trust, and uses the resulting web of trust to order the product reviews seen by each person®.
In order to perform experiments, we needed to augment the web of trust with statements and real-
valued trusts.

We expected the information from contributors to be of varying quality, so we assigned to each
user ¢ a quality ~; € [0,1]. A user’s quality determined the probability that a statement by the user
was true. Unless otherwise specified, the quality of a user was chosen from a Gaussian distribution
with . = 0.5 and o = 0.25. These parameters are varied in the experiments below.

The Epinions web of trust is Boolean, but our methods require real-valued trusts. We expected
that over time, the higher a user’s quality, the more they were likely to be trusted. So, for any pair

of users ¢ and j where ¢ trusts j in Epinions:
tij ~ U (max (y; — 6i;,0) ,min (75 + i, 1)) (7.8)

U (a,b) is the uniform distribution between « and b and 0 elsewhere, ~; is the quality of user ¢ and
d;; 1s a noise parameter that determines how accurate users were at estimating the quality of the user
they were trusting. We supposed that a user with low quality was bad at estimating trust, so for these
experiments we let §;; = (1 — ;).

We generated a random world that consisted of 5000 true or false “facts” (half of the facts were
false). Users’ statements asserted the truth or falsity of each fact (there were thus 10,000 possible
statements, 5000 of which were correct). A user’s personal belief (b;) in any statement she asserted
was 1.0.

The number of statements made by a user was equal to the number of Epinions reviews that user
wrote. The few users with highest connectivity tended to have written the most reviews, while the

majority of users wrote few (or none).

103

Table 7.1: Average precision and recall for various belief combination functions, and their standard
deviations.

Combination Function | Precision | Recall

Maximum 0.87+ 0.13 | 0.98+ 0.13
Weighted Average 0.694+ 0.06 | 0.98+ 0.15
Local 0.574+ 0.13 | 0.44+ 0.32
Random 0.514+ 0.05 | 0.994+ 0.11

For each fact, each user computed her belief that the fact was true and her belief that the fact
was false. For each user i, let S; be the set of statements for which B, > r. If a user had non-zero
belief that a fact was true and a non-zero belief that a fact was false, we used the one with highest
belief. Let GG, be the set of correct statements “reachable” by user i (a statement is reachable if there
is a path in the web of trust from user i to at least one user who has made the statement). Then
S; N G; is the set of statements that user ¢ correctly believed were true, so precision; = % and

recall; = ‘ﬂgcf‘ Precision and recall could be traded off by varying the belief threshold, 7. We

present precision and recall results averaged over all users, and at the highest recall by using 7=0.

We now present results of four experiments:

e Comparing Combining Functions. In Table 7.1, we give results for a variety of belief
combination functions. The combination functions maximum and weighted average are the
same as introduced earlier (unless otherwise specified, A is 0.5 for weighted average). With
random, T;; was chosen uniformly from [0,1]. Since the average quality is 0.5, half of the
facts in the system are true, so random led to a precision of (roughly) 0.5. Local means that
a user incorporated only the personal beliefs of her immediate neighbors, and resulted in a
precision of 0.57. Weighted average and maximum significantly outperformed the baseline
functions, and maximum outperformed weighted average. We found that (data not presented)
the precision differed only slightly between users with high quality and users with low quality.
We believe this is because a low quality user would still have good combined beliefs if all of

her neighbors had good combined beliefs.

104

1

0.8
0.6
04 |

Average Precision

02t

0 Maximum ——
1 Weighted Average — =~

0

0O 02 04 06 08 1
Average Population Quality

Figure 7.3: Average precision (o) for maximum and weighted average.

e Varying the Population Quality. It is important to understand how the average precision is

affected by the quality of the users. We explored this by varying u, the average population
quality (see Figure 7.3). Overall, maximum significantly outperformed weighted average
(p < 0.01), with the greatest difference at low quality. This may be due to the experimental
set up, in which the accuracy of the trust depends on the quality of the user making the
statement of trust. At low p, there are few users with high quality, which will be well trusted
on average, but the trust in them will be very noisy due to the overall low average quality.
With maximum, each user needs just one path of high trust between herself and the good
user. With weighted average, the few high trust paths are overwhelmed by the significantly
larger number of low trust and simply noisy paths, resulting in too much uncertainty. Another
way to look at it is that maximum filters out all noise by considering only the most trusted
opinion, while weighted average incorporates all opinions. When the average quality of the
users is high, the two should be similar, but when the average quality is low, maximum’s
ability to filter information allows it to produce consistently better results. Whether this is a
phenomenon of the simulation or one which will be reflected in the real world remains to be

seen.

We also explored the effect of varying A for weighted average. In Figure 7.4, we see that

A had only a small effect on the results. We found that the better the population, the lower

105

1 T o e
§ 08¢} 1
5
] i]
£ 0.6
2@ 04 p :
g . ALambda=01 ——
< 02 /lambda=05 = |
0 : . Lambda=0.9 — ~

0O 02 04 06 08 1
Average Population Quality

Figure 7.4 Effect of A on the precision when combining with weighted average.

A should be, which makes sense because in this case the user should put high trust in the
population. Because maximum seemed to consistently outperform weighted average, and
has the additional advantage of being cycle-indifferent and producing absolute beliefs, we

restricted the remaining experiments to it.

e Good and Bad Users. To measure the robustness of the network to bad (or simply clueless)
users, we selected user qualities from two Gaussian distributions, with means of 0.25 (bad)
and 0.75 (good) (both had the same standard deviation as earlier, 0.25). We varied the fraction

of users drawn from each distribution.

We found the network to be surprisingly robust to bad users (see Figure 7.5). The average
precision was very high (80-90%) when only 10-20% of the users were good. Consider also
the network for which the fraction of good people is 0.5. This network has the same average
population quality as the network used for Table 7.1, except in this case the population is
drawn from a bimodal distribution of users instead of a unimodal distribution. The result is a
higher precision, which shows that it is better to have a few good users than many mediocre

ones.

e Varying Trust Estimation Accuracy. We also investigated how accurate the trusts must be

106

Average Precision

0.5 1 1 1 1
0 02 04 06 08 1

Noise in estimation of trust

Figure 7.5: Precision for various fractions of good people in the network, using maximum belief
combination.

in order to maintain good quality beliefs. We let the trust noise parameter be the same for
all users (6;; = ¢) and varied § (see Equation 7.8). Note that when 6 = 0, ¢;; was ~;, and
when § = 1, t;; was chosen uniformly from [0,1]. Figure 7.6 shows the average precision
for various values of 4. Even with a noise level of 0.3, acceptable precision (>80%) was

maintained.

7.5.2 Experiments with the BibServ Bibliography Server

We have implemented our belief and trust combination methods in our BibServ system, which is
publicly accessible at www.bibserv.org. BibServ is a bibliography service that allows users to search
for bibliography entries for inclusion in technical publications. Users may upload and maintain their

bibliographies, create new entries, use entries created by others, and rate and edit any entry.

Why Bibliographies?

We felt that bibliographies have many characteristics that make them a good starting point for our
research into collective knowledge. The bibliography domain is simple, yet gives rise to all of the
issues of information quality, relevance, inconsistency, and redundancy that we desire to research.

The BibServ beta site currently has 127 users, drawn mainly from the UW computer science depart-

107

Average Precision

0.5 1 1 1 1
0 02 04 06 08 1

Fraction of Good Users

Figure 7.6: Effect of varying the quality of trust estimation.

ment and IBM Almaden, and half a million entries, of which 19250 were entered by the users.

Implementation.

BibServ is implemented as a centralized server, so we chose to store the merged trusts T and compute
the merged beliefs as needed. This requires O(NM) space. Since there are many more bibliography
entries than users, this is much less than the O(M?) space that would be required if we instead stored
the merged beliefs.

By our definition, a user’s merged belief in a bibliography entry represents the quality and rel-
evance of that entry to them. Hence, search results are ordered by belief.# The computation of
merged trusts and beliefs is implemented in SQL and, in the case of beliefs, is incorporated directly
into the search query itself. The overhead of computing beliefs is typically less than 10% of the time
required to perform the query itself. Experiments were performed using weighted average (A = 0.5)

as well as maximum as belief combination functions.

Belief as Quality and Relevance.

The relation of belief combination to BibServ is as follows. When performing a search on BibSeryv,
a user presumably is looking for a good bibliographic entry (e.g., one that has all of the important

fields filled in correctly) that is related to her own field of study. Our concept of “belief” corresponds

108

to this — a good and relevant entry should have high belief. We treat each entry as a statement. Users
may set their beliefs explicitly, and we implicitly assume a belief of 1.0 for any entry in their personal
bibliography (unless otherwise explicitly rated). This forms the vector b for each entry. BibServ
users are also presented with a list of other users whom they may rate. A high rating is intended
to mean they expect the user to provide entries which are high quality and relevant. This forms the

trust matrix T.

Experimental Results.

We asked BibServ users to think of a specific paper they were interested in, and use BibServ to
search for it using keywords. We returned the search results in random order, and asked the user
to rate each result for quality (0-5) and relevance (either “yes, this is the paper | was looking for”
or “no, this is not”). We required the user to make the search general enough to return at least 5
entries, and to rate them all. We used two metrics to evaluate the results. The first is whether there
was a correlation between beliefs and either the rated quality or relevance of the entries. In many
cases, such as ordering search results, we only care whether the best % results may be determined
by belief. We thus calculated the ratio of the average rating of the top & results (ordered by belief)
vs. the average rating of all results. Unfortunately, we could do this experiment with only a small
number of users. The data set consists of 405 ratings of quality and relevance on 26 searches by 13
users. The average user involved in the study specified 9 trusted users. Because the results are based
on a small quantity of data, they should at best be considered preliminary.

The highest correlation was obtained with weighted average, which produced beliefs that had a
correlation of 0.29 with the quality ratings (A = 0.03). The other correlations were 0.10 (weighted
average vs. relevance), 0.16 (maximum vs. quality), and -0.01 (maximum vs. relevance). These
results are not as positive as we had hoped for. Many factors can contribute to a low correlation, such
as having little variance in the actual quality and relevance of the entries. Currently, almost all of the
entries in BibServ are related to computer science, and all of the users are computer scientists, so
the web of trust gives little predictive power for relevance. We expect that as BibServ accumulates

users and publications on more varying topics, the correlation results will improve.

The average ratio of the top & results to the rating of all results (across different searches) for

109

relevance ranged from 1.2 to 1.6 for a variety of £ (1-5) and for either belief combination function.
The average ratio ranged from 0.96 to 1.05 for quality. The ratio rapidly tended toward 1.0 as &
increased, indicating that, while belief was a good indicator for relevance, the data contained a lot
of noise (making it possible only to identify the very best few entries, not order them all). This is
consistent with the low relevance correlation found above.

The most interesting result of these experiments was with regard to A. We found that the best
results when measuring beliefs vs. quality ratings were when A was very small, though still non-
zero. On the other hand, the best results for relevance were when A was very large, though not
equal to one. This indicated that 1) Most users shared a similar metric for evaluating the quality of
a bibliography entry, and 2) Users had a widely varying metric for evaluating an entry’s relevance.
The best A was not 0 or 1, indicating that both information from others and personalized beliefs

were useful.

7.6 Rdated Work

The idea of a web of trust is not new. As mentioned, it is used by Epinions for ordering product
reviews. Cryptography also makes use of a web of trust to verify identity [12]. In Abdul-Rahman’s
system, John’s trust in Jane, and John’s trust in Jane’s ability to determine who is trustworthy, are
separate, though discrete and only qualitatively valued [1]. Such a separation would be interesting
to consider in our framework as well.

The analog of belief combination for the World-Wide Web is estimating the quality and rele-
vance of Web pages. Information retrieval methods based solely on the content of the page (such as
TFIDF [67]) are useful, but are outperformed by methods that also involve the connectivity between
pages [16][75][99].

Gil and Ratnaker [52] present an algorithm that involves a more complex, though qualitative,
form of trust based on user annotations of information sources, which are then combined. One
shortcoming of such an approach is that it derives values of “trustworthiness” that are not person-
alized for the individual using them, requiring all users — regardless of personal values — to agree
on the credibility of sources. Secondly, by averaging the statements of many users, the approach is

open to a malicious attacker who may submit many high (or low) ratings for a source in order to hide

110

its true credibility. By employing a web of trust, our approach surmounts both of these difficulties
(assuming users reduce their trust in a user that provides poor information).

Kamvar et. al’s EigenTrust algorithm [68], which computes global trusts as a function of local
trust values in a peer-to-peer network, is very similar to our probabilistic interpretation of trusts
presented in section 7.3. One key difference is that we allow trusts and beliefs to vary; they are per-
sonalized for each user based on her personal trusts. In contrast, EigenTrust computes a global trust
value (similar to PageRank) and emphasizes security against malicious peers who aim to disturb this
calculation.

Social network algorithms have been applied to webs of trust in order to identify users with high
network influence [33][114]. Applying the same methods to the CKB’s web of trust may prove
fruitful in identifying useful contributors, highly respected entities, etc. Also in a similar vein is the
ReferralWeb project, which mines multiple sources to discover networks of trust among users [71].
Also interesting is collaborative filtering [112], in which a user’s belief is computed from the beliefs
of users she is similar to. This can be seen as forming the web of trust implicitly, based solely on

similarity of interests.

111

Chapter 8

CONCLUSION

Knowledge acquisition is the key bottleneck preventing the wider spread of Al systems. Both
current approaches to it — manual and automatic — have limitations that are hard to overcome. The
Internet makes possible a new alternative: building knowledge bases by mass collaboration. While
this approach can greatly reduce the time and cost of developing very large knowledge bases, it raises
problems of quality, consistency, relevance, scalability and motivation. In this thesis, we examined
these issues and proposed solutions to them. We developed an architecture which interacts with
users and contributors to answer questions from users and update knowledge from contributors.
We introduced Markov logic networks, a representation language that combines probability with
first-order logic. We also demonstrated methods for combining structural information, and using a
web of trust when there is a lack of training data. Throughout, we have demonstrated the utility of
collective knowledge bases and the various methods through experiments in real-world domains.

In the next two sections, we review the contributions made by this thesis, and outline some

directions for future work.

8.1 Contributions of this Thesis

Collective knowledge is a nascent field with many unsolved problems. This dissertation makes five
significant contributions to the field, bringing the construction and use of CKBs closer to practical
reality.

The first contribution is the development of an architecture for collective knowledge bases that
addresses the problems of quality, consistency, relevance, scalability and motivation (Chapter 4). It
uses a close interaction between users and contributors to keep the knowledge relevant. Inconsis-
tency is handled by using probabilistic reasoning, and the quality of the knowledge is maintained by

using machine learning based on user feedback. The algorithms employed scale well, and allow the

112

assignment of credit to useful contributors, thus enabling a variety of forms of motivation.

