
User-Specific Learning for Recognizing a Singer’s Intended Pitch

Andrew Guillory
University of Washington

Seattle, WA
guillory@cs.washington.edu

Sumit Basu
Microsoft Research

Redmond, WA
sumitb@microsoft.com

Dan Morris
Microsoft Research

Redmond, WA
dan@microsoft.com

Abstract

We consider the problem of automatic vocal melody tran-
scription: translating an audio recording of a sung melody
into a musical score. While previous work has focused on
finding the closest notes to the singer’s tracked pitch, we in-
stead seek to recover the melody the singerintendedto sing.
Often, the melody a singer intended to sing differs from what
they actually sang; our hypothesis is that this occurs in a
singer-specific way. For example, a given singer may often
be flat in certain parts of her range, or another may have dif-
ficulty with certain intervals. We thus pursue methods for
singer-specific training which use learning to combine differ-
ent methods for pitch prediction. In our experiments with hu-
man subjects, we show that via a short training procedure we
can learn a singer-specific pitch predictor and significantly
improve transcription of intended pitch over other methods.
For an average user, our method gives a 20 to 30 percent re-
duction in pitch classification errors with respect to a baseline
method which is comparable to commercial voice transcrip-
tion tools. For some users, we achieve even more dramatic
reductions. Our best results come from a combination of
singer-specific-learning with non-singer-specific feature se-
lection. We also discuss the implications of our work for
training more general control signals. We make our exper-
imental data available to allow others to replicate or extend
our results.

Introduction
Computer-based symbolic representations of music, such as
MIDI (Musical Instrument Digital Interface, the most com-
mon standard for transmitting and storing symbolic music
information), have been powerful tools in the creation of
music for several decades. Musicians able to enter sym-
bolic music with a musical instrument or a score-editing sys-
tem have leveraged powerful synthesis and signal processing
tools to create compelling audio output. However, this ap-
proach requires either advanced skill with an instrument or
tedious manual score entry; both of these requirements may
limit the creative expression and fluidity of music creation.

In order to make symbolic music processing tools more
accessible and to allow more creativity and fluidity in sym-
bolic music entry, existing work has attempted to replace the
“musical instrument” in this process with a human voice by

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Automatic voice transcription process. We focus
on singing errors as distinct from system errors.

transcribing sung pitches into a symbolic melody. However,
no system to date has been sufficiently accurate to replace a
musical instrument as an entry system for symbolic music.
The primary limitation has not been the determination of an
audio stream’s fundamental frequency, but rather the trans-
formation of that frequency stream into a series of intended
pitches and audio events.

Figure 1 shows an example of the voice transcription pro-
cess. In this example, an attempt to transcribe the nursery
rhyme “Old MacDonald Had a Farm”, there are both system
errors and singing errors in the final transcription. We calla
transcription error asystem errorif it is the result of the sys-
tem incorrectly recovering the actual sung melody. In our
example, the final note of the melody is oversegmented by
the note segmentation method, resulting in two extra notes.
This is a system error, since inspection of the recording con-
firms the user did only sing one note. The second class of er-
rors,singing errors, includes transcription errors due to dif-
ferences between the sung melody and the intended melody.
For example, a common singing error is to sing a note sharp
or flat, resulting in a sung pitch one or two semitones off
from the intended pitch. In our example, the singer is flat by

Figure 2: Screenshot of the data collection interface.

more than half a semitone on two notes (highlighted in red).
We hypothesize that a major limitation of previous re-

search is the lack of a user-specific model accounting for
singing errors. While previous work has assumed that the
ideal transcription system would use canonical models that
work for all users with no per-user training, we instead re-
quire a user to sing a short series of training melodies where
the intended pitch and rhythm are known a priori, just as
speech and handwriting recognition systems currently re-
quire user-specific training. By introducing this fundamen-
tally new interaction paradigm, we hope to overcome the
limitations that have until now prevented voice from being
an effective melody input tool.

In this paper, we describe our training paradigm and
our model for melodic transcription. We show that our
system produces more accurate transcriptions than previ-
ous approaches. This work has implications for both mu-
sic creation and the related field of music information re-
trieval, where recent work has attempted to search a melodic
database for songs based on vocal input. We also discuss
how related scenarios could benefit from similar approaches.

Data Collection Procedure
To learn a singer-specific mapping from a sung pitch to an
intended pitch, we need a method for collecting recordings
with known intended pitch. We have designed and imple-
mented a procedure for quickly and easily collecting this
training data without the need for hand annotation. The pro-
gram asks the user to listen to a series of short (2 to 4 mea-
sure) melodies and then sing them back. At the start of the
training procedure the program displays instructions to the
user. Users are instructed to sing “doo” for each note. The
program also asks users indicate their gender. Female par-
ticipants are given examples with a higher pitch range. The
examples we use are included in the online supplementary
material.

