Trees That Grow

Shayan Najd
(Laboratory for Foundations of Computer Science
The University of Edinburgh, Scotland, U.K.
sh.najd@gmail.com)

Simon Peyton Jones
(Microsoft Research, Cambridge, U.K.
simonpj@microsoft.com)

Abstract: We study the notion of extensibility in functional data types, as a new
approach to the problem of decorating abstract syntax trees with additional infor-
mation. We observed the need for such extensibility while redesigning the data types
representing Haskell abstract syntax inside Glasgow Haskell Compiler (GHC).

Specifically, we describe a programming idiom that exploits type-level functions to
allow a particular form of extensibility. The approach scales to support existentials
and generalised algebraic data types, and we can use pattern synonyms to make it
convenient in practice.

Key Words: functional programming, Haskell, algebraic data types, pattern match-
ing, open data types, extensible data types, expression problem, tree decoration tree
annotation

Category: D.1.1 [Programming Techniques]: Applicative (Functional) Programming;
D.2.13 [Reusable Software]: Reusable libraries; D.3.2 [Language Classifications]: Exten-
sible languages; D.3.3 [Programming Languages]: Language Constructs and Features-
Data Types and Structures;

1 Introduction

Back in the late 1970’s, David Turner’s inspirational work on SK-combinators
(Turner, 1979b,a), and his languages Sasl (Turner, 1976), KRC (Turner, 1982),
and Miranda (Turner, 1985), were hugely influential in the early development
of functional programming. They introduced a generation of young computer
scientists to the joy and beauty of functional programming, in a very direct and
concrete way: elegant ideas; simple, perspicuous writing; and compelling inter-
active implementations. David’s work has had sustained impact; for example,
Miranda had a major influence on the design of Haskell (Hudak et al., 2007).
Algebraic Data Types (ADTs) and pattern matching are now firmly estab-
lished as a core feature of any modern functional language. They first appeared
as a usable feature in Hope (Burstall et al., 1980), and were rapidly adopted
in ML (Milner, 1984), and in David Turner’s Miranda. ADTs make functional
languages a fertile ground in which to define and process tree-like structures.
However, trees often cannot grow; once a data type is defined and compiled,

its definition cannot be extended by adding new data constructors, and/or by
adding new fields to its existing data constructors.

This lack of extensibility can be very painful. For example, at the centre of
all compilers stand tall trees representing the abstract syntax of terms. Com-
piler programs processing these trees often do so by decorating the trees with
additional information. For instance, a name resolution phase adds information
about names, and a type inference phase stores the inferred types in the rele-
vant nodes. We refer to such extra information as decorations. The additional
information may appear as new fields to the existing data constructors, and/or
new data constructors in data types representing the trees.

The compiler writer is then faced with two unpalatable choices. She can define
a new data type representing the output decorated tree, at the cost of much
duplication. Or she can write a single data type with all the necessary fields
and constructors, at the cost of having many unused fields and constructors at
different stages of compilation.

This dilemma is very real. The Glasgow Haskell Compiler (GHC) has a single
data type HsSyn that crosses several compiler phases; and a second entire data
type TH.Syntaz for Template Haskell. Moreover, some Haskell libraries, notably
haskell-src-exts define yet another data type for Haskell source code. These
data types are large (dozens of types, hundreds of constructors) and are very
difficult to keep in sync.

In this paper we offer a systematic programming idiom that resolves the
dilemma, by providing a way to extend data types within Haskell. We leverage
type-level openness to allow extensibility of term-level data constructors.

Specifically, we make the following contributions

— We describe a simple but powerful programming idiom that allows a data
type to be extended both with extra constructor-specific fields and with
extra constructors (Section 3).

— We show that the idea can be extended to work for existentials and GADT's
(Section 3.10).

We discuss related work in Section 5 and conclude in Section 6.

On a personal note, David’s papers and language implementations played
a major role in drawing one of us (Simon) into the world of functional pro-
gramming. My very first paper, Yacc in Sasl (Peyton Jones, 1985), was a parser
generator for Sasl, and David acted as a mentor for me, at a time when I had
no idea what programming language research was, or how to do it. Thank you
David: I will be forever grateful for your encouragement and guidance in the
launch phase of my professional life.

2 The challenge

In this section, we demonstrate the problem of decorating trees, and sketch some
conventional ways to address it.

2.1 Tree-Decoration Problem

A compiler might need several variants of data types representing terms. For
example:

— We might want to label every node with its source location.

— After name resolution we might want to decorate names in the tree with
additional information, such as their namespace.

— After type inference we might want to decorate some (but not all) construc-
tors of the tree with inferred types.

— The type checker might record type abstractions and applications that are
not present in the source code. For this it would need to add new data
constructors to the type — and for these constructors a source location
might not make sense.

One approach is to declare a completely new data type for each variant, but
this is obviously unattractive because of the duplication it involves. In a real-
istic setting, the abstract syntax for a source language might have tens of data
types (expressions, patterns, guards, comprehensions, declarations, sequences,
bindings, matches, etc etc), and hundreds of data constructors altogether.

