Adaptive Neural Compilation

Rudy Bunel* Alban Desmaison*
University of Oxford University of Oxford
rudy@robots.ox.ac.uk alban@robots.ox.ac.uk

Pushmeet Kohli Philip H.S. Torr M. Pawan Kumar
Microsoft Research University of Oxford University of Oxford
pkohli@microsoft.com philip.torr@eng.ox.ac.uk pawan@robots.ox.ac.uk

Abstract

This paper proposes an adaptive neural-compilation framework to address the
problem of learning efficient programs. Traditional code optimisation strategies
used in compilers are based on applying pre-specified set of transformations that
make the code faster to execute without changing its semantics. In contrast, our
work involves adapting programs to make them more efficient while considering
correctness only on a target input distribution. Our approach is inspired by the
recent works on differentiable representations of programs. We show that it is
possible to compile programs written in a low-level language to a differentiable
representation. We also show how programs in this representation can be optimised
to make them efficient on a target input distribution. Experimental results demon-
strate that our approach enables learning specifically-tuned algorithms for given
data distributions with a high success rate.

1 Introduction

Algorithm design often requires making simplifying assumptions about the input data. Consider, for
instance, the computational problem of accessing an element in a linked list. Without the knowledge
of the input data distribution, one can only specify an algorithm that runs in a time linear in the
number of elements of the list. However, suppose all the linked lists that we encountered in practice
were ordered in memory. Then it would be advantageous to design an algorithm specifically for this
task as it can lead to a constant running time. Unfortunately, the input data distribution of a real world
problem cannot be easily specified as in the above simple example. The best that one can hope for is
to obtain samples drawn from the distribution. A natural question that arises from these observations:
“How can we adapt a generic algorithm for a computational task using samples from an unknown
input data distribution?”

The process of finding the most efficient implementation of an algorithm has received considerable
attention in the theoretical computer science and code optimisation community. Recently, Condi-
tionally Correct Superoptimization [14] was proposed as a method for leveraging samples of the
input data distribution to go beyond semantically equivalent optimisation and towards data-specific
performance improvements. The underlying procedure is based on a stochastic search over the space
of all possible programs. Additionally, they restrict their applications to reasonably small, loop-free
programs, thereby limiting their impact in practice.

In this work, we take inspiration from the recent wave of machine-learning frameworks for estimating
programs. Using recurrent models, Graves et al. [2] introduced a fully differentiable representation of
a program, enabling the use of gradient-based methods to learn a program from examples. Many other
models that have been published recently [3. 5,16} [8]] build and improve on the early work by Graves

*The first two authors contributed equally.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

et al. [2]. Unfortunately, these models are usually complex to train and need to rely on methods
such as curriculum learning or gradient noise to reach good solutions as shown by Neelakantan et al.
[LO]. Moreover, their interpretability is limited. The learnt model is too complex for the underlying
algorithm to be recovered and transformed into a regular computer program.

The main focus of the machine-learning community has thus far been on learning programs from
scratch, with little emphasis on running time. However, for nearly all computational problems, it is
feasible to design generic algorithms for the worst-case. We argue that a more pragmatic goal for
the machine learning community is to design methods for adapting existing programs for specific
input data distributions. To this end, we propose the Adaptive Neural Compiler (ANC). We design a
compiler capable of mechanically converting algorithms to a differentiable representation, thereby
providing adequate initialisation to the difficult problem of optimal program learning. We then
present a method to improve this compiled program using data-driven optimisation, alleviating the
need to perform a wide search over the set of all possible programs. We show experimentally that
this framework is capable of adapting simple generic algorithms to perform better on given datasets.