At the start of each example, the program plays a synthe-
sized version of the melody starting with the sound of the
root note (the first note of the key the melody is in) played
as a piano sound and a spoken countdown (“one, two, three,
four”). The melody is then played as a synthesized horn
sound along with a simple drum beat. While they listen to

the melody, users are shown a visual representation of the
melody in a piano roll format. Immediately after the melody
finishes playing, on-screen instructions tell the user to sing
back the melody. At the start of the recording phase of each
example, the user hears the same root note and countdown.
The user then sings along with the same drum beat, but does
not hear the synthesized horn sound while singing. Figure 2
shows a screenshot of the main interface while recording.
The online supplementary material also includes a video
demonstrating the interface.

Recording stops automatically after the correct number of
measures. When recording has finished, the user has the op-
tion to repeat the current example or save the recording and
move on to the next example. Optionally, we give the user
feedback about their singing accuracy after each example.
This feedback can be skipped and is meant to engage the
user and make the training procedure more enjoyable. Feed-
back is only displayed after the user has finished an example
and chosen to move on in order to prevent the feedback from
influencing whether or not a user repeats the example.

We have designed the training procedure in an attempt
to reduce system errors and allow us to focus on singing
errors and in particular pitch errors. We ask users to sing
“doo” for each note so that the hard consonant sound makes
it easy to identify the start of notes. By playing the back-
ing drum track as users sing, we ensure that the recorded
melodies are aligned with the melodies we ask them to sing.
We minimized pitch perception issues by empirically com-
paring several synthesized instruments for pitch clarity;our
experiments use a synthesized horn sound. Finally, by using
short melodies, recording immediately after playback, and
playing the melody’s root note at the start of recording, we
try to minimize the chance that the user forgets the melody
or the key of the melody.

Non-Learning Methods for Pitch Prediction
Rather than building a learner from scratch, it seemed sen-
sible to leverage the wide variety of existing non-learning-
based methods for estimating pitch. We also expect that fu-
ture practitioners will have new non-learning-based methods
they will wish to try. We thus developed a formulation in
which we could supply a large bag of candidate pitch pre-
dictions and let the algorithm sort out which will work best
for the task in a singer-specific way.

We assume as input to our method a relatively accurate
transcription of the raw frequencies present in a record-
ing. We also assume this sequence is broken into segments
corresponding to sung notes (see “Baseline Transcription
Method”). Let pi, then, refer to the pitch segment for the
ith note in a melody and assume these pitch values are sam-
pled at a regular interval (100Hz) and are represented on a
log Hz scale (MIDI note numbers are integer values on this
scale). Our goal is then to translatep1, p2, ... into an esti-
mate of the intended melody by labeling each note with an
intended pitch estimateyi. We assume the intended melody
is a sequence of discrete pitch values, soyi will ultimately be
rounded to an integer pitch number on the chromatic scale
(i.e. MIDI note number). Without loss of generalization,

all the methods we consider first predictyi as a real value
before rounding.

The remainder of this section will describe different non-
learning methods for performing this labeling which will ul-
timately be used as features by our learner.

Simple Non-Learning-Based Methods
Perhaps the simplest method for estimatingyi from pi is to
simply take the median pitch value inpi, which we write as
median(pi). This heuristic assumes that the note contour
for the sung pitch is roughly centered around the intended
pitch for that note. We foundmedian(pi) to be a relatively
good estimate of intended pitch for singers with accurate
pitch. The more complicated predictors we consider all use
median(pi) as a proxy for sung pitch in forming more accu-
rate estimates of intended pitch. Other predictors available
to our learner take the mean, the maximum, or the minimum
pitch value inpi or compute the median of a small portion
of pi (for example the middle third ofpi).

More advanced predictors available to our learner use in-
formation from surrounding notes to adjust the pitch of a
note. For example, if the sung pitch of the previous note is
flat relative to the integer chromatic scale, we would expect
the current note to also be flat by roughly the same amount.
This intuition leads to the heuristic

yi = median(pi)+(round(median(pi−1))−median(pi−1))

We could also use a similar heuristic with the next note,
pi+1. Another similar heuristic assumes singers always in-
tend to sing integer intervals and and rounds the difference
between the previous and current sung pitches

yi = median(pi−1)+round(median(pi)−median(pi−1))

We can also apply a single shift to all pitch values in a
sung melody. That is, predictyi = median(pi)+δ for some
δ which is the same for all notes in a melody. Heuristics of
this kind make sense if we expect that a singer’s sung pitch
differs from intended pitch by a constant amount throughout
a sung melody. Among the choices forδ, we can assume
notes in the melody are all roughly correct relative to the first
note, givingδ = round(median(p0)) − median(p0). We
can also compute this quantization error term for all notes
and shift by the median or mean for the melody, or we can
use more complicated methods to find the shift which best
aligns the sung melody to a grid. We make use of all of these
prediction methods in our experiments.