The Glasgow Haskell Compiler (GHC) makes an excellent (if incestuous)
case study for the challenge of extensibility. In GHC, the syntax of Haskell,
HsSyn, defines no fewer than 97 distinct data types with a total of 321 data
constructors. It would be completely infeasible to define multiple variants of
such a huge collection of types. Not only would it be terrible to duplicate the
data structures, but we would also have to duplicate general functions like the
pretty printer.

2.2 So what does GHC do?

Faced with this dilemma, what does GHC do in practice? It adopts a variety of
strategies:

— Straightforward parameterisation. The entire syntax is parameterised over
the type of variables, so that we have'

! These types are much simplified, but they convey the right idea for present purposes.

parse :: String — HsExpr RdrName
rename :: HsExpr RdrName — HsExpr Name
typecheck :: HsExpr Name — HsFxpr 1d

For example, the type checker replaces each Name with an Id; the latter is
a Name decorated with a Type.

— FExtra data constructors. The data types include parts like

data HsPat id = ...
| ConPat id [Located (HsPat id)]
| ConPatOut id ... other fields ...

where the type checker is expected to replace all uses of ConPat with ConPatOut.

This is clearly unsatisfactory because the passes before the type checker will
never meet a ConPatOut but there is no static guarantee of that fact.

— Alternating data types. GHC needs to pin a source location on every source-
syntax node (e.g., for reporting errors). It does so by alternating between two
types. In the ConPat constructor above, the Located type is defined thus:

data Located x = L SrcLoc x

So there is a type-enforced alternation between HsPat and Located nodes.
This idiom works quite well, but is often tiresome when traversing a tree
because there are so many L nodes to skip over.

— Phase-indexed fields. GHC uses the power of type families (Chakravarty et
al. (2005)) to describe fields that are present only before or after a specific
phase. For example, we see
data HsFExpr id = ...

| ExplicitPArr (PostTc id Type) [LHsEzpr id]

where the PostTc type family is defined thus:

type family PostTc id a

type instance PostTc RdrName a = ()
type instance PostTc Name a=()
type instance PostTc Id a=a

This idiom makes use of the fact that HsSyn is parameterised on the type
of identifiers, and that type makes a good proxy for the compiler phase. So
the first field of an ExplicitPArr is () after parsing and after renaming, but
is Type after type checking.

All this works well enough for GHC, but it is very GHC-specific. Other tools want
to parse and analyse Haskell source code define their own data types; the widely-
used library haskell-src-exts is a good example. Even GHC defines a com-
pletely separate data type for Template Haskell, in Language. Haskell. TH .Syntazx.

These data types rapidly get out of sync, and involve a great deal of duplicated
effort.

3 An idiom that supports data type extension

We now introduce a programming idiom that allows data types to be extended
in more systematic way than the ad-hoc tricks described above.

We explain our solution with a running example. This paper is typeset from
a literate Haskell source file using 1hs2TeX (Hinze and Loh, 2015), and the code
runs on GHC 8.0 using a set of well-established language extensions.

{-# LANGUAGE TypeFamilies, GADTs, DataKinds, ConstraintKinds #-}
{-# LANGUAGE EmptyCase, StandaloneDeriving #-}
{-# LANGUAGE TypeOperators, PatternSynonyms #-}
{-# LANGUAGE FlexibleInstances, FlexibleContexts #-}
import GHC. Types (Constraint)

3.1 Extensible ADT Declarations

As a running example, consider the following language of simply-typed lambda
terms with integer literals, and explicit type annotations:

1 € integers

z,Y € variables

A,B,C € TYP:=Int| A — B

LM,N € EXPu=i|z|M=zA|AXe.N|LM

In Haskell, the language above can be declared as the following data types:

data Ezp = Lit Integer type Var = String
| Var Var . data Typ = Int
| Ann Ezp Typ : | Fun Typ Typ
| Abs Var Ezxp
| App Exp Exp

The data type Fxp is not extensible. Our idea is to make it extensible like this:

data Expy € = Litx
| Varx
| Annx (Xann &€

Xrit
X Var

Integer

3
&) Var

type family X;;; &
type family Xy, &

(Expy &) Typ type family X4,, &
(Ezpy &) type family X4, &

| Appx (Xapp € (Bzpx &) (Ezpy f) © type family Xg4,, §

()
()
()
| Absx (Xaps &) Var
()
| Ezpy (XEzp 5)

In this new data type declaration:

type family Xg,, &

— & is a type index to Expy. We call £ the extension descriptor, because it

describes which extension is in use. For example Ezpy TC might be a variant
of Expy for the type checker for a language; we will see many examples

shortly.

— Each data constructor C' has an extra field of type X¢ &, where X¢ is a
type family, or type-level function (Chakravarty et al., 2005). We can use
this field to extend a data constructor with extra fields (Section 3.3). For
example, if we define X4,, 1C to be Typ, the App constructor of a tree of

type Ezpy TC will have a Typ field.