The second contribution is the development of Markov logic networks (MLNSs), a novel rep-
resentation language that combines the full power of first-order logic and probability in a simple
framework (Chapter 5). The representation supersedes existing techniques, which are restricted to
subsets of first-order logic (typically Horn clauses or description logic). We showed how to perform
learning and inference with MLNSs, and demonstrated their use with experiments. Due to their clean
handling of noisy and inconsistent knowledge, Markov logic networks are a particularly appropriate
representation for collective knowledge bases.

Our third contribution is a technique for combining structure information from multiple experts.
Collective knowledge bases should be able to accept knowledge of various forms, one of which
could be structural information (i.e dependencies between concepts). The ability to combine this in-
formation from multiple (potentially conflicting) experts is thus a useful development for collective
knowledge bases.

The fourth contribution is a framework for inferring the quality of contributors by using a web
of trust. In many domains, we will not have enough (or any) training data with which to determine
the quality of the experts. In this case, a web of trust may be used. We presented two methods for
computing trusts, which need only local information, and showed a correspondence between them.

The final contribution is a set of experiments that demonstrate the utility of collective knowledge
bases and associated techniques. In the printer domain, we showed that combining the (very noisy)
knowledge of four experts into a collective knowledge base outperformed any individual expert or
pooling the experts. We also showed, in a synthetic domain, that the collective knowledge base
performs significantly better than pooling the experts, and that the time required for inference grew
sub-linearly in the size of the collective knowledge base. We found similar results for a collective
knowledge base consisting of only the structure of a domain. Our experiments with Markov logic
networks showed that they outperform propositional methods, or methods that use logical reasoning
alone. The improvements obtained by Markov logic networks became even more significant when
there was missing information.

Thus, we have promising evidence to conclude that collective knowledge bases, using Markov
logic networks as their representation, can handle the issues of quality, consistency, and scalability.

We believe they have significant potential for use on the Internet.

113

8.2 Future Work

Though much has been accomplished, there are also many directions for future work. In this section,

we identify some of these, categorized by the contribution to which they apply.

8.2.1 Architecture

Although the architecture informs experts of the usefulness of their knowledge, we have not yet
developed techniques for guiding contributors to where new knowledge would be most useful. By
using value of information techniques [63], we may be able to find gaps in the knowledge base
that have the highest (expected) utility when filled. Similarly, we would like to investigate the use
of machine learning techniques to automatically propose refinements of knowledge. Such refine-
ments could be suggested to the contributor who provided the knowledge, or alternatively, to other
contributors. This could lead to multiple contributor “roles”: knowledge creator, editor, etc.

In Chapter 4, we gave an algorithm for credit assignment. The algorithm is just one of many
possible; studying these is one direction for future work.

In this work, we implicitly assumed that all contributors and users use the same vocabulary.
This is unlikely to be true in a real system. We would like to automatically translate between the
ontologies used by different contributors, possibly building on work such as that by Doan et al.
([30]) and Dou et al. ([34]).

8.2.2 Markov logic networks

Because Markov logic networks are a novel representation, there are many directions in which they
may be further developed.

We plan to scale up inference in MLNs. Our current implementation uses the simplest form of
Markov Chain Monte Carlo (MCMC) for inference (i.e., Gibbs sampling). Conveniently, MLNs
may make use of any advances in Markov network inference. Of particular interest would be ad-
vanced MCMC techniques, such as the Swendsen-Wang algorithm [37]. For certain special cases,
efficient graph-cut algorithms [55] may be used instead. By automatically identifying special cases
and applying the best algorithm, MLNs can become a useful, general tool for probabilistic and

logical inference. We envision MLNs being used similarly to databases: By supplying a standard,

114

powerful language for representing and manipulating data, databases have enabled the “front-end”
to remain constant while improving the optimizations used in the “back-end”. Similarly, MLNs’
representation is powerful enough that the front-end may remain constant while the back-end is

advanced by using optimization of special cases and recent developments in inference algorithms.

For the purposes of inference, we form the ground Markov network that that includes all nodes
which may affect the query node. We plan to explore methods that only instantiate portions of
this graph — those that are most likely to affect the answer. For example, we could instantiate
a relevant subgraph, and use MCMC to sample the probability distribution entailed by this graph.
Alternatively, each MCMC sample may be over a different subgraph. Such techniques will be

especially useful in infinite domains.

Our use of inductive logic programming (ILP) methods with MLNs was very preliminary. lde-
ally, ILP methods would be fully incorporated into the learning process of MLNSs, for the purposes
of feature induction and knowledge base refinement. In particular, the ILP structure learning al-
gorithms should have a function of the likelihood or pseudo-likelihood as the candidate scoring

function.

8.2.3 Merging structure information

Recall that for merging structure information, we used a generative model for experts. This model
was very simplistic. Clearly, experts do not add, remove, and reverse edges independently and with
uniform probability. We plan to refine our model of experts to incorporate more complex behaviors.
For example, one common mistake is to consider a node to be directly dependent on another when in
fact it is only indirectly dependent through a third node. Further, some nodes are easier to understand
and some are harder; edge errors are likely to be more common when the edges involve nodes that

are harder to understand.

So far, we have only applied our approach to Bayesian networks. We would like to apply it to
other representations (e.g. Markov networks) and also extend it to relational domains. In particular,
it would be very useful to extend the techniques to merging “structural” information about Markov

logic networks from multiple users.

115

8.2.4 Trust

In our work on trust, we assumed that statements are independent. We would like to investigate how
dependencies between statements may be handled. For example, if we consider a taxonomy to be
a set of class-subclass relationships, and consider each relationship to be an independent statement,
then merging such taxonomy beliefs is not likely to lead to a useful taxonomy. We would like to be
able to merge structural elements like taxonomies; Doan et al. [31, 29] may provide useful insights

into possible solutions.

The path algebra and probabilistic interpretations were shown to be nearly identical, and the
probabilistic interpretation is a generalization of PageRank. Considering PageRank works so well
on Web pages, it would be interesting to apply the web of trust ideas ranking Web pages. For
instance, we might find it useful to replace the sum with a maximum in PageRank. In general,
we would like to consider networks in which not all users employ the same belief combination
function, perhaps by modifying the global interpretation in order to relax the requirements put on

the concatenation and aggregation functions.

There are many tradeoffs between computation, communication, and storage requirements for
the different web of trust architectures (peer to peer, central server, hierarchical, etc.), algorithms
(semi-naive, Warshall, etc.), and strategies (merge beliefs on demand, store all beliefs, etc.). We
would like to formalize these tradeoffs for better understanding of the efficiency of trust combina-

tion.

We considered only single-valued beliefs and trusts. In general, a belief could actually be multi-
valued, representing a magnitude in multiple dimensions, such as “truth”, “importance”, and “nov-
elty”. We would also like to consider multi-valued trusts, such as those used by Gil and Ratnakar
[52], which may represent similar dimensions as beliefs (but applied to users). It may be possible
to combine beliefs and trusts into one concept, ‘opinion’, which may be similarly applied to both
statements and users. Similarly, we would also like to allow users to specify topic-specific trusts.
With topic-specific trusts, the normalized sum combination function would probably be similar to

guery-dependent PageRank [113].

116

8.2.5 General

We have made no distinction between poor, low-quality contributors and malicious, intentionally
bad ones. With enough training data, both may be discovered and handled, using machine learning
techniques. However, it is likely that malicious contributors will act in a characteristic, detectable
manner. Explicitly detecting and overcoming maliciousness could reduce the load on the machine
learning algorithms, and the amount of data needed.

Though we have looked at input in the form of logical statements (either Horn clauses or Markov
logic networks), and also structural information (dependencies between variables in a domain), there
are still other forms of knowledge which we would like a collective knowledge base to accept.
For example, simply clustering together predicates and variables that tend to be related could be
useful, particularly in structural learning. We have looked at meta-information such as trust, but
other forms of meta-information (e.g., domain size estimates, missing information, known experts,
external references to knowledge in the collective knowledge base, etc.) could be equally useful.
The ultimate goal is a collective knowledge base that accepts all forms of input, and uses them all
in inference and learning.

Finally, although we have built a simple test system (BibServ), and have performed some ex-
periments with volunteers, we have not yet created a large-scale collective knowledge base. In the
near future, we plan to build a public Web site which will use all of the techniques described in this
dissertation to enable contributors to build a large collective knowledge base. We look forward to

the research challenges, seen and unforeseen, which await us.

117

END NOTES

1.1 Our description of Cyc is based on the available publications about it, made primarily in its

founding years. Cyc has developed since, but these developments are not publicly available.

1.2 By one count, there are over 100,000 unique users who have replied to postings in newsgroups

related to computers in the last year alone.

2.1 Arange-restricted clause is one in which every variable in the head appears at least once in the

body.

2.2 For the remainder of this thesis, we will always assume that conditional probability distributions

are specified using CPTs.

2.3 This is true only if we assume all training data instances are independent of each other.

3.1 From http://commonsense.media.mit.edu.

3.2 By “flatten”, we mean to convert relational knowledge into a propositional form. For example,
if the knowledge base contains the fact Friends(Anna, Bob), this can be flattened to a single
proposition Friends_Anna_Bob. Difficulties arise if the knowledge base contains facts such
as Vx Friends(Anna, x), in which case flattening results in many propositions, one for each

person in the knowledge base.

3.3 Note that, although this learning process involves constructing a network for each training ex-
ample, these networks only need to be constructed once. When there are missing values in the
training set, the time spent constructing the BNs is insignificant compared to the time spent

iterating with EM [77].

4.1 Rules for a topic are defined as rules whose consequent is a predicate belonging to that topic.

118

4.2 Experiments were run on a 1Ghz Pentium 3 computer with 512Mb of RAM.

4.3 Awvailable at http://www.cs.huji.ac.il/labs/compbio/Repository/networks.html.

4.4 This can be higher than the average accuracy of the experts, if different experts answer different

questions, because an unanswered query is counted as answered incorrectly.

5.1 In practice, we have found it useful to augment the MLN with a unit clause for each predi-
cate. Roughly speaking, the weight of a unit clause can capture the marginal distribution of
the corresponding predicate, leaving the weights of the non-unit clauses free to model only

dependencies between predicates.

5.2 This translation is the same as would be used to convert a Bayesian network to a Markov
network. A Bayesian network is defined by a product of conditional probabilities, and a
Markov network is defined by an exponential of a sum of weights. The latter can be rewritten
as a product of exponentiated weights. Thus, if each weight is the logarithm of a conditional

probability, the Markov network will be equivalent to a product over conditional probabilities.

5.3 Use of SQL aggregates requires that their definitions be imported into the MLN.

5.4 If a query predicate contains variables, it is replaced by all its possible groundings.

5.5 http://www.cs.washington.edu/homes/kautz/walksat/

5.6 Inspection reveals that the smaller drop-offs in precision at very low recalls are due to students

who graduated or changed advisors after co-authoring many publications with them.

6.1 The a posteriori estimates, after we have seen E, can be different for different (7, j). However,
making the usual parameter independence assumption [61], observation of one e;; does not
affect estimation of any other. (Notice that, in our treatment, £ is composed of exactly one

sample of each e;; variable.)

119

6.2 Sequential search performed slightly better than Powell’s method, and is the one we report.

Both methods take negligible time compared to the structure learning.

6.3 This is equivalent to the negative log-likelihood on these samples, minus the entropy of the true

distribution estimated from the samples.

6.4 Notice that the cross-validation for x was performed with structure search, while for the param-
eters of our expert model it was only performed with parameter learning, the results being

used for structure learning as well.

6.5 Notice K-L distances for “true” are not zero, because they refer to learning starting from the

true structure.

7.1 Trust is, of course, a complex and multidimensional phenomenon, but we make a start by em-

bodying it in a single numeric coefficient per user-source pair.

7.2 While this may not guarantee the probabilistic soundness of the resulting beliefs, we believe it is
necessary for scalability on the size of the Web, and our experiments indicate it still produces

useful results. Scalable probabilistic approximations are a direction for future research.

7.3 The trust relationships can be obtained by crawling the site, as described in Richardson and
Domingos [114]. Although the full graph contains 75,000 users, we restricted our experiments

to the first 5000 users (by crawl-order), which formed a network of 180,000 edges.

7.4 Incorporating traditional measures of query relevance (for instance, TFIDF) may lead to a better
ordering of entries. One probabilistic technique for this is that of query-dependent PageRank
[113].

120

[1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

BIBLIOGRAPHY

A. Abdul-Rahman and S. Hailes, “A distributed trust model,” in Proceedings of New Security
Paradigms Workshop, 1997, pp. 48-60.

R. Agrawal, S. Dar, and H. V. Jagadish, “Direct transitive closure algorithms: Design and
performance evaluation.” ACM Transactions on Database Systems, vol. 15, no. 3, pp. 427-
458, 1990.

R. Agrawal and H. V. Jagadish, “Multiprocessor transitive closure algorithms.” in Proceed-
ings of the International Symposium on Databases in Parallel and Distributed Systems,
Austin, TX, 1988, pp. 56-66.

A. Agresti, Categorical Data Analysis. New York, NY: Wiley, 1990.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algo-
rithms. Reading, MA: Addison-Wesley, 1974.

C. Anderson, P. Domingos, and D. Weld, “Relational Markov models and their application
to adaptive Web navigation,” in Proceedings of the Eighth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. Edmonton, Canada: ACM Press, 2002,

pp. 143-152.

F. Bacchus, Representing and Reasoning with Probabilistic Knowledge. Cambridge, MA:
MIT Press, 1990.

F. Bancilhon, “Naive evaluation of recursively defined relations.” in On Knowledge Base

Management Systems (Islamorada), 1985, pp. 165-178.

R. Bellman and M. Giertz, “On the analytic formalism of the theory of fuzzy sets.” Informa-

tion Sciences, vol. 5, pp. 149-156, 1973.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

121

T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific American, vol.

284, 0. 5, pp. 34-43, 2001.

J. Besag, “Statistical analysis of non-lattice data,” The Statistician, vol. 24, pp. 179-195,
1975.

M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,” in Proceedings of

the 1996 IEEE Symposium on Security and Privacy, Oakland, CA, 1996, pp. 164-173.

L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, pp. 123-140, 1996.

S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web search engine,” in
Proceedings of the Seventh International World Wide Web Conference. Brisbane, Australia:

Elsevier, 1998.

B. Carre, Graphs and Networks. Oxford: Claredon Press, 1978.

S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan, “Au-
tomatic resource compilation by analyzing hyperlink structure and associated text,” in Pro-
ceedings of the Seventh International World Wide Web Conference. Brisbane, Australia:

Elsevier, 1998, pp. 65-74.