2 Related Works

The idea of compiling programs to neural networks has previously been explored in the literature.
Siegelmann [[15]] described how to build a Neural Network that would perform the same operations as
a given program. A compiler has been designed by Gruau et al. [4] targeting an extended version
of Pascal. A complete implementation was achieved when Neto et al. [[11] wrote a compiler for
NETDEEF, a language based on the Occam programming language. While these methods allow us
to obtain an exact representation of a program as a neural network, they do not lend themselves to
optimisation to improve the original program. Indeed, in their formulation, each elementary step of a
program is expressed as a group of neurons with a precise topology, set of weights and biases, thereby
rendering learning via gradient descent infeasible. Performing gradient descent in this parameter
space would result in invalid operations and thus is unlikely to lead to any improvement. The recent
work by Reed and de Freitas [12] on Neural Programmer-Interpreters (NPI) can also be seen as a
way to compile any program into a neural network. It does so by learning a model that mimics the
program. While more flexible than previous approaches, the NPI only learns to reproduce an existing
program. Therefore it cannot be used to find a new and possibly better program.

Another approach to this learning problem is the one taken by the code optimisation community. By
exploring the space of all possible programs, either exhaustively [9] or in a stochastic manner [13],
they search for programs having the same results but being more efficient. The work of Sharma et al.
[14] broadens the space of acceptable improvements to data-specific optimisations as opposed to
the provably equivalent transformations that were previously the only ones considered. However,
this method is still reliant on non-gradient-based methods for efficient exploration of the space. By
representing everything in a differentiable manner, we aim to obtain gradients to guide the exploration.

Recently, Graves et al. [2]] introduced a learnable representation of programs, called the Neural Turing
Machine (NTM). The NTM uses an LSTM as a Controller, which outputs commands to be executed
by a deterministic differentiable Machine. From examples of input/output sequences, they manage
to learn a Controller such that the model becomes capable of performing simple algorithmic tasks.
Extensions of this model have been proposed in [3} 5] where the memory tape was replaced by
differentiable versions of stacks or lists. Kurach et al. [8] modified the NTM to introduce a notion of
pointers making it more amenable to represent traditional programs. Parallel works have been using
Reinforcement Learning techniques such as the REINFORCE algorithm [[1}[16}[17]] or Q-learning [18]]
to be able to work with non differentiable versions of the above mentioned models. All these models
are trained only with a loss based on the difference between the output of the model and the expected
output. This weak supervision results in learning becoming more difficult. For instance the Neural
RAM [8] requires a high number of random restarts before converging to a correct solution [10]], even
when using the best hyperparameters obtained through a large grid search.

In our work, we will first show that we can design a new neural compiler whose target will be a
Controller-Machine model. This makes the compiled model amenable to learning from examples.
Moreover, we can use it as initialisation for the learning procedure, allowing us to aim for the more
complex task of finding an efficient algorithm.

Inst argl arg2 output side effect

STOP - - 0 stop =1
ZERO - - 0 -
INC a - a+l
DEC a - a-1
Controller ‘ Controller ‘ ADD a b a+b
o 1 2 SUB a b a-b
% | l | =] | l | /= MIN a b min(ab)
- Machine - ‘ Machine - MAX a b max(a,b) R
R T l Sop ® T l Vo™ READ a - m, Memory access
M M? WRITE a b 0 mt =b
[o— o T a
M —>{ Memory }—> Memory }—> — M TR —b
JEZ a b 0 .
ifa=0
(a) General view of the whole Model. (b) Machine instructions.

Figure 1: Model components.

3 Model

Our model is composed of two parts: (i) a Controller, in charge of specifying what should be
executed; and (ii) a Machine, following the commands of the Controller. We start by describing the
global architecture of the model. For the sake of simplicity, the general description will present a
non-differentiable version of the model. Section[3.2] will then explain the modifications required to
make this model completely differentiable. A more detailed description of the model is provided in
the supplementary material.

3.1 General Model

We first define for each timestep ¢ the memory tape that contains M integer values
Mt = {ml,mh, ... ,m,}, registers that contain R values R = {rt,rk, ... rL} and the instruc-
tion register that contains a single value ZR". We also define a set of instructions that can be executed,
whose main role is to perform computations using the registers. For example, add the values contained
in two registers. We also define as a side effect any action that involves elements other than the input
and output values of the instruction. Interaction with the memory is an example of such side effect.
All the instructions, their computations and side effects are detailed in Figure[Tb]