— The data type has one extra data constructor Fzpy, which has one field
of type Xgzp £ We can use this field to extend the data type with new

constructors (Section 3.4).

Now, we can use the above extensible data type to define a completely un-

decorated (UD) variant of Fzpy as follows.

type Exp’P = Ezpy UD

data UD

type instance X;;; UD = Void
type instance Xy, UD = Void

type instance Xy, UD = Void
type instance X ;,; UD = Void
type instance X4,, UD = Void
type instance Xg,, UD = Void

Since the non-decorated variant does not introduce any forms of extensions,
all mappings are set to Void which is declared (in Data. Void) like this:

data Void
void :: Void

absurd :: Void — a
absurd m = case m of {}

void = error "Attempt to evaluate void"

That is, Void is a data type with no constructors, so it is inhabited only by

bottom.

With this instantiation, Ezpy UD is almost exactly? isomorphic to the orig-
inal data type Ezp; that is, there is a 1-1 correspondence between values of
Expy UD and values of Fxp.

The alert reader may realise that the type instance declarations can all be
omitted because, in the absence of such instances, Xa,, UD is irreducible and
hence is an empty type just like Void. But then there is no way to prevent clients
of Expx UD from accidentally adding an instance for Xa,, UD, so we generally
prefer to prevent that by giving an explicit instance.

3.2 Pattern Synonyms for Convenience

One can program directly over the new Ezpy type, but it is a bit less convenient
than it was with the original Ezp data type:

— When pattern matching, we must ignore the extra field in each constructor.
— When constructing, we must supply void in the extra field.

For example:

incLit 2 Exp — Exp

incLit (Lit i) = Lit (i +1)

incLit e =e

incLity :: ExpYP — ExpP

incLity (Litx — 1) = Litx void (i +1) -- Tiresome clutter
incLitx e =e

Solving this kind

of inconvenience is exactly what pattern synonyms were invented for (Pickering
et al., 2016). We may define a pattern synonym thus

pattern Lit"P Integer — Ea:pUD

pattern Lit"P i« Litx _ i
where Lit"P i = Litx void i

and similarly for all the other data constructors. This is a so-called bidirectional

pattern synonym. In a pattern Lit"” i expands to Lity _ 4, while in a term

Lit"P i expands to Litx void i. So now we can write

incLity EmpUD — EachD
incLitx (Lit"" i) = Lit"™ (i +1) -- No tiresome clutter
incLity e =e
2 We say “almost exactly” because the term value Ezpy wvotd has no counterpart

in Fzxp; alas Haskell lacks an entirely uninhabited type. We can simply hide the
constructor Fzpy from the client users to ameliorate this problem.

3.3 New Field Extensions

Now, consider the following simple type system for our example language.

(z:A)el LM A
LEM A it Tha A TF Mud:A

©:AT'-N:B I'rL:.A—B I'FM:A
I'FXz.N:4A— B I'~LM:B

Before type checking, often abstract syntax trees (ASTs) are processed by a
type inference engine. The output of the type inference engine is the same input
tree decorated with additional type information. Type inference helps users to
leave certain bits of their programs without explicit type annotations. Type
inference also helps in simplifying the type checker: after type inference, and
decorating the trees with the additional type information, type checking becomes
a straightforward syntax-directed recursive definition. To accommodate for the
additional information in the output, we need larger trees, and hence we need
to extend the original declarations. For instance, the following highlights the
required changes to the non-extensible Fxp data type:

data Exzp = ... | App Typ Exp Ezxp

The definition is just like that of Fzp, save for extending constructor Appy
with a new field of type Typ, as highlighted above. The duplication is unpleasant
(particularly when the data type is much larger).

In the extensible setting both non-decorated and decorated variants of Exp
can be defined as extensions to the same base extensible data type Fxpy . Fol-
lowing the same approach as before, we can also define a decorated variant of
Ezpy suitable for type checking (TC) based on Expy as follows.

type Exp™® = Expy 1IC . type instance X4, 1C = Void
data TC - type instance X, TC = Void
type instance X;;; 1C = Void © type instance X,,, 170 = Typ
type instance Xy, TC = Void : type instance Xg;, 1C = Void

The difference (highlighted) is just that the App constructor gets an extra
field of type Typ, just as required.

The pattern synonyms for Ezp™C can be defined as before, save for con-
structor Appy that takes an extra argument for the new field introduced by the
extension, as highlighted below:

pattern App™® : Typ — Exp™ — Exp™ — Exp™
pattern App™ a4 I m = Appx alm

3.4 New Constructor Extensions

We could as well consider scenarios where extended data types introduce new
constructors. For instance, consider a simple partial evaluation (PE) pass over
the trees, where -redices are normalised away in an input tree. After reducing a
redex to a value, the partial evaluator stores the value as a relevant node inside
the tree. To be able to decorate the tree with this new information (i.e., values),
often new constructors should be introduced to the declarations. For instance,
the following highlights the required changes (i.e., the new constructor Val) to
the non-extensible Fzp data type:

data Val = ...
data Ezp = ... || Val Val

We can still reuse our extensible data type Ezpy to define a variant suitable for
such partial evaluation (PE) by extending it with a new constructor Val™ as

type Exp™™® = Expy PE . type instance X4, PF = Void
data PE © type instance X, PE = Void
type instance X;;; PE = Void * type instance Xapp PE = Void
type instance Xy, PE = Void * type instance Xgzp PE = Val