D. M. Chickering and D. Heckerman, “Efficient approximations for the marginal likelihood

of Bayesian networks with hidden variables,” Machine Learning, vol. 29, pp. 181-212, 1997.

C.K.Chowand C. N. Liu, “Approximating discrete probability distributions with dependence
trees,” IEEE Transactions on Information Theory, vol. 14, pp. 462-467, 1968.

S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the Third
Annual ACM Symposium on Theory of COmputing, 1971, pp. 151-158. [Online]. Available:
http://theory.lcs.mit.edu/ dmjones/STOC/stoc71.html

122

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

G. F. Cooper, “The computational complexity of probabilistic inference using Bayesian belief

networks.” Artificial Intelligence, vol. 42, no. 2-3, pp. 393-405, 1990.

V. S. Costa, D. Page, M. Qazi, , and J. Cussens, “CLP(BN): Constraint logic programming
for probabilistic knowledge,” in Proceedings of the Nineteenth Conference on Uncertainty in

Artificial Intelligence. Acapulco, Mexico: Morgan Kaufmann, 2003, pp. 517-524.

C. Cumby and D. Roth, “Feature extraction languages for propositionalized relational learn-
ing,” in Proceedings of the IJCAI-2003 Workshop on Learning Statistical Models from Rela-
tional Data. Acapulco, Mexico: 1JCAII, 2003, pp. 24-31.

J. Cussens, “Loglinear models for first-order probabilistic reasoning,” in Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden: Morgan

Kaufmann, 1999, pp. 126-133.

J. Cussens, “Individuals, relations and structures in probabilistic models,” in Proceedings of
the 1JCAI-2003 Workshop on Learning Statistical Models from Relational Data. Acapulco,
Mexico: IJCAII, 2003, pp. 32-36.

J. Cussens, “Parameter estimation in stochastic logic programs.” Machine Learning, vol. 44,

no. 3, pp. 245-271, 2001.

L. De Raedt and L. Dehaspe, “Clausal discovery,” Machine Learning, vol. 26, pp. 99-146,
1997.

S. Della Pietra, V. Della Pietra, and J. Lafferty, “Inducing features of random fields,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 380-392, 1997.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data
via the EM algorithm,” Journal of the Royal Statistical Society, Series B, vol. 39, pp. 1-38,
1977.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

123

A. Doan, P. Domingos, and A. Halevy, “Reconciling schemas of disparate data sources: A
machine-learning approach,” in Proceedings of the 2001 ACM SIGMOD International Con-
ference on Management of Data. Santa Barbara, CA: ACM Press, 2001, pp. 509-520.

A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Halevy, “Learning to match
ontologies on the Semantic Web,” VLDB Journal, 2004, to appear.

A. Doan, J. Madhavan, P. Domingos, and A. Halevy, “Learning to map between ontologies
on the Semantic Web,” in Proceedings of the Eleventh International World Wide Web Con-

ference. Honolulu, HI: ACM Press, 2002, pp. 662-673.

P. Domingos and M. Pazzani, “On the optimality of the simple Bayesian classifier under

zero-one loss,” Machine Learning, vol. 29, pp. 103-130, 1997.

P. Domingos and M. Richardson, “Mining the network value of customers,” in Proceedings
of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. San Francisco, CA: ACM Press, 2001, pp. 57-66.

D. Dou, D. McDermott, and P. Qi, “Ontology translation on the Semantic Web,” in Proceed-
ings of the International Conference on Ontologies, Databases and Applications of Seman-

tics, 2003.

S. Dzeroski, L. de Raedt, and S. Wrobel, Eds., Proceedings of the KDD-2002 Workshop on
Multi-Relational Data Mining. Edmonton, Canada: ACM Press, 2002.

S. Dzeroski, L. de Raedt, and S. Wrobel, Eds., Proceedings of the Second International
Workshop on Multi-Relational Data Mining. Washington, DC: ACM Press, 2003.

R. Edwards and A. Sokal, “Generalization of the Fortuin-Kasteleyn-Swendsen-Wang repre-

sentation and Monte Carlo algorithm,” in Physics Review D, vol. 38, 1988, pp. 2009-2012.

124

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked, S. Soderland, D. S.
Weld, and A. Yates, “Web-scale information extraction in KnowltAll,” in Thirteenth Interna-

tional World Wide Web Conference, 2004, pp. 100-110.

M. Frauenfelder, “Revenge of the know-it-alls: Inside the Web’s free-advice revolution,”

Wired, vol. 8, no. 7, pp. 144-158, 2000.

S. French, “Group consensus probability distributions: A critical survey,” in Bayesian Statis-
tics 2, J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, Eds. Amsterdam,
Netherlands: Elsevier, 1985, pp. 183-202.

Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,” in Proceedings
of the Thirteenth International Conference on Machine Learning. Bari, Italy: Morgan

Kaufmann, 1996, pp. 148-156.

N. Friedman, “The Bayesian structural EM algorithm,” in Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence. Madison, WI: Morgan Kaufmann,

1998, pp. 129-138.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer, “Learning probabilistic relational mod-
els,” in Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence.

Stockholm, Sweden: Morgan Kaufmann, 1999, pp. 1300-1307.

A. Gelman and X.-L. Meng, “Simulating normalizing constants: From importance sampling

to bridge sampling to path sampling,” Statistical Science, vol. 13, no. 2, pp. 163-185, 1998.

M. R. Genesereth and N. J. Nilsson, Logical Foundations of Artificial Intelligence. San

Mateo, CA: Morgan Kaufmann, 1987.

C. Genest and J. V. Zidek, “Combining probability distributions: A critique and an annotated
bibliography,” Statistical Science, vol. 1, pp. 114-148, 1986.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

125

L. Getoor and D. Jensen, Eds., Proceedings of the AAAI-2000 Workshop on Learning Statis-
tical Models from Relational Data. Austin, TX: AAAI Press, 2000.

L. Getoor and D. Jensen, Eds., Proceedings of the IJCAI-2003 Workshop on Learning Statis-
tical Models from Relational Data. Acapulco, Mexico: IJCAII, 2003.

L. Getoor, N. Friedman, D. Koller, and A. Pfeffer, “Learning Probabilistic Relational Mod-
els,” in Relational Data Mining, S. Dzeroski and N. Lavrac, Eds. Springer-Verlag, 2001,
pp. 307-333.

L. Getoor, N. Friedman, D. Koller, and B. Taskar, “Learning probabilistic models of link

structure,” Journal of Machine Learning Research, vol. 3, pp. 679-707, 2002.

C. J. Geyer and E. A. Thompson, “Constrained monte carlo maximum likelihood for depen-
dent data,” Journal of the Royal Statistical Society, Series B, vol. 54, no. 3, pp. 657-699,
1992.

Y. Gil and V. Ratnakar, “Trusting information sources one citizen at a time.” in International

Semantic Web Conference, Sardinia, Italy, 2002, pp. 162-176.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds., Markov Chain Monte Carlo in
Practice. London, UK: Chapman and Hall, 1996.

W. R. Gilks, A. Thomas, and D. J. Spiegelhalter, “A language and program for complex
Bayesian modelling,” The Statistician, vol. 43, pp. 169-78, 1994.

D. Greig, B. Porteous, and A. Seheult, “Exact maximum a posteriori estimation for binary

images,” Journal of the Royal Statistical Society, Series B, vol. 51, no. 2, pp. 271-279, 19809.

R. Guha, “Open rating systems,” Stanford Knowledge Systems Laboratory, Stanford, CA,
Tech. Rep., 2003.

126

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

J. Halpern, “An analysis of first-order logics of probability,” Artificial Intelligence, vol. 46,
pp. 311-350, 1990.

M. S. Handcock, “Assessing degeneracy in statistical models of social networks,” Center for
Statistics and the Social Sciences, University of Washington, Seattle, WA, Working Paper 39,
2003.

L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 12, pp. 993-1000, 1990.

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie, “Dependency
networks for inference, collaborative filtering, and data visualization,” Journal of Machine

Learning Research, vol. 1, pp. 49-75, 2000.

D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian networks: The combi-

nation of knowledge and statistical data,” Machine Learning, vol. 20, pp. 197-243, 1995.

D. Heckerman, “A tutorial on learning Bayesian networks,” Microsoft Research, Redmond,

WA, Tech. Rep. MSR-TR-95-06, Mar. 1995.

R. A. Howard, “Information value theory,” IEEE Transactions on Systems Science and Cy-

bernetics, vol. 2, pp. 22-26, 1966.

G. Hulten, D. M. Chickering, and D. Heckerman, “Learning Bayesian networks from depen-
dency networks: A preliminary study,” in Proceedings of the Ninth International Workshop

on Artificial Intelligence and Statistics, Key West, FL, 2003.

M. Jaeger, “Reasoning about infinite random structures with relational Bayesian networks,”
in Proceedings of the Sixth International Conference on Principles of Knowledge Represen-

tation and Reasoning. Trento, Italy: Morgan Kaufmann, 1998.

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

127

M. Jaeger, “Constraints as data: A new perspective on inferring probabilities,” in Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence. Seattle, WA:

Morgan Kaufmann, 2001, pp. 755-760.

T. Joachims, “A probabilistic analysis of the Rocchio algorithm with TFIDF for text catego-
rization,” in Proceedings of the Fourteenth International Conference on Machine Learning

(ICML-97). San Francisco, CA: Morgan Kaufmann, 1997, pp. 143-151.

S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm for reputation
management in p2p networks,” in Proceedings of the Twelfth International World Wide Web

Conference, 2003.

D. Karger and N. Srebro, “Learning Markov networks: maximum bounded tree-width
graphs,” in Symposium on Discrete Algorithms, 2001, pp. 392—-401. [Online]. Available:

citeseer.nj.nec.com/kargerOllearning.html

H. Kautz and B. Selman, “Planning as satisfiability,” in Proceedings of the Tenth European
Conference on Artificial Intelligence. Vienna, Austria: Chichester, UK: John Wiley & Sons,

1992, pp. 359-363.

H. Kautz, B. Selman, and M. Shah, “ReferralWeb: Combining social networks and collabo-

rative filtering,” Communications of the ACM, vol. 40, no. 3, pp. 63-66, 1997.

K. Kersting, “Bayesian logic programs,” Ph.D. dissertation, University of Freiburg, Freiburg,

Germany, 2000.

K. Kersting and L. De Raedt, “Towards combining inductive logic programming with
Bayesian networks,” in Proceedings of the Eleventh International Conference on Inductive

Logic Programming. Strasbourg, France: Springer, 2001, pp. 118-131.

K. Kersting, L. D. Raedt, and S. Kramer, “Interpreting Bayesian Logic Programs,” in Working
Notes of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data,
2000.

128

[75]

[76]

[77]

[78]

[79]

(80]

[81]

(82]

(83]

J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” in Proceedings of the
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. Baltimore, MD: ACM Press,
1998, pp. 668-677.

D. Koller, A. Levy, and A. Pfeffer, “P-Classic: A tractable probabilistic description logic,” in
Proceedings of the Fourteenth National Conference on Artificial Intelligence. Providence,

RI: AAAI Press, 1997, pp. 390-397.

D. Koller and A. Pfeffer, “Learning probabilities for noisy first-order rules,” in Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence. Nagoya, Japan:

Morgan Kaufmann, 1997, pp. 1316-1321.

D. Koller and A. Pfeffer, “Probabilistic frame-based systems,” in Proceedings of the Fifteenth
National Conference on Artificial Intelligence. Madison, WI. AAAI Press, 1998, pp. 580—
587.

C. C. T. Kwok, O. Etzioni, and D. S. Weld, “Scaling question answering to the web,” in
Proceedings of the Tenth International World Wide Web Conference, 2001, pp. 150-161.

K. Lariand S. J. Young, “The estimation of stochastic context-free grammars using the Inside-

Outside algorithm,” Computer Speech and Language, vol. 4, pp. 35-56, 1990.

N. Lavrac and S. Dzeroski, Inductive Logic Programming: Techniques and Applications.

Chichester, UK: Ellis Horwood, 1994,

D. B. Lenat and R. V. Guha, Building Large Knowledge-Based Systems: Representation and
Inference in the Cyc Project. Reading, MA: Addison-Wesley, 1990.

D. V. Lindley, “Reconciliation of discrete probability distributions,” in Bayesian Statistics
2, J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, Eds. Amsterdam,
Netherlands: Elsevier, 1985, pp. 375-390.

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

129

D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimiza-

tion,” Mathematical Programming, vol. 45, no. 3, pp. 503-528, 1989.

J. W. Lloyd, Foundations of Logic Programming. Berlin, Germany: Springer, 1987.

E. Lloyd-Richardson, A. Kazura, C. Stanton, R. Niaura, and G. Papandonatos, “Differentiat-
ing stages of smoking intensity among adolescents: Stage-specific psychological and social

influences,” Journal of Consulting and Clinical Psychology, vol. 70, no. 4, 2002.

A. McCallum, R. Rosenfeld, T. Mitchell, and A. Y. Ng, “Improving text classification by
shrinkage in a hierarchy of classes,” in Proceedings of the Fifteenth International Conference

on Machine Learning. Madison, WI: Morgan Kaufmann, 1998, pp. 359-367.

D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder, “An environment for merging and testing
large ontologies,” in Proceedings of the Seventh International Conference on Principles of

Knowledge Representation and Reasoning. Breckenridge, CO: Morgan Kaufmann, 2000.

R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University Press, 1995.

S. Muggleton, “Stochastic logic programs,” in Advances in Inductive Logic Programming,

L. de Raedt, Ed. Amsterdam, Netherlands: 10S Press, 1996, pp. 254-264.

S. Muggleton, “Learning stochastic logic programs,” in Proceedings of the AAAI-2000
Workshop on Learning Statistical Models from Relational Data, 2000. [Online]. Available:

citeseer.nj.nec.com/muggleton00learning.html

S. Muggleton, “Semantics and derivation for stochastic logic programs,” in Proceedings of

the UAI-2000 workshop on Knowledge-Data Fusion, 2000.

S. Muggleton and W. Buntine, “Machine invention of first-order predicates by inverting res-
olution,” in Proceedings of the Fifth International Conference on Machine Learning. Ann

Arbor, MI: Morgan Kaufmann, 1988, pp. 339-352.

130

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

S. Muggleton, “Inverse entailment and Progol,” New Generation Computing, Special issue

on Inductive Logic Programming, vol. 13, no. 3-4, pp. 245-286, 1995.

K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation for approximate infer-
ence: An empirical study,” in Proceedings of the Fifteenth Annual Conference on Uncertainty

in Artificial Intelligence, 1999, pp. 467-475.

J. Neville and D. Jensen, “Collective classification with relational dependency networks,” in
Proceedings of the Second International Workshop on Multi-Relational Data Mining, S. Dze-

roski, L. de Raedt, and S. Wrobel, Eds. Washington, DC: ACM Press, 2003, pp. 77-91.