As can be seen in Figure [1a the execution model takes as input an initial memory tape M and
outputs a final memory tape M7 after T steps. At each step ¢, the Controller uses the instruction
register ZR' to compute the command for the Machine. The command is a 4-tuple ¢, a, b, 0. The
first element e is the instruction that should be executed by the Machine, enumerated as an integer.
The elements a and b specify which registers should be used as arguments for the given instruction.
The last element o specifies in which register the output of the instruction should be written. For
example, the command {ADD, 2, 3,1} means that only the value of the first register should change,
following 7" = ADD(rk, r%). Then the Machine will execute this command, updating the values
of the memory, the registers and the instruction register. The Machine always performs two other
operations apart from the required instruction. It outputs a stop flag that allows the model to decide
when to stop the execution. It also increments the instruction register ZR' by one at each iteration.

3.2 Differentiability

The model presented above is a simple execution machine but it is not differentiable. In order to be
able to train this model end-to-end from a loss defined over the final memory tape, we need to make
every intermediate operation differentiable.

To achieve this, we replace every discrete value in our model by a multinomial distribution over all
the possible values that could have been taken. Moreover, each hard choice that would have been
non-differentiable is replaced by a continuous soft choice. We will henceforth use bold letters to
indicate the probabilistic version of a value.

First, the memory tape M is replaced by an M x M matrix M¢, where Mf ; corresponds to the

probability of m! taking the value j. The same change is applied to the registers R’, replacing them
with an R x M matrix R, where Rﬁ’ ; represents the probability of r! taking the value j. Finally, the

instruction register is also transformed, the same way as the other registers, from a single value ZR"
to a vector of size M noted ZR', where the i-th element represents its probability to take the value .

The Machine does not contain any learnable parameter and will just execute a given command. To
make it differentiable, the Machine now takes as input four probability distributions e, at, b? and
of, where €' is a distribution over instructions, and a’, b’ and o! are distributions over registers. We
compute the argument values arg;® and args® as convex combinations of delta-function probability
distributions of the different registers values:

R R
t t.t t tot
arg; = E a;r; args” = E b;r;, (D
i=1 i=1

where a! and b} are the i-th values of the vectors a’ and b’. Using these values, we can compute the
output value of each instruction k using the following formula:

VO<c<M outp,= Y arg)-argy}-1[gi(i,j)=c mod M], 2)
0<i,j<M

where gy, is the function associated to the k-th instruction as presented in Table out’,i,’c is the
probability for an instruction & to output the value c at the time-step ¢ and arg;! is the proba-
bility of the argument 1 having the value ¢ at the time-step ¢. Since the executed instruction is
controlled by the probability e, the output for all instructions will also be a convex combination:
out’ = 3 | el outl, where N is the number of instructions. This value is then stored into the
registers by performing a soft-write parametrised by o': the value stored in the i-th register at time
t+ lisri™ =ri(1 — of) + out’ol, allowing the choice of the output register to be differentiable.

A special case is associated with the stop signal. When executing the model, we keep track of the
probability that the program should have terminated before this iteration based on the probability
associated at each iteration with the specific instruction that controls this flag. Once this probability
goes over a threshold 740, € (0, 1], the execution is halted. We applied the same techniques to make
the side-effects differentiable, this is presented in the supplementary materials.

The Controller is the only learnable part of our model. The first learnable part is the initial values for

the registers R? and for the instruction register ZR". The second learnable part is the parameters of
the Controller which computes the required distributions using:

el =W_ xIR!, al = W, « IR, b! = W, « IR', ol =W, xIR! (3)

where W is an N x M matrix and W,, W}, and W, are R x M matrices. A representation of these
matrices can be found in Figure[2c] The Controller as defined above is composed of four independent,
fully-connected layers. In Section [d.3] we will see that this complexity is sufficient for our model to
be able to represent any program.

Henceforth, we will denote by 8 = {R?, IR’ W, W,, W,, ‘W, } the set of learnable parameters.

4 Adaptative Neural Compiler

We will now present the Adaptive Neural Compiler. Its goal is to find the best set of weights 8* for a
given dataset such that our model will perform the correct input/output mapping as efficiently as it
can. We begin by describing our learning objective in details. The two subsequent sections will focus
on making the optimisation of our learning objective computationally feasible.