The pattern synonyms for Ezpy PE can be defined as before, except that
we introduce a new pattern synonym Valt?
introduced by the extension, as highlighted below:

that represents the new constructor

lPE

pattern Va Val — Exp™

ZPE

pattern Val™™ v = Ezpy v

3.5 Normal Functions on Extended Data Types

Aided by the pattern synonyms, programming over the extended data type feels
very much like programming over an ordinary non-extensible data type. For
example, here is a type checker following the typing rules in Section 3.3:

check :: Exp™ — [(Var, Typ)] — Typ — Bool

check (thTC) _— Int = True

check (Var™ z) TI'e = maybe False (= ¢) (lookup z I")
check (Ann ma) I'c =a=cA checkmI c

check (Abs™ © n) T (Fun a b) = check n ((z,a): 1) b

check (App™ al m) T ¢ = check | I (Fun a ¢) A check m I a

check _ _ = Fualse

One significant annoyance is that GHC is not yet clever enough to know when
pattern synonyms are exhaustive, so the pattern-match exhaustiveness checker
is effectively powerless.

3.6 Generic Functions on Extensible Data Types

We can sometimes exploit the common structure inherited from an extensible
data type, to define generic functions acting uniformly over the extending data
types. For instance, we can define a generic printer function once and reuse it
for the extended data types. Let us begin with a simple printer that ignores
the decorations introduced as new fields in the data type. For instance, such
a printer works the same for both the undecorated data type Ezp”P and the
decorated data type Exp™. Compilers often use such printers across multiple
phases to print terms while reporting error messages.

For the new constructor extensions, we can either ignore them like we do
for the new fields, or use function parameters to handle printing of these new
constructors. We choose to do the latter in the following example.

printT :: Typ — String
printT Int "Int"
printT (Fun a b) ="("H printT a+H") — "+HprintT b

printE :: (Xgzp & — String) — Ezpy & — String

printE _ (Lity _1i) = show i

printE _ (Varx _z) =z

printE p (Annx —m a) =" (" H printE p m +# ") = (" H printT a H ")"
printE p (Absx _xzn) ="X\"HzH"." HprintE pn

printE p (Appy —lm) ="("HprintE p lH#") (" H printE p m H#")"
printE p (Expx §) =p¢

Above, we chose to pass explicitly the function parameters used for printing the
possible new constructors. We could as well use type classes.

Having defined the above generic printer, we can reuse it to define printers
for extending data types Ezp"P . Exp™, and Ezp™ as follows.

printEYP - ExpYP — String) print BT Exp™ — String

printEUD = printE absurd prmtEP B = printE p

printE™ :: Exp™ — String where p v = "{{" + show v 4 "}}"
prmtEm = printFE absurd " deriving instance Show Val

Since both Ezp"P and Ezp™ introduce no new constructors, the parameters
passed to the generic function does plain matching on empty types. For Ezp™™®,
however, we pass a printer function handling values of the new constructor Val.

10

3.7 Type Classes for Extensible Data Types

For the generic printer printE, we chose to ignore the new field extensions. We
could as well make a variant that also prints the new field extensions. Such a
printer is useful for debugging purposes. To implement such a printer for Ezpy,
as before, we need to provide five more function parameters to handle new field
extensions in each of the five constructors. The type of generic function then
becomes

printE :: (Xpy € — String) — (Xvar € — String) — (Xann € — String) —
(Xabs & = String) = (Xapp & = String) = (Xpap & — String) —
FEzpy & — String

Here, with this approach, genericity comes at the price of a long list of pa-
rameters that need to be passed around. But this is exactly what Haskell’s type
classes were designed to solve! We can instead write3

instance (Show (X &), Show (Xvar €), Show (Xan, &),
Show (Xaps &), Show (Xapp &), Show (Xgap &) =
Show (Ezpy &) where
show = ...

and all the extra parameter passing becomes invisible.
Using the constraint kinds extension in GHC, we can make the process of
declaring such generic instances easier by abstracting over the constraint as

type Forallx (¢ :: % — Constraint) &
- (¢ (XLit g)a¢ (XVar £)7¢ (XAnn 5)
7¢ (XAbs 5)7 ¢ (XApp f)v QS (XEzp 5))

Hence by using above, the header of the instance declaration for Expy be-
comes as simple as

instance Forallx Show & = Show (Ezpy &) where
show = ...

In this case, and many others, we can even use Haskell’s automatic (standalone)
instance deriving to implement the show method for us:

deriving instance Forallx Show & = Show (Ezpy &)
3 The type checker complains about the decidablity of type class resolution, because
the constraints in the instance context are no smaller than those in the head. There-

fore, we need to supply the compiler with a —XUndecidableInstances flag, because
we, as the programmers, know that the process is terminating for our use cases.