R. T. Ng and V. S. Subrahmanian, “Probabilistic logic programming,” Information
and Computation, vol. 101, no. 2, pp. 150-201, December 1992. [Online]. Available:
http://theory.lcs.mit.edu/ iandc/ic92.html

L. Ngo and P. Haddawy, “Answering queries from context-sensitive probabilistic knowledge

bases,” Theoretical Computer Science, vol. 171, pp. 147-177, 1997.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation ranking: Bringing
order to the web,” Stanford University, Stanford, CA, Tech. Rep., 1998.

Parag and P. Domingos, “Collective object identification,” Department of Computer Science
and Engineering, University of Washington, Seattle, WA, Tech. Rep., 2004, http://www.cs.-

washington.edu/homes/pedrod/coi.pdf.

M. Pazzani and D. Kibler, “The utility of knowledge in inductive learning,” Machine Learn-

ing, vol. 9, pp. 57-94, 1992,

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

San Francisco, CA: Morgan Kaufmann, 1988.

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

131

D. Pennock and M. Wellman, “Graphical representations of consensus belief,” in Proceedings
of the Fifteenth Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden:

Morgan Kaufmann, 1999, pp. 531-540.

D. M. Pennack, F. A. Nielsen, and C. L. Giles, “Extracting collective probabilistic forecasts
from Web games,” in Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. San Francisco, CA: ACM Press, 2001, pp.
174-183.

M. P. Perrone and L. M. Cooper, “When networks disagree: Ensemble methods for hybrid
neural networks,” in Artificial Neural Networks for Speech and Vision, R. J. Mammone, Ed.

London, UK: Chapman and Hall, 1993, pp. 126-142.

A. Popescul and L. H. Ungar, “Structural logistic regression for link analysis,” in Proceedings
of the Second International Workshop on Multi-Relational Data Mining, S. Dzeroski, L. de

Raedt, and S. Wrobel, Eds. Washington, DC: ACM Press, 2003, pp. 92-106.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C,
2nd ed. Cambridge, UK: Cambridge University Press, 1992.

A. Puech and S. Muggleton, “A comparison of stochastic logic programs and Bayesian logic
programs,” in Proceedings of the IJCAI-2003 Workshop on Learning Statistical Models from
Relational Data. Acapulco, Mexico: IJCAII, 2003, pp. 121-129.

J. R. Quinlan, “Learning logical definitions from relations,” Machine Learning, vol. 5, pp.

239-266, 1990.

J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann,

1993.

E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary. Sebastopol, CA: O’Reilly, 1999.

132

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

P. Resnick, N. lacovou, M. Suchak, P. Bergstrom, and J. Riedl, “GroupLens: An open archi-
tecture for collaborative filtering of netnews,” in Proceedings of the ACM 1994 Conference

on Computer Supported Cooperative Work. New York, NY: ACM Press, 1994, pp. 175-186.

M. Richardson and P. Domingos, “The intelligent surfer: Probabilistic combination of link
and content information in PageRank,” in Advances in Neural Information Processing Sys-
tems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press,
2002, pp. 1441-1448.

M. Richardson and P. Domingos, “Mining knowledge-sharing sites for viral marketing,” in
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. Edmonton, Canada: ACM Press, 2002, pp. 61-70.

S. Riezler, “Probabilistic constraint logic programming,” Ph.D. dissertation, Universitat Tub-

ingen, 1998.

D. Roth, “On the hardness of approximate reasoning,” Artificial Intelligence, vol. 82, pp.

273-302, 1996.

S. Sanghai, P. Domingos, and D. Weld, “Dynamic probabilistic relational models,” in Pro-
ceedings of the Eighteenth International Joint Conference on Artificial Intelligence. Aca-

pulco, Mexico: Morgan Kaufmann, 2003, pp. 992-997.

T. Sato and Y. Kameya, “PRISM: A symbolic-statistical modeling language,” in Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence. Nagoya, Japan:

Morgan Kaufmann, 1997, pp. 1330-1335.

B. Selman, H. Kautz, and B. Cohen, “Local search strategies for satisfiability testing,” in
Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, D. S.
Johnson and M. A. Trick, Eds. Washington, DC: American Mathematical Society, 1996,
pp. 521-532.

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

133

P. Singh, “The public acquisition of commonsense knowledge,” in Proceedings of the AAAI
Spring Symposium on Acquiring (and Using) Linguistic (and World) Knowledge for Informa-

tion Access. Palo Alto, CA: AAAI Press, 2002.

D. G. Stork, “Using open data collection for intelligent software,” IEEE Computer, vol. 33,
no. 10, pp. 104-106, 2000.

B. Taskar, P. Abbeel, and D. Koller, “Discriminative probabilistic models for relational data,”
in Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence. Ed-

monton, Canada: Morgan Kaufmann, 2002, pp. 485-492.

A. Tversky and D. Kahneman, “Judgment under uncertainty: Heuristics and biases,” Science,

vol. 185, pp. 1124-1131, 1974.

S. Warshall, “A theorem on boolean matrices.” Journal of the ACM, vol. 9, no. 1, pp. 11-12,
1962.

S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications. Cam-

bridge, UK: Cambridge University Press, 1994.

M. Wellman, J. S. Breese, and R. P. Goldman, “From knowledge bases to decision models,”

Knowledge Engineering Review, vol. 7, 1992.

D. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, pp. 241-259, 1992.

134

Appendix A

ADDENDUM TO CHAPTER 4 EXPERIMENTAL SECTION

This appendix contains the instructions which were given to the four computer “experts”, for the

experiment in Section 4.4.2.

A.1 Email Sent to Volunteers

Here’s what | would like you to do. | don’t expect (or want) you to use all of the variables in the
domain. I’m going to give you 30 minutes to write rules. That means, I’d prefer you write fewer,
good rules than cram as many cruddy rules down as you can. Can you please mark your progress
each 15 minutes?

Here’s my suggestion: use some time to glance through the variables to see what all they are
about. Then, choose some sort of area you’d like to concentrate on and go through again marking
all the variables you think are relevant, then put them into rules. If you have time left, you can do a
new area, or make some rules for general areas, or whatever. This is just a suggestion — feel free to
do whatever you want.

Finally, I don’t know how many you can finish in 30 minutes. If 30 seems way too short, please
feel free to go on to like 60 minutes, as long as you keep marking each 15 minutes where you are.
I’m looking for about a third to half the variables being used.

Thanks again, | really do appreciate it! Matt

135

A.2 Directions Given to Volunteers

This document describes the Windows 95 printer domain task. Please feel free to consult any source of
knowledge (e.g. the internet, your printer manual, etc...) in performing the task. In the table below you'll
find alist of variables (such as DskLocal), and a description of what each variable means (“Is there
enough local disk space”). Also supplied are the meanings for the variable in the case of it being true or
false. In almost all cases, the “True” meaning is the good meaning (e.g. Thereis enough local disk space).
There are anumber of mostly observation type variables, a number of intermediate variables, and afew
final result variables. Your job isto write aknowledge base (a set of rules) that describes some of the
printer domain. Rules must all be of the form:

pantl A~ ant2 ~ ...~ antN => cons

Where antl...antN are the N antecedents, and cons is the consequent, and the meaning is“l am p
confident that if antl and ant2 and ... and antN, then cons’. An antecedent may be any of the variables,
possibly negated. The consequent may be any of the variables, but must be in the positive sense. A rule
may have any number of antecedents, from 0 to the number of variablesin the domain. Each ruleis also
prefixed by p, anumber from 0 to 1, which is your confidence that you got the rule right. Hereis an
examplerule:

0.8 PrtPaper ™ !PrtSpool => Lcl K

Which means (see table below) “If there is paper in the paper tray, and you are not using print spooling,
then the local print connection isworking, and | am 80% confident that this rule is accurate”. (Obviously
abogus rule, but | wouldn’t want to bias you with somereal rules, now would 1?!).

Assume that each variableisin its false state, unless some rule makes it true. For example, if you don’t
have any rules that imply “PrtPaper” then you are implicitly stating that the printer is always out of paper.
Note, sometimes some things have some probability of being true without a cause (a prior probability of
being true). For instance, we know smoking causes cancer, but how often is smoking itself true? For this,
remember that it is okay to write rules without antecedents, such as “0.3 => smoking”. For these rules, the
number p that you provideis your estimate of the probability that consequent is true (as opposed to your
confidence that smoking is always true)

In some cases, it may be hard to tell if you should write (A => B) or (B => A). Please try to write the rules
inacausa direction -- e.g. if you write A => B it should generally mean that A causes B. For instance,
"smoking => cancer" is correct while "cancer => smoking" is not.

Finally, please try to use intermediate variables to simplify your rules when you can. | recommend writing
down the variables on a piece of paper in roughly the order you think they are from cause to effect, then
crossing them out or drawing lines between them as you write rules, to help ensure you use most, if not
all, of them, and that your logic statements can link together to form longer chains of reasoning.

There are two ways to think of things -- 1) The printer works and write rules explaining when things will
fail, or 2) The printer doesn't work and write rules explaining when it will. The first is maybe more natural
since we are used to printers generally working, but for this task, you have to think of things in the second
way. Since everything is false, by default it means the printer doesn't work, and you have to explain when
it will work.

Finally, note that if you want to say “if A or B then C”, you can do this by just writing two rules, “A =>
C” and “B => C” —rules are automatically or’d together.

136

Thank you so much for helping me out. For any questions, please email me!
Matt Richardson (mattr@cs)

Note, please be careful with Net Pri nt , which, despite the name, means you are printing locally when it is
true, and printing over the network when it is false. Please be careful to useit correctly!. Therearea
number of variables who's names are confusing, like G bl dPS, which is true when the output is not
garbled, and the problem variables, which are true when there is no problem. It is always the case that
the True (T) sense of thevariableisthe “good” meaning for it and the False (F) senseisthe®bad”
meaning. (except in one or two cases like whether you are using DOS or Windows).

Variable Short Description T F Longer Description
Easily Observable
. Greater Less than 2 Is there more than 2 Megabytes free on the
DskLocal Local Disk Space than 2 Mb Mb local hard drive?
PrtSpool Print Spooling Enabled Disabled Is Printer Spooling enabled?
Is the local printer cable (the one running from
PrtCbl Local Printer Cable Connected Loose the parallel port in the back of the computer to
the printer) firmly connected?
PrtOn Printer On and Online Yes No Is the printer on and ready (online)?
PrtDriver Correct Driver Yes No Is the correct printer driver installed?
PrtPaper Printer Paper Supply Has Paper No Paper Does the printer have paper?
DrvSet Driver Configuration Correct Incorrect Is the driver properly configured?
No .
NetPrint Printing Locally Ygs (Local (Network I; the printer connected by a local cable
printer) printer) directly to the computer or over the network?
PrtPath Net Printer Pathname Correct Incorrect Networked printer path is correct
PrtSel Correct Printer Selected Yes No ;?:ti ry?ou chosen to print to the correct
) Greater Less than Does the printer have more then 2 Megabytes
PrtMem Printer Memory than 2 Mb 2Mb of memory?
For a local printer, is the correct port (parallel
PrtPort Correct Local Port Yes No port) chosen?
DSApplctn Print Environment DOS Windows Are you trying to print from DOS or Windows?
PrtMpTPth Port Mapping to Path Correct Incorrect LSO:?:CTIT;aPPIng from port to printer path
PgOrnttnOK Page Orientation Correct Incorrect Did it print in the correct orientation g
landscape vs. portrait)?
PrntngArOK Printer Printing Area Correct Incorrect Does t_he document fitin the area the printer
can print?
ScrnFntNtPrntrFnt Screen Matches Printer Yes No Do the f_onts onscreen match the fonts that
were printed?
)) . Are the graphics settings in the driver
GrphcsRItdDrvrSttngs Driver Config- Graphics Correct Incorrect configuration correct?
Are you using True Type Fonts? (special fonts
TrTypFnts True Type Fonts Yes No that can be scaled to any size)
Fntinstlitn Font Installation Verified Faulty Are fonts properly installed?
PrntrAccptsTrtyp Printer Accepts Truetype Yes No Does the printer accept True Type fonts?
AppDIGNTm App Data Generation Fast Too Long Does the application take the right amount of

Enough

time to send the data to the printer

137

HrglssDrtnAftrPrnt Hourglass Duration Fast Too Long How long does the hourglass appear when
Enough you choose to print?
REPEAT Repeatable Problem Yes No Is the problem repeatable (vs. sporatic)?
PrtPScript Postscript Printer Yes No Are you using a Postscript printer?
PSERRMEM PS Error Memory No Error k/log:lnory Is it fine, or do you get a low memory error?
TstpsTxt testps. txt Output Yes No Pr_lntlng a small test.txt file to a postscript
printer works
. Normal Does your document contain normal images,
EPSGrphe EPS Graphic (TIF, BMP), EPS or EPS (Encapsulated Postscript) images?
AppOK Application Correct Incorrect/ Is thg application you are printing from
Corrupt working properly?
DataFile Document Correct Incorrect / Is the datafile you loaded into the application
Corrupt okay?
PrtFile Print to File Yes No Can you successfully print to a file?
Prticon Printer Icon Normal Grayed Out pqes_the windows printer icon look normal, or
is it disabled (grayed out)
PrtQueue Printer Queue Short Long The printer queue is not too long
TnrSpply Toner Supply Adequate Low Is there enough toner in the toner tray?
PTROFFLINE Printer Driver Set Online Online Offline Is the printer driver set online?
More Intermediate type variables
Jam. Out Does the printer say no error, or does it have
PrtStatPaper Printer Status No Error Bin I’:ull ' apaper jam / the paper bin is full or out of
paper
PrtStatToner Printer Status No Error Low, None Does the printer say no error, or that it is low
on toner?
PriStatMem Printer Status No Error Out of Does the printer say no error, or that it is out
Memory of memory
. OFFLINE, Is the printer on/online or is the printer off /
PrtStatOff Printer Status No Error OFF offline (the ONLINE LED is off)?
PrtThread Port thread/Prt Proc OK OK CB:S;;J)?” The printer spooling process is ok
AppData Application Data Correct ::r:)crcr);)etct o The application is outputting proper print data
PrtDataOut PrintDataOut Yes No The data to be sent to the printer is ok
The path from computer to printer is okay --
PC2PRT PC to PRT Transport Yes No e.g. the printer gets the data
NetOK NET OK Yes No Is the network working okay (in windows)?
GDIOUT GDI Output OK Yes No The driver output is okay
EMEOK EME OK Yes No The Enhanced Metafile data sent to the driver
is okay
GDIIN GDI Input OK Yes No The input to the driver is okay
DrvOK Driver File Status Reinstalled Corrupt The driver is installed okay
- - re——
LelOK LOCAL OK Yes No Is_the local print connection working? (in
windows)
CmpltPgPrntd Non PS Complete Yes No The complet_e page is printed (if using a non-
postscript printer)
TTOK TT OK Yes No TrueType fonts output correctly
GrbldOtpt Non PS Not Garbled Fine Garbled The OUt.pUt 1S fine (not garbled) (on a non-
postscript printer)
NtwrkCnfg Network Configuration Correct Incorrect The network configuration is correct
NNnTTOK Non TT OK Yes No Non TrueType fonts output correctly

138

DeskPrntSpd Desk Speed OK Too Slow The desktop computer is fast enough
CbIPrtHrdwrOK Cable/Port Hardware Operational Not) The cable and local printer port hardware are
Operational okay

DS_NTOK DOS-NET OK Yes No In DO_S, when printing over the network, the
data is sent to the printer okay

DS_LCLOK DOS-LOCAL OK Yes No In DOS, _When printing locally, the data is sent
to the printer okay

PrtPressTm Print Processing Fast Too Long Does the printer take the right amount of time

Enough to print?