4.1 Objective function

Our goal is to solve a given algorithmic problem efficiently. The algorithmic problem is defined
as a set of input/output pairs. We also have access to a generic program that is able to perform the
required mapping. In our example of accessing elements in a linked list, the transformation would
consist in writing down the desired value at the specified position in the tape. The program given
to us would iteratively go through the elements of the linked list, find the desired value and write it
down at the desired position. If there exists some bias that would allow this traversal to be faster, we
expect the program to exploit it.

Our approach to this problem is to construct a differentiable objective function that maps controller
parameters to a loss. We define this loss based on the states of the memory tape and outputs of the
Controller at each step of the execution. The precise mathematical formulation for each term of the
loss is given in the supplementary materials. Here we present the motivation behind each of them.

4

Correctness We first want the final memory tape to match the expected output for a given input.

Halting To prevent programs from taking an infinite amount of time without stopping, we define a
maximum number of iterations 75, after which the execution is halted. Moreover, we add a penalty
if the Controller didn’t halt before this limit.

Efficiency We penalise each iteration taken by the program where it does not stop.
Confidence We finally make sure that if the Controller wants to stop, the current output is correct.

If only the correctness term was considered, nothing would encourage the learnt algorithm to halt as
soon as it finished. If only correctness and halting were considered, then the program may not halt as
early as possible. Confidence enables the algorithm to better evaluate when to stop.

The loss is a weighted sum of the four above-mentioned terms. We denote the loss of the ¢-th training
sample, given parameters 0, as L;(€). Our learning objective is then specified as:

min ;Li(e) st.8 € O, 4

where O is a set over the parameters such that the outputs of the Controller, the initial values of each
register and of the instruction register are all probability distributions.

The above optimisation is a highly non-convex problem. In the rest of this section, we will first
present a small modification to the model that will remove the constraints to be able to use standard
gradient descent-based methods. Moreover, a good initialisation is helpful to solve these non-convex
problems. To alleviate this deficiency, we now introduce our Neural Compiler that will provide a
good initialisation.

4.2 Reformulation

In order to use gradient descent methods without having to project the parameters on ®, we alter the
formulation of the Controller. We use softmax layers to be able to learn learn unormalized scores that
are then mapped to probability distributions. We add one after each linear layer of the Controller and
for the initial values of the registers. This way, we transform the constrained-optimisation problem
into an unconstrained one, allowing us to use standard gradient descent methods. As discussed in
other works [[10], this kind of model is hard to train and requires a high number of random restarts
before converging to a good solution. We will now present a Neural Compiler that will provide good
initialisations to help with this problem.

4.3 Neural Compiler

The goal for the Neural Compiler is to convert an algorithm, written as an unambiguous program, to
a set of parameters. These parameters, when put into the controller, will reproduce the exact steps of
the algorithm. This is very similar to the problem framed by Reed and de Freitas [12], but we show
here a way to accomplish it without any learning.

The different steps of the compilation are illustrated in Figure [2] The first step is to go from the
written version of the program to the equivalent list of low level instruction. This step can be seen
as going from Figure [2a]to Figure[2b] The illustrative example uses a fairly low-level language but
traditional features of programming languages such as loops or if-statements can be supported
using the JEZ instruction. The use of constants as arguments or as values is handled by introducing
new registers that hold these values. The value required to be passed as target position to the JEZ
instruction can be resolved at compile time.

Having obtained this intermediate representation, generating the parameters is straightforward. As
can be seen in Figure[2b] each line contains one instruction, the two input registers and the output
register, and corresponds to a command that the Controller will have to output. If we ensure that
IR is a Dirac-delta distribution on a given value, then the matrix-vector product is equivalent
to selecting a row of the weight matrix. As ZR is incremented at each iteration, the Controller
outputs the rows of the matrix in order. We thus have a one-to-one mapping between the lines of the
intermediate representation and the rows of the weight matrix. An example of these matrices can be
found in Figure The weight matrix has 10 rows, corresponding to the number of lines of code
of our intermediate representation. For example, on the first line of the matrix corresponding to the
output V), we see that the fifth element has value 1. This is linked to the first line of code where
the output of the READ operation is stored into the fifth register. With this representation, we can