11

3.8 Replacing Constructors

In some compiler passes, changes to trees can be beyond mere extensions. For
instance, a pass may require the type of a field in a constructor to change.
Consider the common pass in compilers where a chain of term applications are
grouped together to form a saturated application where the term at the head
of the chain is directly applied to a list of terms (often with n-expansions so
that the size of the arguments list matches the arity of the head term). In our
running example, to store the result of the saturation pass in a variant of Fxp,
we change the type of the arguments in constructor App to a list of terms:

data Exp = ... | App Exp [Eaxp]

Such a change to the type of a field in a constructor, and in general changes
to a constructor beyond what can be achieved by adding new fields (and smart
use of pattern synonyms) can still be achieved following our idiom by replacing
the constructor with a new one.

The act of replacing a constructor can be seen as two distinct extensions:
(a) adding a new constructor, (b) removing the old constructor. Removing a
constructor is achieved by extending it with a new field of an empty type. As
mentioned earlier, Haskell does not have such an empty type, as all types are
inhabited by bottom, but we can achieve a similar result by not exposing the
removed constructor to the client user (as a part of the interface of the extended
data type).

Assuming Appy is not exposed to the client users, the following defines a vari-
ant of Fzpy with fully saturated applications (SA), where the type of arguments
in application terms is changed to a list of terms .

type Exp™ = Ezpy SA type instance X4, SA = Void
data SA : type instance X, SA = Void
type instance Xp;; SA = Void type instance X4,, SA = Void
type instance Xy, SA = Void . type instance Xg,, SA

= (Bzp™, [Ezp™))

Now the new exposed application constructor can be defined by the following
pattern synonym:

pattern App™ :: Exp™* — [Exp™'] — Exp™
pattern App™* | ms = Ezpy (1, ms)

12

3.9 Extensions Using Type Parameters

The running example we considered so far has had no type parameters, besides
the extension descriptor parameter that we have introduced. Many of the data
types that we want to extend do have type parameters. For instance, consider a
variant of Fxp that is parametric at the type of variables:

data Ezp a = ... | Var a | Abs o (Exp «)

Also consider a variant of the above with additional let expressions, as often
introduced by passes such as let-insertion:

data Ezp a = ... | Let a (Exp o) (Exp)

Our idiom can also describe such an extension even though the extension (i.e.,
type variables in let bindings) is referring to the type parameter a. The general
idea is to directly pass the type parameters in a constructor to the corresponding

extension type functions:

data Fzpy £ @

t family X,
= Litx (Xpi & @) Integer ype lamily AL ¢ la
type family Xy, £ a
| Varx (Xvar €@) Var !
type family X4, £ «
‘ Anny (XAnng o) (E.TpX ¢ la) Typ : .
. type family X5 ¢
| Absx (Xaps @) Var (Expy £d): !
| Appx (Xapp § 1@) (Ezpx §la) (Bapy € la) type family X4, ¢ @
X \“App X X .
type family Xz, o
‘ Eme (XEzp 5 Oé) yp Y AEzp 5

The extension introducing let expressions (LE) is defined same as before,
this time with access to the type parameter:
type Exp™ la = Expy IE [a type instance X4, [F a = Void
data IE ~ typeinstance X5 [F « Void
type instance X.;; [F|a = Void @ typeinstance X,,, [E (a0 = Void
type instance Xy,, [F [@ = Void : type instance Xp,, [E &
: = (o, Bxp™ o, Exp™ o)

Now, we can define a pattern synonym for the new constructor as before:

pattern Let™ :: o — Exp™® o — Exp™ o — Exp™® o

pattern Let™® & mn = Expy (z,m,n)

Similarly, we can support extensible data types with more than one type
variable by passing them all to the extension type functions.

13

3.10 Existentials and GADTSs

So far, we have considered extensibility in normal algebraic data type declara-
tions. However, in GHC, data may be defined by generalised algebraic data type
(GADT) declarations. For instance, consider the following GADT declaration of
a simple embedded domain-specific language of constants, application, addition,
and Boolean conjunction, with one existential variable a in App:

data Ezp a where
Con::c— Fxp c
App :: Exp (a — b) — Exp a — Exp b
Add :: Exp (Int — Int — Int)
And :: Exp (Bool — Bool — Bool)

We cannot print terms of this type: due to the polymorphic type of the field
in Con, we need a printer for values of type a when printing Ezp «, and since
a is locally quantified in App and unavailable outside, we cannot supply such a
printer from outside. We need to extend constructor App to store a printer for
a right inside the constructor:

data Frp a where

App i (a — String) — Fzp (a = b) — Fzp a — Ezp b

Our idiom scales to generalised algebraic data types and supports extensibil-
ity as above. To do so, we need to be able to access existential variables when
defining extensions. As in the previous section, we can do so by simply pass-
ing the existential types to the extension type functions as well. For the above
example, we have the following extensible declaration:

data Fzpy & a where
Conx :: Xgon E¢ — c— Ezpy € c
Appx i Xapp £ a b — Expy £ (a — b) = Expy € a — Expy € b
Addyx :: Xaqq € — Ezpy £ (Int — Int — Int)
Andx :: Xanag € — Fxpy & (Bool — Bool — Bool)
Expy : Xggp Ea — Expx £ a
type family X, £ ¢ type family X4,4 &
type family X4,, { a b . type family Xg,, { a
type family X444 & :