LclGrbld Local Garbled OK Yes No 82’;?.? is okay (not garbled) when printing

NiGrbld Net Garbled OK Yes No Output is okay (not garbled) when printing
over a network

NNPSGrphc Non PS Graphic Yes No g:;ngcs print properly on a non-postscript

PrTimeOut Printer Timeouts Long Too Short How Iong doels it t_ake for the application to

Enough say that it can't print
.) Adequate Inadequate How much available virtual memory does the

AviblVrtiMmry Printer Virtual Mem (> 1Mb) (<1Mb) printer have?

GrbldPS PS Not Garbled Fine Garbled Output |s'okay' (not garbled) when printing on
a postscript printer
When you try to print to postscript printer,

IncmpltPS PS Complete es No does it print the entire document?

PSGRAPHIC PS Graphic Yes No graphics print properly on a postscript printer

) Intact (not Full or . .

FlICrrptdBffr Print Buffer Corrupt) Corrupt The print buffer is okay

NtSpd Net Speed OK Slow The network speed is okay

Problems

Problem1 Have Output Yes No Output Did it output okay?
When you print, does it take a normal amount

Problem2 Speed Normal Yes Too Long of time, or much longer than it should?

Problem3 Complete pages Yes Incomplete Does it print full pages (vs. incomplete pages)

Problem4 Graphics fine Yes No _Are the graphics fine, or are they distorted or
incomplete?

Problems Fonts fine Yes No Did font_s appear fine, or are some or _aII of the
fonts missing or appear incorrect or distorted

Problem6 Output Looks normal Yes Garbled Is your output okay, or is it garbled?

139

Appendix B

ADDENDUM TO CHAPTER 5 EXPERIMENTAL SECTION

In this appendix, | provide additional information regarding the experiments described in Sec-

tion 5.6:

e Directions Given to the Volunteers (Section B.1)

e Knowledge Base Produced by Volunteers (Section B.2)

e Algorithm Parameter Settings Used in the Experiments (Section B.3)

These details may also be found online at http://www.cs.washington.edu/ai/min.

140

B.1 Directions Given to the Voluntegers.

Thanks for helping me out on my research. Let’s get straight to the task: | am asking you
to write first-order statements which describe our department. First, let me describe the
domain. The domain contains the following predicates:

Pr of essor (Person)

Position (Person, Position)

Student (Person)

Phase (Person, Phase)

YearsinProgram (Person, Integer)

AdvisedBy (Person X, Person Y) “X isadvised by Y”
TempAdvisedBy (Person X, Person Y) “X’stemporary advisor isY”
Publication (Paper P, Person X) “Person X is an author of paper P’
TaughtBy (Course, Person, Quarter)

TA (Course, Person, Quarter)

Coursel eve (Course, Level)

SamePer son (Person, Person)

SamePaper (Paper, Paper)

SameCourse (Course, Course)

SamePr oj ect (Project, Project)

SameQuarter (Quarter, Quarter)

SamePosition (Position, Position)

SamePhase (Phase, Phase)

Samel nteger (Integer, Integer)

In general, for most of these predicates, you should not need to refer to specific ground
constants. That is, | don’t want statements referring to Publication(T,mattr) or things like
that. There are some exceptions. Here are some constants you may or may not find
useful:

Phase: Refersto the student’ s phase in grad school. There are three phases:
post_Quals
pre_Quals
post_Generals

Level: Refersto the level of the course. There are four levels;

level 100 (intro courses 100, 142, 143)

level 300 (undergrad courses —junior level)

level 400 (advanced undergrad courses — senior level)
level 500 (grad level courses)

Position: Refers to the type of faculty for various professors

141

faculty

faculty affiliate
faculty adjunct
faculty _emeritus
faculty visiting

Integer: Just used to say how many years a person has been in the program. They are
year 1, year 2, ..., year_12. (nojokes about Y earslnProgram(mattr...)!)

The remaining types are pretty obvious. Here' s a short description of each:
Person: includes professors and students

Paper: a conference or journal publication.

Course: Classes offered by the department

Quarter: identifier for the year and quarter (like autumn_0203).

Note, when you are doing the task, if you think there is some other predicate that would
be useful for you, let me know. | may be able to add it to the domain pretty easily.

The Task

Please write down afirst-order theory describing the domain. For simplicity, writeit asa
bunch of first-order statements, which are implicitly conjoined together. A statement may
be anything you want which uses the above predicates. If not specified, variables are
assumed to be universally quantified.

What | am looking for is a set of statements that roughly characterize our (or any)
computer science department. The rules you write do not need to always be true. Aslong
asthey are generally more true than not, they will be useful.

Let me give you an example based on a“friendship” domain. Y ou can write asimple
statement like:

Friend(X,Y) => Friend(Y,X)

which meansthat if X isafriend of Y, thenY isafriend of X. Thisisnot awaystrue, but
is probably true in many cases. Here's another example:

exists(Y) Friend(X,Y)

which means, for every X, thereisat least one Y such that Friend(X,Y) istrue. Don’t
worry about exact notation, aslong as | can figure out what it means.

Some more examples:
Smokes(X) and Smokes(Y) => Friend(X,Y) or Friend(Y ,X)
Friend(X,Y) and Smokes(X) => Smokes(Y)

142

Friend(X,Y) and ! Smokes(X) => | Smokes(Y)
IFriend(X,Y) or !'Friend(Y,Z) or Friend(X,Z).

Sometimes you have to be alittle careful. Note that if | write “Friend(X,Y) and
Smokes(X) => Smokes(Y)”, that does not say anything about what happensif X does not
smoke, hence the need for another rule explicitly explaining what happens when
“Friend(X,Y) and ' Smokes(X)”. Also, of courseit is not always true that a smoker’s
friend smokes, but it might be more true than just 50%, so it can provide useful
information/evidence to a system trying to figure out who smokes.

I would like as complete atheory as possible, but in order to help you focus your time, |
would like you to pay particular attention to statements that involve the AdvisedBy()
predicate, because that is probably the predicate | will be using for testing.

After you have written as many statements as you can, | would like you to go back and
give each two numbers. Thefirst (from 0-1) is the fraction of time that you think this
statement istrue. Don't forget that arulelike “A => B” istrue whenever A isfalse. The
second number (from 0-1) is sort of a+/- which tells your confidencein first number. A
value of 0 meansit is absolutely right, and avaue of 1 means you basically have no idea
what it should be. For example:

0.8 0.4 Friend(X,Y) and Smokes(X) => Smokes(Y)

Means | think that maybe roughly 80% of smoker’s friends will smoke. But I’m not sure,
it might be quite a bit more or less than 80%.

The rules themsel ves are more important to me than the numbers, so don’t stress over the
numbers. Feel freeto take whatever amount of time you want. Hopefully it will be a bit
fun coming up with these statements. I’ m hoping you can spend at least half an hour, but
moretimeis certainly not discouraged!

143

B.2 Knowledge Base Produced by Volunteers

This is the knowledge base formed by merging the contributions from our four volunteers. Note, the
division of the KB into sections is not part of the KB itself, but just for the purposes of making this

appendix easier to understand. See Section B.1 for a list of the predicates and their argument types.

B.2.1 Miscellaneous

TaughtBy(C,P, Q) A CourseLevel(C,level 500) = Professor(P)

TaughtBy(C,P, Q) A Student(P) = —CourseLevel(C, level 500)
A Student(P) = —Phase(P, pre_Quals)

TaughtBy(C,P,Q

~— ~— ~—

(
(
TaughtBy(C,P,Q
(A Student(P) = —YearsInProgram(P, year 1)
TaughtBy(C, X, Q) = Professor(X)
TA(C, X, Q) = Student(X)
TempAdvisedBy(P,S) = Professor(P)
TempAdvisedBy(P, S) = Student(S)
TempAdvisedBy(P, S) = Position(P, faculty)

TempAdvisedBy(P, S) = Phase(S, pre_Quals)

)
)
)
TempAdvisedBy(P, S) = YearsInProgram(P,year 1) V YearsInProgram(P, year 2)
TA(C, P, Q) = Student(P)
TaughtBy(C,P, Q) A CourseLevel(C,level 500) A TA(C,S,Q) =
AdvisedBy(S,P) V TempAdvisedBy(S,P)
AdvisedBy(P,S) = Student(S)
AdvisedBy(P,S) = Professor(P)
AdvisedBy(P,S) = —YearsInProgram(P,year 1)
Publication(P,X) A Publication(P,Y) A Student(X) A —Student(Y) = Professor(Y)
Publication(P,X) A Publication(P,Y) A Student(X) A =Student(Y) =
AdvisedBy(X,Y) V TempAdvisedBy(X,Y)
Student(X) = —Professor(X)

Professor(X) = —Student(Y)

Student(X) = AdvisedBy(X,Y)V TempAdvisedBy(X,Y)

144

Professor(P) A Position(P,faculty)= TaughtBy(C,P,Q)

Phase(S, post_Quals) = —YearsInProgram(year.1)

Phase(S, pre_Quals) = —Phase(S,post_Quals)

Phase(S,pre_Quals) = —Phase(S,post_Generals)

Phase(S, post_Quals) = —Phase(S, pre_Quals)

Phase(S,post_Quals) = —Phase(S, post_Generals)

Phase(S, post_Generals) = —Phase(S, pre_Quals)

Phase(S, post_Generals) = —Phase(S, post_Quals)

Professor(P) = Position(P,faculty)V Position(P,faculty affiliate)V
Position(P,faculty_adjunct) V Position(P,faculty emeritus)V
Position(P,faculty visiting)

Position(P,faculty visiting) = —AdvisedBy(S,P)

Professor(X) A Position(X,faculty)= AdvisedBy(S,X)V TempAdvisedBy(S,X)

Student(P) A mYearsInProgram(year_1) = TA(C,P,Q)

3Y TaughtBy(C, X, Q) = TA(C, Y, Q)

3Y TA(C, X, Q) = TaughtBy(C,Y,Q)

JP Phase(X, post_Generals) = Publication(P,X)

JY Professor(X) = Position(X,Y)

B.2.2 Advisement

AdvisedBy(X,Y) = Student(X)

AdvisedBy(X,Y) = Professor(Y)

TempAdvisedBy(X,Y) = Student(X)

TempAdvisedBy(X,Y) = Professor(Y)

Position(X,T) = Professor(X)

TempAdvisedBy(X,Y) = —Position(X, faculty visiting)

TempAdvisedBy(X,Y) A -YearsInProgram(X, year_1) = YearsInProgram(X, year 2)

TempAdvisedBy(X,Y) = Phase(X, pre_Quals)

145

3Y Student(X) A —AdvisedBy(X,Y) = TempAdvisedBy(X,Y)

JY Professor(X) A —Position(X,faculty.visiting) = AdvisedBy(Y,X)

B.2.3 Phases and positions

Phase(X,Y) = Student(X)

Student(X) = Phase(X,pre_Quals) V Phase(X, post _Quals) V Phase(X, post_Generals)
Phase(X, pre_Quals) = —Phase(X,post_Quals)

Phase(X, post_Quals) = —Phase(X,pre_Quals)

Phase(X, post_Generals) = —Phase(X, post_Quals)

Position(X,Y) A Position(X,Z) = SamePosition(Y,Z)

B.2.4 Predicate constraints

—AdvisedBy(A,A)

—TempAdvisedBy(A,A)

AdvisedBy(A,B) = —AdvisedBy(B,A)

TempAdvisedBy(A,B) = —TempAdvisedBy(B,A)

TempAdvisedBy(S : Person, P : Person) A =SamePerson(P, Q) =
—TempAdvisedBy(S : Person,Q : Person)

AdvisedBy(S : Person,P : Person) = —TempAdvisedBy(S : Person, Q : Person)

TempAdvisedBy(S : Person, P : Person) = —AdvisedBy(S : Person, Q : Person)

B.2.5 Phase

Phase(S,pre_Quals) = —AdvisedBy(S,P)
Phase(S, post_Quals) = —TempAdvisedBy(S,P)

Phase(S,post_Generals) = —TempAdvisedBy(S,P)

146

B.2.6 Teaching and AdvisedBy

Phase(S, post_Quals) A TaughtBy(C,P,Q) A TA(C,S,Q)A
—CourseLevel(C,level 100) = AdvisedBy(S,P)
Phase(S, post_Quals) A TaughtBy(C,P,Q) A =TA(C,S,Q)A
—CourseLevel(C,level 100) = —AdvisedBy(S,P)
Phase(S, post_Quals) A —=TaughtBy(C,P,Q) A TA(C,S,Q)A
—CourseLevel(C,level 100) = —AdvisedBy(S,P)
Phase(S, post_Generals) A TaughtBy(C,P,Q) A TA(C,S,Q)A
—CourseLevel(C,level 100) = AdvisedBy(S,P)
Phase(S, post_Generals) A TaughtBy(C,P,Q) A =TA(C, S, Q)A
—CourseLevel(C,level 100) = —AdvisedBy(S,P)
Phase(S, post_Generals) A —TaughtBy(C,P,Q) A TA(C,S,Q)A

—CourseLevel(C,level 100) = —AdvisedBy(S,P)

B.2.7 Publication and AdvisedBy

Publication(T: Title,A : Person) A Publication(T,B) A ~SamePerson(A,B) =
AdvisedBy(A,B) V AdvisedBy(B, A)

Publication(T,A) A Publication(T,B) A ~SamePerson(A,B)A
Professor(A) A Student(B) = AdvisedBy(B, A)

AdvisedBy(S,P) A Publication(T,S) = Publication(T,P)