Initial Registers:

Ry =6; Ry=2; R3=0;

var head = 0; Ri=2 Rs=1, Rgz=0;
var nb_jump = 1;
. R7 = O;
var out_write = 2;
Program:
nb_jump = READ(nb_jump); 0: Rs; = READ (Rs, R7)
out_write = READ(out_write); 1: Ry = READ (Ry, Ry)
loop : head = READ(head); 2: Rs = READ (Rg, Ry)
nb_jump = DEC(nb_jump); 3:Rs =DEC (Rs, Ry) (i) Instr. (ii) Argl
JEZ(nb_jump, end); 4:R; =JEZ (Rs,R1)
JEZ(0, loop); 5:R3 =JEZ (Rs3,R»)
end : head = INC(head); 6: Rs =INC (Rg,Ry)
head = READ(head); 7: R¢ = READ (Rg, R7)
WRITE (out_write, head); 8: R7 = WRITE(Ry, Rg)
STOP(); 9: R; =STOP (R7,R7) (iii) Arg2 (iv) Out
(a) Input program (b) Intermediary representation (c) Weights

Figure 2: Example of the compilation process. Program written to perform the ListK task. Given a pointer
to the head of a linked list, an integer k, a target cell and a linked list, write in the target cell the k-th element of
the list. (2b) Intermediary representation of the program. This corresponds to the instruction that a Random
Access Machine would need to perform to execute the program. Representation of the weights that encodes
the intermediary representation. Each row of the matrix correspond to one state/line. Initial value of the registers
are also parameters of the model, omitted here.

note that the number of parameters is linear in the number of lines of code in the original program
and that the largest representable number in our Machine needs to be greater than the number of lines
in our program.

Moreover, any program written in a regular assembly language can be rewritten to use only our
restricted set of instructions. This can be done firstly because all the conditionals of the assembly
language can be expressed as a combination of arithmetic and JEZ instructions. Secondly because all
the arithmetic operations can be represented as a combination of our simple arithmetic operations,
loops and ifs statements. This means that any program that can run on a regular computer, can be
first rewritten to use our restricted set of instructions and then compiled down to a set of weights for
our model. Even though other models use LSTM as controller, we showed here that a Controller
composed of simple linear functions is expressive enough. The advantage of this simpler model is
that we can now easily interpret the weights of our model in a way that is not possible if we use a
recurrent network as a controller.

The most straightforward way to leverage the results of the compilation is to initialise the Controller
with the weights obtained through compilation of the generic algorithm. To account for the extra
softmax layer, we need to multiply the weights produced by the compiler by a large constant to output
Dirac-delta distributions. Some results associated with this technique can be found in Section[5.1]
However, if we initialise with exactly this sharp set of parameters, the training procedure is not able
to move away from the initialisation as the gradients associated with the softmax in this region are
very small. Instead, we initialise the controller with a non-ideal version of the generic algorithm.
This means that the choice with the highest probability in the output of the Controller is correct, but
the probability of other choices is not zero. As can be seen in Section[5.2] this allows the Controller
to learn by gradient descent a new algorithm, different from the original one, that has a lower loss
than the ideal version of the compiled program.

S Experiments

We performed two sets of experiments. The first shows the capability of the Neural Compiler to
perfectly reproduce any given program. The second shows that our Neural Compiler can adapt and
improve the performance of programs. We present results of data-specific optimisation being carried
out and show decreases in runtime for all the algorithms and additionally, for some algorithms, show
that the runtime is a different computational-complexity class altogether. All the code required to
reproduce these experiments is available online

"https://github.com/albanD/adaptive-neural-compilation

5.1 Compilation

The compiler described in section [.3]allows us to go from a program written using our instruction
set to a set of weights © for our Controller.