We can now define a variant of Fzpy, where Appy is extended with a new
field to store a printer (Pr) for the existential type a:

14

type Exp™" o = Expx Pra type instance X459 Pr = Void
data Pr type instance X,q Pr = Void
type instance X¢o, Prc = Void " type instance Xg,, Pr a = Void
type instance X,, Pr a b =(a — String)

As before, we can define pattern synonyms such as the following:

Pr

pattern App’™ :: (a — String) — Exp™ (a — b) — Exp™ a — Exp™ b

pattern App™" [p I m = Appx plm

One other solution for writing such a printer is to constrain the indices of
Ezp with Show type class. This involves adding a local type constraint for the
existential type a in AppE. Our idiom is also capable of expressing such exten-
sions to the set of local type constraints. For this purpose, we need to introduce
a proof data type Proof ¢ a that matching on its constructor convinces GHC
that the constraint ¢ a is satisfied. So to define a variant of Fxp, where the
existential type is constrained with Show type class (Sh), we have the following.

data Proof ¢ a where
Proof :: ¢ a = Proof ¢ a

type Exp" a = Expy Sh a

data Sh

type instance X¢,, Sh ¢

. type instance X 44 Sh Void
type instance X 4,4 Sh = Void

Void type instance Xg,, Sh a = Void

type instance X,,, Sh a b = Proof Show a

Now, we can define pattern synonyms such as following:
pattern App™" :: () = Show a = Exp*" (a — b) — Exp™" a — Exp™" b
pattern App™" | m = Appx Proof I m

Similarly, we can add new locally quantified variables using a data type like

data FEzists f where
Ezists :: f a — Fuxists f

3.11 Variations on Theme

Our idiom is just that: a programming idiom. For field extensions (Section 3.3),
nothing requires us to add an extra field to every constructor, or to use a different
type function for every constructor. Similarly if we do not want to extend the
data type with new constructors we do not need to provide the extra data

15

constructor that supports such extension (Section 3.4). For example, here is a
more specialised variant of our running example

data Ezpy £ = Litx (Xpeas &) Integer type family X5 &
| Varx (Xpear &) Var © type family Xa4 ¢
| Annx (Ezpx §) Typ

| Absx (Xaa €) Var (Eupy €) :
| Appx (Xaa) (Ezpx &) (Ezpx §)

Here constructors Lity and Varx share a single extension-field type, Xrcqr &;
and similarly Absx and Appy; the constructor Annx does not have an extension
field; and we cannot add new data constructors.

3.12 Shortcomings and Scope
Our approach comes with a number of shortcomings.

— Efficiency. Every constructor carries an extra extension field, whether or not
it is used.

— Ezhaustiveness checks. Our use of pattern synonyms (which is optional, of
course) defeats GHC’s current pattern-match exhaustiveness checker. And
even if we did not use a pattern synonym, the extra constructor (Ezpy in
our running example) will be flagged as unmatched even when we are not
using it. Both are problems of engineering, rather than fundamental.

— Boilerplate. When adding a new phase descriptor, there is a slightly uneasy
choice between (a) adding lots of tiresome declarations

type instance X¢ £ = Void

one for each constructor C' whose extension field is not used, and (b) omitting
the instance, and hoping that no one adds it later.

Similarly, writing lots of pattern-synonym declarations can be painful.

One alternative we have considered is to generate the boilerplate using Tem-
plate Haskell, or even to define a new language extension. But it seems better
first to gain more experience of using the idiom.

Our idiom can naturally scale to support mutually recursive declarations by
passing the same extension descriptor to all of the declarations.
We have seen that our idiom is capable of expressing extensions to a gener-
alised algebraic data type declaration such as adding new fields, adding new
4 In fact, there are already partially implemented general features in GHC regarding

both completeness of a set of pattern synonyms, and improving the totality checker
to recognise absurdity.

16

constructors, adding new local constraints, and adding new existential variables.
We have also seen that, we can replace constructors, and access global and local
type variables in our extensions.

In addition to these changes, we can combine our idiom with pattern syn-
onyms and module system features to express other changes like

— change to the order of fields, such as
pattern (®) :: Ezp — Exp — Exp
pattern m© [l = App I m

— removing fields, such as
pattern K :: Exp — Exp
pattern K n <+ Abs _ n

where K n = Abs "_" n

— fizing values of fields, such as
pattern One :: FExp
pattern One = Lit 1

Yet, there are other possible forms of changes to a data type declaration, like
adding new type variables. In the next section, we take a few steps further.