B.2.8 Classes of people

TaughtBy(C : Course, P : Person, Q : Quarter) = Professor(P : Person)
Position(P : Person,X : Position) = Professor(P : Person)
AdvisedBy(S : Person,P : Person) = Student(S : Person)
AdvisedBy(S : Person,P : Person) = Professor(P : Person)

Phase(P : Person, X : Phase) = Student(P : Person)

147

TempAdvisedBy(S : Person, P : Person) = Student(S : Person)
TempAdvisedBy(S : Person,P : Person) = Professor(P : Person)
YearsInProgram(P : Person, X : Integer) = Student(P : Person)

TA(C: Course, P : Person, Q : Quarter) = Student(P : Person)

B.2.9 People belong to one class

—Student (P : Person) = Professor(P : Person)

Student(P : Person) = —Professor(P : Person)

B.2.10 Uniqueness constraints

Position(P,X) A =SamePosition(X,Y) = —Position(P,Y)
Phase(P : Person, X : Phase) A ~SamePhase(X,Y) = —Phase(P : Person,Y : Phase)
YearsInProgram(P : Person,X : Integer) A —SameInteger(X,Y) =

—YearsInProgram(P : Person,Y : Integer)

B.2.11 Generally true unigueness constraints

TaughtBy(X : Course,P : Person, Q : Quarter) A —SameCourse(X,Y) =
—TaughtBy(Y : Course,P : Person, Q : Quarter)

TaughtBy(C : Course, X : Person, Q : Quarter) A —SamePerson(X,Y) =
—TaughtBy(C : Course,Y : Person, Q : Quarter)

TA(X : Course, P : Person, Q : Quarter) A —SameCourse(X,Y) =
—TA(Y : Course, P : Person, Q : Quarter)

TA(C : Course,X : Person, Q : Quarter) A —SamePerson(X,Y) =

—TA(C : Course, Y : Person,Q : Quarter)

148

B.3 Algorithm Parameter Settings Used in the Experiments

B.3.1 Parameters used in training

e \Weights are trained using pseudo-likelihood (PL)

e \We optimize the PL by using conjugate gradient search with line minimization

e The PL is considered to have converged if it improves by no more than 0.001 from one iter-
ation to the next. We also stop if it has taken 200 iterations. In our experiments, It usually

converged in about 100-200 iterations.

e We used a Gaussian prior with mean and standard deviation of 1.0. A uniform prior produced

nearly identical results.

e For the first iteration, the weights are initialized at the mean of their prior (1.0).

e We used exact counting of the number of satisfying assignments to ground clauses.

B.3.2 Parameters used in testing

e Testing is done using Gibbs sampling

e \We take 10000 samples (full passes over all variables) for our probability estimates

e The sampling is split in to 10 “chunks”. Each chunk is initialized from a random starting

point, then optimized using MaxWalkSat to find a mode of the distribution.

e Each chunk also has a burnin of 100 samples. That is, we do 100 passes over the variables

before starting to collect the 1000 samples for that particular chunk.

B.3.3 Parameters used for Bayesian networks

e Data was binned by splitting into 5 bins of equal probability.

e Smoothing was done by adding 1 count to each entry in the CPTs.

149

e The class variable was added as a Boolean attribute for the BN, which was then used for class
probability estimation.

e Structure learning was limited to no more than 4 parents per node.

e Vfhn2, part of VFML, was used for training the Bayesian network.

B.3.4 Parameters used for naive Bayes model

Data was binned by splitting into 5 bins of equal probability.

Smoothing was done by adding 1 count to each entry in the P(X;|class) multinomial.

B.3.5 Parameters used for Claudien

scope(local)

e min_accuracy(0.1)

e search(breadth)

e beam_size(5)

e max_real_time(7200) (2 hours)

e min_coverage(1)

e max_complexity(10)

B.3.6 Claudien language bias

The language bias is set up to enable arbitrary predicates in the positive and negative sides of
the clauses that claudien induces. | limit the number of variables per clause to 3, and allow each
predicate to appear up to 2 times as a positive literal and up to 2 times as a negative literal. The

bias is aware of predicate typing, which helps it limit the variables. To minimize search, equality

150

predicates (SameXXX) were not used in CLAUDIEN, and this improved its results.Here is the

exact language bias:

dl ab_t enpl at e(”’

O-len: [

pTaughtBy(1-1:[C40,C41,C42],1-1:[C10,CL1,C12], 1-
1:[C60,061,C62]),
pTaughtBy(1-1:[C40,C4.1,C42],1-1:[C1L0,C11,CL2], 1-
1:[C60,061,C62]),

pCour seLevel (1-1:[C40,C41,C42],1-1:[Cr0,Cr1,Cr2]),
pCourselLevel (1-1:[C40,C41,C42],1-1:.[Cr0,Cr1,Cr2]),
pPosition(1-1:[Cl0,C11,C12],1-1:[C80,C8.1,C82]),
pPosition(1-1:[C10,C11,C12],1-1:[C8.0,C81,C82]),

pProj ect Menber (1-1:[C50,C51,C52],1-1:[CLO,C1L1,CL2]),

pProj ect Menber (1-1:[C50,C51,C52],1-1:[CLO,C1L1,CL2]),

pAdvi sedBy(1-1:[Cl10,Cl11,C12],1-1:[ClL0,C11,C12]),

pAdvi sedBy(1-1:[Cl10,C11,C12],1-1:[C1L0,C11,C12]),
pPhase(1-1:[C10,C11,C12],1-1:.[C90,C9.1,C92]), pPhase(1l-
1:[]C10,C11,C12],1-1:[C90,C91,C92]), pTenpAdvi sedBy(1-
1:[C10,C11,C12],1-1:[C10,C11,C12]), pTenpAdvi sedBy(1-
[Cl10,C11,C12],1-1:[C1L0O,C1L1,CL2]), pYearslnProgram 1-
:[C10,C11,C12],1-1:[Cl1000, C101,C102]), pYearslnProgran{l-
:[ClL0,C11,C12],1-1:[C100,C101,C102]), pTA(1-
[c40,C41,C42],1-1:[CL0,C11,C12],1-1:[C60,C61,C62]),
pTA(1l-1:[C40,C41,C42],1-1:[C10,C11,C12],1-1:[C60,C61,C62]),
pProfessor(1-1:[C10,Cl11,Cl12]), pProfessor(1-1:[Cl0,C11,Cl12]),
pStudent(1-1:[C10,C11,C12]), pStudent(1l-1:[C1L0,C11,C12]),
pPublication(1-1:[C30,C31,C32],1-1:[C10,C11,C1L2]),
pPublication(1-1:[C30,C31,C32],1-1:[Cl10,C11,C12])]

1
1
1
1

<- -

151

O-len: |

pTaughtBy(1-1:[C40,C41,C42],1-1:[ClL0,C11,C12],
1-1:[C60,061,C62]),
pTaughtBy(1-1:[C40,C41,C42],1-1:[C10,C141,C12],
1-1:[C60,061,C6.2]),

pCourselLevel (1-1:[C40,C41,C42],1-1:[Cr0,Cr,Cr2]),
pCourselLevel (1-1:[C40,C41,C42],1-1:[Cr0,Cr,Cr2]),
pPosition(1l-1:[Cl10,C11,C12],1-1:[C80,C81,C82]),
pPosition(1l-1:[Cl10,C11,C12],1-1:[C80,C81,C82]),

pProj ect Menber (1-1:[C50,C51,C52],1-1:[C10,C11,CL2]),

pProj ect Menmber (1-1:[C50,C51,C52],1-1:[C10,C1L1,CL2]),

pAdvi sedBy(1-1:[Cl10,C11,C12],1-1:[Cl0,C11,C12]),

pAdvi sedBy(1-1:[Cl10,C11,C12],1-1:[C1L0O,C11,CL2]),
pPhase(1-1:[C10,C11,C12],1-1:[C90,C91,C92]), pPhase(1l-
1.[C10,C11,C12],1-1:.[C90,C91,C92]), pTenpAdvi sedBy(1-
l1.[Cl10,C11,C12],1-1:[ClLO,C11,C12]), pTenpAdvi sedBy(1-
l.[C10,C11,C12],1-1:[Cl0O,C11,C1L2]), pYearslnProgram(1l-
1.[C10,C11,C12],1-1:[C1l00,C101,C102]), pYearslnProgran(l-
1:[Cl.0,C1.1,Cl12],1-1:[Cl00, C10.1, C102]), pTA(1-
1:[c40,41,42],1-1:[CLl0,C11,C12],1-1:[C60,C61,C62]),
pTA(1-1:[C40,C41,C42],1-1:[CL0,C11,C12],1-1:[C60,C61,C62]),
pProfessor(1-1:[Cl10,Cl11,C12]), pProfessor(1-1:[Cl10,C11,C12]),
pStudent (1-1:[C10,Cl11,C12]), pStudent(1-1:[ClL0,C11,C12]),
pPublication(1l-1:[C30,C31,C32],1-1:.[CL0O,C11,CL2]),
pPublication(1-1:[C30,C31,C32],1-1:[Cl0,C11,C12])]).

152

Appendix C

ADDENDUM TO CHAPTER 6 EXPERIMENTAL SECTION

In this appendix, | give the set of directions which were given to our nine com-

puter experts for our experiments on structure in the printer domain (see Section 6.2.2):

Hi,

Thanks for helping me out with thistask. The next page gives a brief introduction in what
we are asking you to do. Here are the directions:

1) Completely read the instructions on this page right now so that you know roughly
what you'll be doing.

2) Read the introduction below, and read through the example problem to make sure
you understand what we are asking you to do

3) Read the description of how printing works in windows

4) Complete the table by listing the causes of each node (if you can’t finish, we
understand. Please try to complete as much as possible, but we don't ask you to
spend more than 45 minutes filling out thistable). YOU MAY NOT COME
BACK TO THIS STEP ONCE YOU HAVE DONE STEP 5!

5) Opentheenvelope. Insideisalist of al the “correct answers’. Try to learn the
causes of each variable by understanding the reason behind having those causes,
not just using rote memorization. | have tried to help by giving the reasons (as far
as | cantell) behind each set of causes.

6) Put the answers back in the envelope. Fill out the second table of causes.

7) Putit al inthe envelope and in my mailbox in Sieg.

If you have any questions, just email me. There are no time limits on any part, so feel free
to take as much time as you like. We understand that the task is hard, and confusing, so
don’t stress over it more than necessary. However, we do hope you will giveit afull
effort.

Thanks,
Matt Richardson
mattr@cs.washington.edu

This page describes the Windows 95 printer domain task. Please feel freeto consult any
source of knowledge (e.g. the internet, your printer manual, etc...) in performing the task.
In the table below you'll find alist of variables (such as DskLocal), and a description of
what each variable means (“1s there enough local disk space”) (they are true/false valued
variables). There are a number of mostly observation type variables, a number of
intermediate variables, and afew final result variables. Y our job isto write down which
variables directly influence which other variables.

Imagine drawing arrows between the variables. An arrow from variable A to variable B
would mean that A directly affects B. In other words, if you know the value of A, it helps
you know the value of B. Try to consider the arrows a causal direction. That is, you
would have aarrow from “smoking” to “cancer” since smoking causes cancer, not the
other way around. If you drew arrows between all of the variables, you would have alist
of “causes’ of each variable. That is, the causes of a variable would be those that point to
that variable (‘smoking' is acause of ‘cancer’). Again, the causes of avariable X would
be any variable which directly influences X.

You will be given alist of variables, and a blank area next to each oneto list their
“causes’. Note that any direct influence should be considered a cause. For example,
suppose A affects C, but only when B istrue, then you would list both A and B as causes
of C. Asanother example, suppose you determine a bunch of variables which affect
whether connecting to a computer on the LAN would work, which you list as causes of
LANworks, and you determine a bunch of variables which affect whether connecting to
some computer outside of your LAN would work, which you list as causes of WEBworks.
Suppose thereis avariable isLAN, which istrueif you are connecting on the LAN, and a
variable Works, which is whether or not you can connect to some computer. Clearly,

Wor ks depends on LANworks when isLAN istrue, and depends on WEBwor ks when
isSLAN isfalse. So, you would list al three as causes of Works. Y ou would not list any of
the causes of LANworks or causes of WEBworks as causes of Works because they are
indirect, not direct causes.

There are some variables that are ‘intermediate’ and intended to reduce the number of
causes each variable has. Please try to take advantage of these intermediate variables to
simplify and reduce the number of causes when possible. For instance, if there were the
variables “smoking”, “dirty lungs’, and “lung cancer”, then there should be an arrow
from smoking to dirty lungs, and from dirty lungs to lung cancer, but you don’'t need a
line from smoking to lung cancer because it is an indirect cause of cancer, not a direct
cause.

Some of the variables have no causes — they are things which would simply be observed
and which are not affected by any of the other variablesin the list. For those, please write
an“X” in the blank.

Thank you so much for helping me out. For any questions, please email me!

153

154

P.S. Yes, | am asking you to write down a Bayesian Network (if you don’t know what
that is, don’t worry about it).

Example Problem — the wet grass domain.
Hereis an example of what you will be working on. Y ou get atable such as this:

Variable Short _ Causes Longer Description

Description
Rain Rain Did it rain overnight?

Water . . .

?
Sprnkir Sprinkler Did the sprinkler come on overnight?
WitGrss Wet Grass Is the grass wet?
Clmsy Clumsy Bob Is Bob clumsy today?
. . Does Bob slip when walking across

Slip Slip and Fall the lawn?
You areto fill out the ‘causes section, like this:
Variable Short. . Causes Longer Description

Description
Rain Rain X Did it rain overnight?

Water . . .

s
Sprnkir Sprinkler Did the sprinkler come on overnight?
WtGrss Wet Grass |Rain, Sprnklr Is the grass wet?
Clmsy Clumsy Bob [X Is Bob clumsy today?
. . Does Bob slip when walking across
<

Slip Slip and Fall |5 rss, clmsg the lawn?

Rain, Sprnklr, and Clmsy are just facts — they are not influenced by any of the other
variables. For instance, you cannot say “whether or not it rained last night depends on
whether the grassiswet”. However, note that whether the grassis wet does depend on
whether it rained. So, WtGrss has Rain as a parent. It also depends on whether or not the
sprinkler was running, so Sprnklr is a parent as well. Now, whether or not bob dips
clearly depends on whether the grass is wet (WtGrss) and whether heis clumsy (clmsy),
so those are causes. Not that whether Bob slips does depend on whether it rained and
whether or not the sprinkler was on. But these are not dir ect influences. The direct cause
of bob dlipping is whether the grassis wet, so that is what we put as a parent instead.

Windows (and DOS) printing

Printers: Printers must be on, online, have enough toner and paper, etc.. in order to print
properly. Usually printers have a number of indicator lights which tell whether there are
problems with any of these.