To illustrate this point, we implemented simple programs that can solve the tasks introduced by Kurach
et al. [8] and a shortest path problem. One of these implementations can be found in Figure [2a] while
the others are available in the supplementary materials. These programs are written in a specific
language, and are transformed by the Neural Compiler into parameters for the model. As expected,
the resulting models solve the original tasks exactly and can generalise to any input sequence.

5.2 ANC experiments

In addition to being able to reproduce any given program as was done by Reed and de Freitas [12],
we have the possibility of optimising the resulting program further. We exhibit this by compiling
program down to our model and optimising their performance. The efficiency gain for these tasks
come either from finding simpler, equivalent algorithms or by exploiting some bias in the data to
either remove instructions or change the underlying algorithm.

We identify three different levels of interpretability for our model: the first type corresponds to
weights containing only Dirac-delta distributions, there is an exact one-to-one mapping between
lines in the weight matrices and lines of assembly code. In the second type where all probabilities
are Dirac-delta except the ones associated with the execution of the JEZ instruction, we can recover
an exact algorithm that will use if statements to enumerate the different cases arising from this
conditional jump. In the third type where any operation other than JEZ is executed in a soft way or
use a soft argument, it is not possible to recover a program that will be as efficient as the learned one.

We present here briefly the considered tasks and biases, and report the reader to the supplementary
materials for a detailed encoding of the input/output tape.

1. Access: Given a value k and an array A, return A[k]. In the biased version, the value of & is
always the same, so the address of the required element can be stored in a constant. This is
similar to the optimisation known as constant folding.

2. Swap: Given an array A and two pointers p and ¢, swap the elements A[p] and A[q]. In the
biased version, p and q are always the same so reading them can be avoided.

3. Increment: Given an array, increment all its element by 1. In the biased version, the array
is of fixed size and the elements of the array have the same value so you do not need to read
all of them when going through the array.

4. Listk: Given a pointer to the head of a linked list, a number k and a linked list, find the value
of the k-th element. In the biased version, the linked list is organised in order in memory, as
would be an array, so the address of the k-th value can be computed in constant time. This
is the example developed in Figure 2]

5. Addition: Two values are written on the tape and should be summed. No data bias is
introduced but the starting algorithm is non-efficient: it performs the addition as a series of
increment operation. The more efficient operation would be to add the two numbers.

6. Sort: Given an array A, sort it. In the biased version, only the start of the array might be
unsorted. Once the start has been arranged, the end of the array can be safely ignored.

For each of these tasks, we perform a grid search on the loss parameters and on our hyper-parameters.
Training is performed using Adam [7]] and success rates are obtained by running the optimisation with
100 different random seeds. We consider that a program has been successfully optimised when two
conditions are fulfilled. First, it needs to output the correct solution for all test cases presenting the
same bias. Second, the average number of iterations taken to solve a problem must have decreased.
Note that if we cared only about the first criterion, the methods presented in Section[5.1]would already
provide a success rate of 100%, without requiring any training.

The results are presented in Table|l] For each of these tasks, we manage to find faster algorithms. In
the simple cases of Access and Swap, the optimal algorithms for the considered bias are obtained.
They are found by incorporating heuristics to the algorithm and storing constants in the initial values
of the registers. The learned programs for these tasks are always in the first case of interpretability,
this means that we can recover the most efficient algorithm from the learned weights.

Table 1: Average number of iterations required to solve instances of the problems for the original program, the
best learned program and the ideal algorithm for the biased dataset. We also include the success rate of reaching
a more efficient algorithm across multiple random restarts.

Access Increment Swap ListK Addition Sort

Generic 6 40 10 18 20 38
Learned 4 16 6 11 9 18
Ideal 4 34 6 10 6 9.5
Success Rate 37 % 84% 27% 19% 12% T4%

While ListK and Addition have lower success rates, improvements between the original and learned
algorithms are still significant. Both were initialised with iterative algorithms with O(n) complexities.
They managed to find constant time (1) algorithms to solve the given problems, making the runtime
independent of the input. Achieving this means that the equivalence between the two approaches
has been identified, similar to how optimising compilers operate. Moreover, on the ListK task, some
learned programs corresponds to the second type of interpretability. Indeed these programs use soft
jumps to condition the execution on the value of k. Even though these program would not generalise
to other values of k, some learned programs for this task achieve a type one interpretability and a
study of the learned algorithm reveal that they can generalise to any value of k.