4 Extension Descriptors

So far in our examples, the extension description parameters have been empty
types used as indices to define extensions. However, extension descriptors are
themselves ordinary algebraic data types, and in this section we study extensi-
bility using more complex extension descriptors.

4.1 New Type Parameter Extensions

Suppose we wanted to add a new field of type a to some or all of the data
constructors in the type. Then we would need to add « as a parameter of the
data type itself. Can we do that?

In our example, suppose we wanted to add a source location to every node
in the tree. Source location decorations associated with a node may appear
as new fields, or as new constructors wrapping nodes with a source location.
Strictly speaking, the latter approach is less precise compared to the former:
such wrapper constructors can be applied to a node more than once, or not ap-
plied at all. With the former, the programmer is in control: using the optional
type (e.g., Maybe) of source locations in decorations models the optional appli-
cation of wrapper constructors, and using the list of source locations models the
multiple applications of wrapper constructors to a node. Regardless of the dec-
oration approach, the type of source locations (annotations in general) is often
kept polymorphic, allowing programmers to define generic functions like fmap,

17

fold, and traverse. A good example is the AST in Haskell-Src-Exts, where the
polymorphic annotations are used for different purposes, including the source
locations used in an exact printer. In our extensible setting, support for poly-
morphic source locations amounts to (1) extending the AST declarations with
a new type parameter « (the type of source locations) and (2) extending all the
constructors with a new field of type «. To do so, we need the ability to extend
an ADT data type declaration with a set of type variables, and to access these
variables to define extensions, such as new fields. Our encoding is capable of ex-
pressing such new type parameter extensions: the idea is to carry the extra type
parameters in the extension descriptors. For instance, the following defines an
extension to Fxpy with a new type variable «, and uses it to define polymorphic
annotations An as new field extensions.

type instance X Anla) =«
type Exp™™ la = Ezpy (Anla) ypet Ann ()
type instance X (An &) =@
data An |« : .
. . type instance X4,, (An @) =«
type instance X;;; (An|a) =a : tvpe instance X (A) = Void
: instan nla) = Vou
type instance Xy, (An|a) = |a yP Ezp

Notice that we made the definition of the extension descriptor parametric,
and then we could access the parameter when defining extensions.

4.2 Hierarchy of Extension Descriptors

In practice, compilers may have multiple variants of an AST, many of which are
closely related to each other. For instance in GHC, the AST in the front-end
of the compiler, named HsSyn, has three major variations used in the parsing,
renaming, and type-checking passes. GHC also has an entirely separate variant as
a part of its metaprogramming mechanism Template Haskell. The first three are
closely related, while the last is quite different. We can organise such variations
by putting them in hierarchies of indices and use this hierarchy when defining
extensions. For instance, for GHC, we may define the extension descriptor as

data GHC (c:: Component)

data Component = Compiler Pass | TemplateHaskell

data Pass = Parser | Renamer | TypeChecker
Having the above as a hierarchy of extension descriptors, we get the four vari-
ations of HsSyn AST in the extensible setting. For instance, the type checker
AST would be of the type HsSyn (Compiler TypeChecker).
It also allows us to define generic extension descriptors such as
type family PostTC p where
PostTC TypeChecker = Typ

PostTC _ = Void
type instance X4,, (GHC TemplateHaskell) = Void
type instance X4, (GHC (Compiler p)) = PostTC p

18

5 Discussion and Related Works

The problem of extensibility in data types is a hot topic in computer science.
There are many different approach to this problem. To name a few: struc-
tural and nominal subtyping, extensible records and variants, and numerous
approaches to Wadler’s expression problem. There are too many solutions to
mention; the reader may consult the references in Torgersen (2004); Axelsson
(2012); Swierstra (2008); Lindley and Cheney (2012); Bahr and Hvitved (2011);
Loh and Hinze (2006), for some examples. However, surprisingly, our problem,
and hence our solution, has unique distinguishing characteristics:

Need for both directions of data extensibility: We need, and provide, ex-
tensibility on two major directions of data extensibility: adding new fields to
existing constructors, and adding new constructors. The so-called “expres-
sion problem” and its solutions are often only concerned with the latter form
of extensibility.

Generic programming is a plus, not a must: Our primary goal is to re-
use the data type declaration itself, rather than to re-use existing functions
that operate over that type. For example, in GHC, the parser produces
HsSyn RdrName, the renamer consumes that and produces HsSyn Name,
which the type checker consumes to produce HsSyn Id. All three passes
are monomorhic: they consume and produce a single fixed variant of the
underlying data type.

In contrast, work addressing the expression problem is often concerned with
re-usability and compositionality of functions defined per cases.

As we have seen with some examples (e.g., the generic printer), one can
write and reuse functions that are polymorphic in the extension descriptor,
but only by (a) simply discarding or preserving the decorations, or (b) using
auxiliary higher order functions to process the decorations. If one wishes to
take functions written only for a specific variant of a data type and reuse
them, as an after-thought, for other variants, certain forms of static guaran-
tees (possibly, beyond what types currently provide) are required for safety.
One common practice here is to focus on certain subclass of data types.