Connection: There are two ways which the PC may be connected to the printer: Directly
or through a network. A direct connection means the printer is connected directly with a
cable to the printer port in the back of the computer. In this case, it is addressed by
referring to the port it is connected to. Alternatively, the printer may be connected simply
over the network. In this casg, it is addressed by the “ printer path” which describes where
on the network the printer is.

Data: The way in which the datais sent to the printer depends on the operating system
being used. In DOS, applications print directly to the port that the printer is on. So in that
case, it is up to the application alone to know how to send the proper commands to the
printer. Windows is much more complicated. In windows, each printer has a printer
driver, which accepts input from applications and outputs it to the printer. The printer
driver is part of the GDI (Graphical device interface). Windows applications send
drawing commands to the GDI, which uses the printer driver to tranglate them into printer
commands, which are then sent to the printer.

Spooling: To reduce the amount of time a person has to wait for the printer, windows
uses “spooling”. When an application prints and spooling is enabled, it does not get sent
directly to the driver immediately. Instead, it is sent to the spool, and stored as EMF
(Enhanced Metafile) data. Then, in the background, windows sends the EMF data to the
driver to get translated into printer commands.

Postscript: Postscript is alanguage used by many printers to describe what they are to
print. For postscript printers, the driver translates from the windows drawing commands
into postscript commands. Being a full-fledged language, this trandation, as well asthe
execution on the printer, often requires more memory (on the printer and/or on the
computer) to process. Note that if the printer is postscript, that means the driver will be
outputting postscript from windows, so “the printer is postscript” and “you are printing
postscript stuff” are equivalent.

Fonts: There are two kinds of fonts: nhormal and true-type. True-type fonts are more
rescal able, and look better than normal fonts. Further (for printers which support truetype
fonts), truetype fonts are actually sent to the printer, so you are guaranteed that they will
look as expected. When using standard fonts, it only works if the printer has the same
font as the one you are using on the computer (I think...).

155

156

| have divided the variables into rough categoriesin order to help you see them as an
organized set of variables. Note, variable causes can be variables in any category. For
instance, it is easy to see that variables in the “ Speed” section may depend on the printer,
the connection, the data generation on the computer itself, etc... (and/or vice-versa). Here
are al of the variables. The table on the following pages defines what each of them mean.
Please read the entire table of variables and descriptions before you start listing causes, so
you have an idea of what may be intermediate variables. Y ou may find it useful to use
scratch paper and draw lines between variables, cluster the variables, etc.. Good luck!
(p.s. Note, many of these variables are spelled asif you simply remove the vowels from
the correctly spelled word. Like “AvlblVrtIMmry” for “ Available Virtual Memory”.

Misc
REPEAT, Prtlcon, PrtQueue, PTROFFLINE, DS NTOK, DS _LCLOK, AviblVrtiMmry,
HICrrptdBffr

Printer
PrtOn, PrtPaper, TnrSpply, PrtStatPaper, PrtStatToner, PrtStatMem, PrtStatOff, PrtMem

Connection
PrtChl, NetPrint, PrtPath, PrtPort, PrtSel, PC2PRT, NetOK, NtwrkCnfg, PrtMpTPth,
CblPrtHrdwrOK

Drivers, spooling, data generation on the computer
DskLocal, PrtSpool, PrtDriver, DrvSet, DSApplctn, AppOK, DataFile, PrtFile, AppData,
PrtDataOut, PrtThread, GDIOUT, EMFOK, GDIIN, DrvOK, LclOK

Postscript and Graphics
GrphcsRItdDrvrSttngs, PrtPScript, PSERRMEM, TstpsTxt, EPSGrphc, PSGRAPHIC,
NNnPSGrphc

Fonts
ScrnFntNtPrntrFnt, TrTypFnts, Fntinstlitn, PrntrAccptsTrtyp, TTOK, NNnTTOK

Garbled and/or Incomplete printing
PgOrnttnOK, PrntngArOK, CmpltPgPrntd, GrbldPS, IncmpltPS, GrbldOtpt, LclGrbld,
NtGrbld

Speed
AppDtGnTm, HrglssDrtnAftrPrnt, DeskPrntSpd, PrntPrcssTm, PrtTimeOut, NtSpd

Problems
Problem1, Problem?2, Problem3, Problem4, Problem5, Problem6

Printer Domain, Variable descriptions (**** Befor e opening envelope** **)

Fill out the “Causes’ column to the best of your ability.

Variable Short. . Direct Causes Longer Description
Description
Misc
REPEAT Repeatable Is the problem repeatable (vs.
Problem sporadic)?
Does the windows printer icon
Prticon Printer Icon look normal, or is it disabled
(grayed out)
PrtQueue [Printer Queue Is the printer queue not too long?
PTROFFLIN [Printer Driver Is the printer driver set online?
E Set Online P)
In DOS, when printing over the
DS NTOK |DOS-NET OK network, is the data sent to the
printer okay?
DOS-LOCAL In DOS, when printing locally, is
DS_LCLOK OK the data sent to the printer okay?
AvlbIVrtIMmr |Printer Virtual Does the printer have enough
y Mem virtual memory?
FIICrTptdBfir |Print Buffer Is the print buffer okay, or is it full
/ corrupted?
Printer
Printer On and Is the printer on and ready
PrtOn . .
Online (online)?
Printer Paper i 2
PrtPaper Supply Does the printer have paper?
Trrspply Toner Supply Is there enough toner in the toner
tray?
Does the printer say no error, or
PrtStatPaper |Printer Status does it have a paper jam / the
paper bin is full or out of paper?
PrtStatToner [Printer Status Does t_he printer say no error, or
that it is low on toner?
PrtStatMem |Printer Status Doe§ t_he printer say no error, or
that it is out of memory
Is the printer on/online or is the
PriStatOff [Printer Status printer off / offline (the ONLINE
LED is off)?
. Does the printer have more then 2
PrtMem Printer Memory Megabytes of memory?
Connection
. Is the printer cable (running from
PrtCbl Local Printer the back of the computer to the
Cable) !
printer) firmly connected?
Is the printer connected by a local
NetPrint Printing Locally cable directly to the computer or
connected via the network?
PrtPath Net Printer Is the networked printer path

157

158

Pathname correct?
PrtPort Correct Local For a local printer, is the correct
Port port (parallel port) chosen?
Correct Printer Have you chosen to print to the
PrtSel .
Selected correct printer?
Is the path from computer to
PC2PRT PC to PRT printer okay? (i.e. the printer gets
Transport
the data)
NetOK NET OK Is_the network working okay (in
windows)?
NtwrkCnfg Netwprk . Is the network configuration
Configuration correct?
Port Mapping Is the mapping from port to printer
PrtMpTPth to Path path correct?
CblPrtHrdwr |Cable/Port Are the cable and local printer
OK Hardware port hardware okay?
Drivers, spooling, data generation on the computer
Local Disk Is there more than 2 Megabytes
DskLocal Space free on the local hard drive?
PrtSpool Print Spooling Is Printer Spooling enabled?
PrtDriver Correct Driver !s the correct printer driver
installed?
Driver . .
s
DrvSet Configuration Is the driver properly configured?
Print Are you trying to print from DOS
DSAppletn Environment or Windows?
S Is the application you are printing
APPOK Application from working properly?
DataFile Document Is thg dz.ataflle you loaded into the
application okay?
PrtFile Print to Eile fci:lg’r; you successfully print to a
Application Is the application outputting
AppData Data proper print data?
PrtDataOut [PrintDataOut Is_the data to be sent to the
printer ok?
Port thread/Prt Is the printer spooling process
PrtThread Proc OK ok?
GDIOUT GDI Output OK Is the windows driver output
okay?
EMEOK EME OK Is the Enhanqed Metafile data
sent to the driver okay?
GDIIN GDI Input OK Is the input to the driver okay?
DrvOK Driver File Is the driver installed okay?
Status
LclOK LOCAL OK Is the local print connection

working? (in windows)

Postscript and Graphics

GrphcsRItdD
rvrSttngs

Driver Config-
Graphics

Are the graphics settings in the
driver configuration correct?

PrtPScript Po_stscrlpt Ar_e you using a Postscript
Printer printer?
PSERRMEM PS Error Is it fine, or do you get a low
Memory memory error?
testps.txt Does printing a small test.txt file
TstpsTxt Output to a postscript printer work?
Does your document contain
. normal images, or EPS
EPSGrphc [EPS Graphic (Encapsulated Postscript)
images?
PSGRAPHIC|PS Graphic Do graphics print properly (when
using a postscript printer)?
NNPSGrphc Non P_S Do graphlcs_ print properly on a
Graphic non-postscript printer?
Fonts
ScrnFntNtPr |Screen Do the fonts onscreen match the
ntrFnt Matches Printer fonts that were printed?
Are you using True Type Fonts?
TrTypFnts 'llz'rue Type (special fonts that can be scaled
onts .
to any size)
Fntinstlltn Font Are fonts properly installed?
Installation properly)
PrntrAccptsT [Printer Accepts Does the printer accept True Type
rtyp Truetype fonts?
TTOK TT OK Do TrueType fonts output
correctly?
NNTTOK Non TT OK Do Non-TrueType fonts output
correctly?
Garbled and/or Incomplete Printing
Page Did it print in the correct
PgOrnttnOK o 9 . orientation (e.g. landscape vs.
rientation -
portrait)?
PmtngArOK Printer Printing Does _the document fitin the area
Area the printer can print?
CmpltPgPrnt [Non PS Does the page print completely?
d Complete (if using a non-postscript printer)
Is the output okay (not garbled)
GrbldPS PS Not Garbled when printing on a postscript
printer?
When you try to print to postscript
IncmpltPS [PS Complete printer, does it print the entire
document?
Non PS Not Is the output fine (not garbled) on
GrbldOtpt Garbled a non-postscript printer?
LelGrbld Local Garbled Is the output okay (not garbled)
OK when printing locally?
Net Garbled Is the output okay (not garbled)
NtGrbld e
OK when printing over a network?

159

160

Speed
App Data Does the appllcatlon take the right
AppDtGnTm ; amount of time to send the data to
Generation .
the printer?
HrglssDrnAf [Hourglass Does the hourglass appear for
' only a short amount of time when
trPrnt Duration .
you choose to print?
DeskPrtSpd|Desk Speed Is the desktop computer fast
enough?
PrntPressTm Print _ Does the printer tak(_a the right
Processing amount of time to print?
PrtTimeOut P_rlnter Is the printer timeout setting too
Timeouts short?
Network Is printing to a network printer fast
NtSpd .
printing speed enough?
Problems
Probleml [Have Output Did it output okay?
\When you print, does it take a
Problem2 [Speed Normal normal amount of time, or much
longer than it should?
Problem3 Complete Does it print full pages (vs.
pages incomplete pages)?
Problem4 |Graphics fine Are the graphlcs fine, or are they
distorted or incomplete?
Did fonts appear fine, or are some
Problem5 Fonts fine or all of the fonts missing or
appear incorrect or distorted
Problemé Output Looks Is your output okay, or is it

normal

garbled?

161

The following table isto be filled in after opening the envel ope and learning the causes of
each variable. Remember to put the list of actual causes back in the envelope (e.g. don't
use it while you are filling out the following table).

162

Printer Domain, Variable descriptions (**** after opening envelope *****)

Please fill out the ‘causes’ column to the best of your abilities

Variable Short. . Direct Causes Longer Description
Description
Misc
REPEAT Repeatable Is the p_roblem repeatable (vs.
Problem sporadic)?
Does the windows printer icon
Prtlcon Printer Icon look normal, or is it disabled
(grayed out)
PrtQueue [Printer Queue Is the printer queue not too long?
PTROFFLIN |Printer Driver . . .
s
E Set Online Is the printer driver set online?
In DOS, when printing over the
DS_NTOK |DOS-NET OK network, is the data sent to the
printer okay?
DOS-LOCAL In DOS, when printing locally, is
DS_LCLOK OK the data sent to the printer okay?
AvlblVrtIMmr |Printer Virtual Does the printer have enough
y Mem virtual memory?
FIICrTptdBffr |Print Buffer Is the print buffer okay, or is it full
/ corrupted?
Printer
Printer On and Is the printer on and ready
PrtOn . .
Online (online)?
Printer Paper . »
PrtPaper Supply Does the printer have paper?
Trrspply Toner Supply Is there enough toner in the toner
tray?
Does the printer say no error, or
PrtStatPaper [Printer Status does it have a paper jam / the
paper bin is full or out of paper?
PrtStatToner [Printer Status DOQ? t_he printer say no error, or
that it is low on toner?
PrtStatMem |Printer Status D°e$ t_he printer say no error, or
that it is out of memory
Is the printer on/online or is the
PrtStatOff [Printer Status printer off / offline (the ONLINE
LED is off)?
. Does the printer have more then 2
PrtMem Printer Memory Megabytes of memory?
Connection
. Is the printer cable (running from
PrtCbl Local Printer the back of the computer to the
Cable) .
printer) firmly connected?
Is the printer connected by a local
NetPrint Printing Locally cable directly to the computer or
connected via the network?
PrtPath Net Printer Is the networked printer path

Pathname correct?
PrtPort Correct Local For a local printer, is the correct
Port port (parallel port) chosen?
Correct Printer Have you chosen to print to the
PrtSel .
Selected correct printer?
Is the path from computer to
PC2PRT PC to PRT printer okay? (i.e. the printer gets
Transport
the data)
NetOK NET OK Is_the network working okay (in
windows)?
NtwrkCnfg Netvvprk . Is the network configuration
Configuration correct?
Port Mapping Is the mapping from port to printer
PrtMpTPth to Path path correct?
CbIPrtHrdwr |Cable/Port Are the cable and local printer
OK Hardware port hardware okay?
Drivers, spooling, data generation on the computer
Local Disk Is there more than 2 Megabytes
DskLocal Space free on the local hard drive?
PrtSpool Print Spooling Is Printer Spooling enabled?
PrtDriver Correct Driver .IS the correct printer driver
installed?
Driver .)
2
DrvSet Configuration Is the driver properly configured~
Print Are you trying to print from DOS
DSApplctn Environment or Windows?
- Is the application you are printing
APPOK Application from working properly?
DataFile Document Is th.e dz?\taflle you loaded into the
application okay?
PriFile Print to File f(i:lzg you successfully printto a
Application Is the application outputting
AppData Data proper print data?
PrtDataOut |PrintDataOut Is_the data to be sent to the
printer ok?
Port thread/Prt Is the printer spooling process
PrtThread Proc OK ok?
GDIOUT GDI Output OK Is the windows driver output
okay?
EMEOK EME OK Is the Enhanqed Metafile data
sent to the driver okay?
GDIIN GDI Input OK Is the input to the driver okay?
DrvOK Driver File Is the driver installed okay?
Status
LcloK LOCAL OK Is the local print connection

working? (in windows)

163

164

Postscript and Graphics

GrphcsRItdD
rvrSttngs

Driver Config-
Graphics

Are the graphics settings in the
driver configuration correct?