Finally, the Increment task achieves an unexpected result. Indeed, it is able to outperform our best
possible algorithm. By looking at the learned program, we can see that it is actually leveraging the
possibility to perform soft writes over multiple elements of the memory at the same time to reduce
its runtime. This is the only case where we see a learned program associated with the third type of
interpretability. While our ideal algorithm would give a confidence of 1 on the output, this algorithm
is unable to do so, but it has a high enough confidence of 0.9 to be considered a correct algorithm.

In practice, for all but the most simple tasks, we observe that further optimisation is possible, as some
useless instructions remain present. Some transformations of the controller are indeed difficult to
achieve through the local changes operated by the gradient descent algorithm. An analysis of these
failure modes of our algorithm can be found in the supplementary materials. This motivates us to
envision the use of approaches other than gradient descent to address these issues.

6 Discussion

The work presented here is a first step towards adaptive learning of programs. It opens up several
interesting directions of future research. For exemple, the definition of efficiency that we considered in
this paper is flexible. We chose to only look at the average number of operations executed to generate
the output from the input. We leave the study of other potential measures such as Kolmogorov
Complexity and sloc, to name a few, for future works.

As shown in the experiment section, our current method is very good at finding efficient solutions
for simple programs. For more complex programs, only a solution close to the initialisation can
be found. Even though training heuristics could help with the tasks considered here, they would
likely not scale up to real applications. Indeed, the main problem we identified is that the gradient-
descent based optimisation is unable to explore the space of programs effectively, by performing
only local transformations. In future work, we want to explore different optimisation methods. One
approach would be to mix global and local exploration to improve the quality of the solutions. A
more ambitious plan would be to leverage the structure of the problem and use techniques from
combinatorial optimisation to try and solve the original discrete problem.

Acknowledgments

We would like to thank Siddharth Narayanaswamy and Diane Bouchacourt for helpful discussions and proof-
reading the paper. This work was supported by the EPSRC, Leverhulme Trust, Clarendon Fund and the ERC
grant ERC-2012-AdG 321162-HELIOS, EPSRC/MURI grant ref EP/N019474/1, EPSRC grant EP/M013774/1,
EPSRC Programme Grant Seebibyte EP/M013774/1 and Microsoft Research PhD Scolarship Program.

References

[1] Marcin Andrychowicz and Karol Kurach. Learning efficient algorithms with hierarchical
attentive memory. CoRR, 2016.

[2] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, 2014.

[3] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to
transduce with unbounded memory. In NIPS, 2015.

[4] Frédéric Gruau, Jean-Yves Ratajszczak, and Gilles Wiber. A neural compiler. Theoretical
Computer Science, 1995.

[5] Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented
recurrent nets. In NIPS, 2015.

[6] Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. In /ICLR, 2016.
[7] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[8] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. In
ICLR, 2016.

[9] Henry Massalin. Superoptimizer: a look at the smallest program. In ACM SIGPLAN Notices,
volume 22, pages 122—-126. IEEE Computer Society Press, 1987.

[10] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach,
and James Martens. Adding gradient noise improves learning for very deep networks. In ICLR,
2016.

[11] Jodo Pedro Neto, Hava Siegelmann, and Félix Costa. Symbolic processing in neural networks.
Journal of the Brazilian Computer Society, 2003.

[12] Scott Reed and Nando de Freitas. Neural programmer-interpreters. In /CLR, 2016.

[13] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In ACM SIGARCH
Computer Architecture News, 2013.

[14] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. Conditionally correct
superoptimization. In OOPSLA, 2015.

[15] Hava Siegelmann. Neural programming language. In AAAL 1994.

[16] Ronald Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 1992.

[17] Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines. arXiv
preprint arXiv:1505.00521, 2015.

[18] Wojciech Zaremba, Tomas Mikolov, Armand Joulin, and Rob Fergus. Learning simple algo-
rithms from examples. CoRR, 2015.