Trees are declared: In our setting, trees are often declared, rather than them
being anonymous. There are well-known trade-offs between declared and
anonymous data structures. The former is simpler and less error-prone, and
the latter enables more opportunities for generic programming. Row poly-
morphism, and the similar, often infer the structure of data from their uses,
leading to large types, bad performance, and complicated error messages.
Our approach is based on declaring both extensible and extended data types

19

(by describing the exact extensions). It resembles the long lasting problem
of supporting anonymous records, such as Trex (Gaster, 1998), in GHC,
where solutions with declared flavour often dodge the problem by leaving
programmers to do some of the work by providing more information.

Similar to our idiom in spirit is McBride’s Ornaments (Dagand and McBride,
2014; Williams et al., 2014). The key idea of ornaments is to declare trans-
formations of data types that preserve the recursive structures of data types,
with focus on reusing functions defined on the original for the transformed
data types. While our idiom can benefit from works on ornaments for such
reuse, there are decorations in practice that do not preserve the recursive
structures. For instance, in GHC, for better or worse, the constructor rep-
resenting if-expressions (like some others) is decorated with one additional
expression to store user-defined macros rebinding if-syntax, hence not pre-
serving the recursive structure.

Works with the current technology: Existing solutions often demand changes
to the compiler. Some other, come at the price of losing certain desirable
properties, such as decidablity of type inference, or predictability of the per-
formance. In contrast, our solution works in GHC right now (v8.0).

6 Conclusion

In the 1980s we were mainly concerned with functional programming over terms,
but this paper has mainly focused on functional programming over types, with
the interesting new twist that type functions (unlike term functions) can be
open. We have explored how to leverage that type-level openness to allow exten-
sibility of term-level data constructors. David, we hope that you approve. Happy
birthday!

7 Acknowledgement

The authors thank Axelsson, Broberg, Carette, Dagand, Diatchki, Eisenberg,
Loh, McBride, Rémy, Weirich, and Zimmerman for the fruitful and encouraging
discussions about this work. This work grew out of the Summer of Haskell 2016
project “Native metaprogramming in Haskell”, done by Najd under the mentor-
ship of Peyton Jones and Carette; we are grateful to the Haskell.Org community
and the organisers. Najd was funded by a Google Fellowship in Programming
Technology.

References

E. Axelsson. A generic abstract syntax model for embedded languages. In In-
ternational Conference on Functional Programming (ICFP), 2012.

20

P. Bahr and T. Hvitved. Compositional data types. In Workshop on Generic
Programming, 2011.

R. Burstall, D. MacQueen, and D. Sannella. HOPE - an experimental applicative
language. In ACM Lisp Conference, pages 1236-143, 1980.

M. M. T. Chakravarty, G. Keller, S. L. Peyton Jones, and S. Marlow. Associated
types with class. In Principles of Programming Languages (POPL), 2005.
P-E. Dagand and C. McBride. Transporting functions across ornaments. Jour-

nal of Functional Programming, 24(2-3):316-383, 005 2014.

B. R. Gaster. Records, variants and qualified types. PhD thesis, University of
Nottingham, 1998.

R. Hinze and A. Loh. 1hs2TeX, 2015.

P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A history of Haskell: being
lazy with class. In History of Programming Languages (HOPL-IIT), June 2007.

S. Lindley and J. Cheney. Row-based effect types for database integration. In
Types in Language Design and Implementation (TLDI), 2012.

A. Loh and R. Hinze. Open data types and open functions. In Principles and
Practice of Declarative Programming (PPDP), 2006.

R. Milner. A proposal for Standard ML. In ACM Symposium on LISP and
Functional Programming, pages 184-197, 1984.

S. L. Peyton Jones. Yacc in Sasl — an exercise in functional programming.
Software Practice and Ezperience, 15(8):807-820, August 1985.

M. Pickering, G. Erdi, S. Peyton Jones, and R. A. Eisenberg. Pattern synonyms.
In Haskell Symposium, 2016.

W. Swierstra. Data types a la carte. Journal of Functional Programming, 18(4),
2008.

M. Torgersen. The expression problem revisited. In Furopean Conference on
Object-Oriented Programming (ECOOP), 2004.

D. A. Turner. The SASL language manual. Technical report, University of St
Andrews, 1976.

D. A. Turner. Another algorithm for bracket abstraction. Journal of Symbolic
Logic, 44(2):267-270, June 1979.

D. A. Turner. A new implementation technique for applicative languages. Soft-
ware Practice and Fxperience, 9:31-49, 1979.

D. A. Turner. Recursion equations as a programming language. In J. Darlington,
P. Henderson, and D. Turner, editors, Functional Programming and its Appli-
cations. CUP, 1982.

D. A. Turner. Miranda: A non-strict functional language with polymorphic
types. In Functional Programming Languages and Computer Architecture
(FPCA), pages 1-16. Springer, 1985.

T. Williams, P. Dagand, and D. Rémy. Ornaments in practice. In Workshop on
Generic Programming (WGP), 2014.

21