PrPScript Po_stscnpt Ar_e you using a Postscript
Printer printer?
PSERRMEM PS Error Is it fine, or do you get a low
Memory memory error?
testps.txt Does printing a small test.txt file
TstpsTxt Output to a postscript printer work?
Does your document contain
. normal images, or EPS
EPSGrphc |EPS Graphic (Encapsulated Postscript)
images?
PSGRAPHIC|PS Graphic Do graphics print properly (when
using a postscript printer)?
NNPSGrphc Non P_S Do graphlcs_ print properly on a
Graphic non-postscript printer?
Fonts
ScrnFntNtPr |Screen Do the fonts onscreen match the
ntrEnt Matches Printer fonts that were printed?
Are you using True Type Fonts?
TrTypFnts "I:'rue Type (special fonts that can be scaled
onts .
to any size)
Fntinstlitn Font Are fonts properly installed?
Installation properly)
PrntrAccptsT [Printer Accepts Does the printer accept True Type
rtyp Truetype fonts?
TTOK TT OK Do TrueType fonts output
correctly?
NNTTOK Non TT OK Do Non-TrueType fonts output
correctly?
Garbled and/or Incomplete Printing
Page Did it print in the correct
PgOrnttnOK 0 9 . orientation (e.g. landscape vs.
rientation ;
portrait)?
PrtngArOK Printer Printing Does _the docume_\nt fitin the area
Area the printer can print?
CmpltPgPrnt [Non PS Does the page print completely?
d Complete (if using a non-postscript printer)
Is the output okay (not garbled)
GrbldPS PS Not Garbled when printing on a postscript
printer?
\When you try to print to postscript
IncmpltPS |PS Complete printer, does it print the entire
document?
Non PS Not Is the output fine (not garbled) on
GrbldOtpt Garbled a non-postscript printer?
Local Garbled Is the output okay (not garbled)
LclGrbld e
OK when printing locally?
Net Garbled Is the output okay (not garbled)
NtGrbld e
OK when printing over a network?

Speed
App Data Does the appllcatlon take the right
AppDtGnTm . amount of time to send the data to
Generation .
the printer?
HrglssDrtnAf [Hourglass Does the hourglass appear for
f only a short amount of time when
trPrnt Duration h
you choose to print?
DeskPrtSpd|Desk Speed Is the desktop computer fast
enough?
PrtPressTm Print ' Does the printer tak(_e the right
Processing amount of time to print?
PriTimeOut P_rlnter Is the printer timeout setting too
Timeouts short?
Network Is printing to a network printer fast
NtSpd o
printing speed enough?
Problems
Problem1 [Have Output Did it output okay?
\When you print, does it take a
Problem2 [Speed Normal normal amount of time, or much
longer than it should?
Problem3 Complete _Does it print full pages (vs.
pages incomplete pages)?
Problem4 |Graphics fine Are the graphlcs fine, or are they
distorted or incomplete?
Did fonts appear fine, or are some
Problem5 Fonts fine or all of the fonts missing or
appear incorrect or distorted
Problemé Output Looks Is your output okay, or is it

normal

garbled?

165

166

Correct List of causes

Variable |Short Description Causes Why these causes
Misc
The problem will be
repeatable as long as the
CblIPrtHrdwrOK, hardware and network
REPEAT Repeatable Problem NtwrkCnfg isn't flaky
\Whether you can see the
printer icon depends on
making sure the printer is
NtwrkCnfg, online and the network is
Prticon Printer Icon PTROFFLINE properly configured
None of the variables
listed here affect the
length of the queue — it is
PrtQueue Printer Queue none simply an observation.
IAs with PrtQueue, this is
simply a factual
PTROFFLINE Printer Driver Set Online [none observation (obs).
Same as windows
(NetOK), but DOS
applications print directly
to the printer, so you
need to guarantee that
AppData is good as well
AppData, PrtPath, (windows apps are
PrtMpTPth, checked via PrintDataOut
NtwrkCnfg, being okay, in the
DS NTOK DOS-NET OK PTROFFLINE PC2PRT variable)
AppData, PrtChl, As with DS_NTOK, this is
PrtPort, the same as LclOK but
DS_LCLOK DOS-LOCAL OK CbIPrtHrdwrOK with AppData added
If you aren't printing
postscript, you always
AvibIVrtiMmry Printer Virtual Mem PrtPScript have enough memory
FlICrrptdBffr Print Buffer none Observation (obs)
Printer
PrtOn Printer On and Online |none Obs
PrtPaper Printer Paper Supply |none Obs
TnrSpply Toner Supply none Obs
printer reports paper error
PrtStatPaper Printer Status PrtPaper if it's out of paper
printer reports toner error
PrtStatToner Printer Status TnrSpply if it's our of toner
Printer reports memory
PrtStatMem Printer Status PrtMem error if it's low on memory
printer reports being on if
PrtStatOff Printer Status PrtOn the printer *is* on
PrtMem Printer Memory None Obs

Connection
PrtChl Local Printer Cable none Obs
NetPrint Printing over Network |none Obs
PrtPath Net Printer Pathname |none Obs
PrtPort Correct Local Port None Obs
PrtSel Correct Printer Selected |[None Obs
Any of these factors can
clearly prevent the printer
from getting correct data.
For instance, NetOK
affects whether the path
NetPrint, PrtDataOut, [from computer to printer
NetOK, LclOK, is fine, but only matters if
DSApplctn, you are using a network
DS_NTOK, printer (NetPrint) in the
PC2PRT PC to PRT Transport DS LCLOK first place
As long as you are using
the correct printer
pathname and the
network is configured
properly, we consider that
the network is ok. | don't
PrtPath, NtwrkCnfg, |know why PTROFFLINE
NetOK NET OK PTROFFLINE is here, heh heh.
NtwrkCnfg Network Configuration [hone Obs
PrtMpTPth Port Mapping to Path [None Obs
CbIPrtHrdwrOK Cable/Port Hardware none Obs
Drivers, spooling, data generation on the computer
DskLocal Local Disk Space none Simply an observation
PrtSpool Print Spooling none Observation
PrtDriver Correct Driver none Obs
DrvSet Driver Configuration none Obs
DSApplctn Print Environment None Obs
AppOK Application None Obs
DataFile Document None Obs
As long as the data being
sent to the printer is good,
it should correctly write a
PrtFile Print to File PrtDataOut file
As long as the data and
application are okay, the
application should be
AppData Application Data AppOK, DataFile outputting correct data
GDI outputs the data to
the printer, so it is good
as long as GDI is good
and the correct printer
PrtDataOut PrintDataOut GDIOUT, PrtSel has been selected
This is just a factual
\variable that doesn't
PrtThread Port thread/Prt Proc OK |none depend on anything

167

168

PrtDriver, GDIIN,

GDI will properly output
data as long as it was
given proper data
(GDIIN), and the drivers

GDIOUT GDI Output OK DrvSet, DrvOK are all set up properly
EMF will be stored okay
(when spooling) as long
as the application
produced correct data,
there is enough local disk
space to store the spool
file, and the background
process which does the
AppData, DskLocal, [spooling is working
EMFOK EMF OK PrtThread properly
The driver will get correct
input if the application
output correct data. It also
needs EMF to be working
properly if spooling is
AppData, PrtSpool, |enabled (since spooling is
GDIIN GDI Input OK EMFOK done to EMF format)
DrvOK Driver File Status none Obs
Local connection is fine if
you are using a good
cable, the correct port,
PrtCbl, PrtPort, and the port hardware is
LclOK LOCAL OK CbIPrtHrdwrOK working properly
Postscript and Graphics
GrphcsRItdDrvrSttngs|Driver Config- Graphics [None Obs
PrtPScript Postscript Printer none Obs
Only run out of memory if
using a postscript printer
PrtPScript, and have little virtual
PSERRMEM PS Error Memory AvibIVrtiMmry memory
PrtPScript,
TstpsTxt testps.txt Output AvIbIVritiMmry same as above
EPSGrphc EPS Graphic None Obs
To print graphics, it needs
enough memory and for
graphics related driver
PrtMem, settings to be set
PSGRAPHIC PS Graphic GrphcsRItdDrvrSttngs |properly.
Printing graphics on a
non-postscript printer only
works if they are not
postscript (EPS) images,
and also that the graphics
PrtMem, settings are correct, and
GrphcsRItdDrvrSttngs,the printer has enough
NnPSGrphc Non PS Graphic EPSGrphc memory to print images.
Fonts
ScrnFntNtPrntrFnt ~ |Screen Matches Printer |None Obs

TrTypFEnts True Type Fonts None Obs
Fntinstlitn Font Installation None Obs
PrntrAccptsTrtyp Printer Accepts Truetype|None Obs
True-type fonts will work
best when you have
enough memory, they are
PrtMem, Fntinstlitn, |installed properly, and the
TTOK TT OK PrntrAccptsTrtyp printer accepts them
Non truetype fonts will
work properly unless the
screen doesn't match the
PrtMem, printer font, or the fonts
ScrnFntNtPrntrFnt, [are installed wrong (or too
NNnTTOK Non TT OK Fntlinstllitn little memory)
Garbled and/or Incomplete printing
PgOrnttnOK Page Orientation None Obs
PrntngArOK Printer Printing Area None Obs
The page orientation
must be correct or it'll be
cropped, as with the
selection of print area.
Having too little memory
may cause the printer to
PrtMem, PgOrnttnOK, |end early, resulting in an
CmpltPgPrntd Non PS Complete PrntngArOK only partially printed page
All the same factors as
GrbldOtpt but now, for
postscript, you also need
GrbldOtpt, enough computer
GrbldPS PS Not Garbled AvibIVrtiMmry memory
All the same factors as
CmpltPgPrntd, but now,
for postscript, you also
CmpltPgPrntd, need enough computer
IncmpltPS PS Complete AvibIVrtiIMmry memory
Simply chooses between
LclGrbld and NtGrbld
depending on whether
NetPrint, LclGrbld, you are doing network or
GrbldOtpt Non PS Not Garbled NtGrbld local printing
Any of these factors - bad
data from application, bad
driver, not enough
memory, and bad cable
AppData, PrtDriver, |port hardware, can make
PrtMem, the output garbled when
LclGrbld Local Garbled OK CbIPrtHrdwrOK printing locally
AppData, PrtDriver, [same as above, but for
NtGrbld Net Garbled OK PrtMem, NtwrkCnfg |network

Speed

AppDtGnTm

App Data Generation

PrtSpool

\When the print spool is
on, the application always

seems to be fast enough.

169

170

| guess. | honestly don't
get this one

If the application takes a
long time to generate the
data, then the hourglass

HrglssDrtnAftrPrnt |Hourglass Duration AppDtGnTm will appear for a long time

PrtMem, AppDtGnTm,|If the application

DeskPrntSpd Desk Speed PrntPrcssTm generates it fast enough,

PrntPrcssTm Print Processing PrtSpool | have no idea

PrtTimeOut Printer Timeouts none Obs
This speed is okay if the
standard desktop printing
speed is fine, but also the
network is configured

DeskPrntSpd, properly and the printer

NtSpd Net Speed NtwrkCnfg, PrtQueue |gueue is short.

Problems
PrtOn, PrtPaper,
PC2PRT, PrtMem,
PrtTimeOut,

Problem1 Have Output FlICrrptdBffr, TnrSpply|Pretty much everything
Selects between checking
if printing on the desktop
is fast enough, and
whether printing via the
network is fast enough
(depending on whether

NetPrint, lyou are or are not printing

Problem2 Speed Normal DeskPrntSpd, NtSpd |over the network)

Simply selects between

CmpltPgPrntd and

IncmpltPS depending on
CmpltPgPrntd, whether you are or are

Problem3 Complete pages PrtPScript, IncmpltPS |not printing postscript
Graphics are okay as
long as NnPSGrphc is
okay or PSGRAPHIC is

NnPSGrphc, okay, depending on
PrtPScrpt, whether you are printing

Problem4 Graphics fine PSGRAPHIC postscript
Fonts are fine if TTOK or
NNnTTOK, depending on

TrTypFnts, TTOK, whether you are using

Problem5 Fonts fine NnTTOK true type fonts
If PrtPScript, then the
output being garbled
depends on GrbldPS.

GrbldOtpt, PrtPScript, [Otherwise, it depends on

Problem6 Output Looks normal GrbldPS GrbldOtpt

171

Appendix D

PROOF OF THEOREM 7.2.1

Here we give a proof of Theorem 7.2.1. We are assuming <> is commutative and associative, o
is associative and distributes over &, and T, T, b, and B are defined as in Section 7.1. Also, from
Section 7.2, (AeB);; = O(VE: AjoBy;).

We first prove that eis associative. Let X=(AeB)eC. Then:

Xij = O(Vk: O(VI AyoBy)o Cy;) from the definition of e
= O(Vk: O(VI: AjjoByoCy;j) since o distributes over <> and o is associative
= OVl $(Vk: AjjoByoCy;j) since <> is associative
= OVl Ao O(Vk: BygoCyj) since o distributes over <

= O (VI Ajo (BeC)y) by definition of e
This implies that

X = Ae(BeC) by definition of e.
We have B(”) = band B™ = TeB(" 1 s0 B(™ = Te(Te(...e(Teb))). Since eis associa-

tive,

B = T"eb (D.1)

(where T means TeTeT ... ntimes, and T is the identity matrix).

We have T(¥ = T and T = TeT(™ 1) 50 T(™) — Te(Te(...e(TeT))). Hence,

T = TeT™ (D.2)

Combining Equations D.1 and D.2,

TeB(™ = T("ep (D.3)

Since we run until convergence, this is sufficient to show that TeB = Teb.

172

VITA

Matthew Richardson (who prefers to be called “Matt”) was born in 1975 in Idaho, but quickly
moved to the booming town of Vancouver, WA (no, not the Vancouver in Canada) (yes, there is
another Vancouver, in Washington). After enough time there, he moved to sunny California where
he received a Bachelor of Science (with Honors) from the California Institute of Technology in
1997, and was frequently thought to have come from Canada. Having had enough of southern
California to last him his lifetime, he fled back north to Seattle and began graduate studies in the
Computer Science and Engineering department at the University of Washington. He received his
M.S. in Computer Science from the University in 1999, and a Ph.D. in the summer of 2004. On a
rather hot day in fact.

Matthew’s primary interests are in machine learning and artificial intelligence. He has coau-
thored over a dozen publications on web search, social networks, networks of trust, the Semantic
Web, statistical machine learning, and other topics. He has been a PC member or reviewer for nine

conferences and workshops, and is a recipient of the IBM Ph.D. Fellowship.