Pitch Clustering Methods
We found that a particularly effective strategy for correcting
notes involves shifting the pitch of each note towards the
mean pitch of similar notes; we refer to this class of methods
as pitch clustering heuristics. These heuristics work well
when a particular note is sung more than once in a melody
and most of the occurrences of the note are correct. The
particular heuristic we use is

yi =

∑
j I(|median(pj) − median(pi)| < t)median(pj)∑

j I(|median(pj) − median(pi)| < t)

whereI is the indicator function andt is a fixed threshold,
typically around.5. In this equation, the indicator function
selects nearby notes, and we average over these notes.

Scale Detection Methods

It is sometimes the case that the intended melody primarily
contains notes in a particular musical scale (i.e. C major).
If this is the case then it may be possible to detect this scale
and predictyi to bemedian(pi) rounded to the nearest pitch
on the scale. We can represent a scale as a root note on the
MIDI note number scale and a sequence of offsets specify-
ing pitch values relative to the root note. For example, the
C major scale would be represented as48 (for the root note)
and0, 2, 4, 5, 7, 9, 11 for the sequence of relative pitch val-
ues. In general the root note may not be an integer. A simple
approach to scale detection is to choose the scale out of a set
of candidate scales which minimizes

∑
i |median(pi)−yi|

2

whereyi is median(pi) rounded to the nearest pitch on the
scale. There are a number of variations including using ab-
solute difference in place of squared difference and adding
a term which favors scales with certain note frequency char-
acteristics. We can also vary the set of candidate scales. For
example, we can try all possible root notes, only try integer
root notes, or only try root notes actually in the sung melody.

We note that the use of scale detection is not always appli-
cable. In some cases the melody may not conform to a par-
ticular scale, there may be scale changes in the recording,
or—in real-time scenarios—insufficient data may be avail-
able for scale detection.

Combining Predictions with Learning
We have described a number of different reasonable methods
for predicting the intended note sequence from a transcrip-
tion of sung pitch. This raises a natural question: which
methods should we use? We propose to choose a singer-
specific combination of methods using learning. Assume we
have a set of methods which predict different values foryi.
With each of these methods, we compute an estimate of the
error relative tomedian(pi). We collect all of these pitch er-
ror predictions for a particular note into a feature vectorxi.
Our approach is to learn a set of singer-specific weightsw
so that for a note with feature vectorxi our predicted pitch
is round(wT xi +median(pi)). It’s helpful to also include a
bias feature inxi which is always set to1. This lets us learn
a singer-specific tuning shift.

The error we ultimately care about is pitch classification
error, I(yi 6= round(wT xi + median(pi))). It is hard to
minimize this non-convex loss, however, so we instead min-
imize squared error ignoring the rounding. Given a singer-
specific training set consisting of feature vectorsxi and
ground truth intended pitch valuesyi, we minimize

∑

i

(wT xi − (yi − median(pi))
2 +

1

2
λwT w (1)

whereλ is a regularization parameter controlling the norm of
the resulting weight vector. This linear least squares objec-
tive can be solved very quickly assuming we do not have too

many features. In our experiments, we simply fix our regu-
larization constantλ = 1. We also experimented with tuning
λ on a per-singer basis via cross validation, but we found
this did not consistently improve performance. In fact, at-
tempting to tuneλ using the relatively small singer-specific
training set often hurt performance on the test set.

We have framed the learning problem as simple linear re-
gression, but there are a number of alternative ways of pos-
ing it; in experiments not reported here, we tried a num-
ber of approaches. These include predicting discrete pitch
values using a multiclass classifier, predicting the intended
pitch value directly using linear regression, and predicting
whether to round the sung pitch up or down. We found that
the choice of features is generally more important than the
choice of objective and loss function and therefore use a very
simple approach which makes it very easy to specify fea-
tures. We use pitch error as our regression target, as opposed
to pitch itself, so the regularization term favors transcriptions
close tomedian(pi).

To evaluate our results, we estimate the generalization er-
ror of our method by computing leave-one-out cross vali-
dation error over melodies. Computing average cross vali-
dation error over melodies as opposed to notes ensures that
notes in the test data are from different recordings than the
training data.

As is often the case for user-specific machine learning, we
expect that the total amount of training data collected across
all singers will be much greater than the amount of training
data collected for any one particular singer. Even if we be-
lieve singer-specific training data to be more useful than data
from other users, it’s still important to also exploit the large
amount of extra data from other singers. Methods that use
both user-specific and non-user-specific data are common
in speech and handwriting recognition where this is called
adaptation.

To incorporate this auxiliary data, we use data from other
singers to select the set of features for singer-specific weight
learning. The objective function we use for evaluating the
quality of a set of features is average relative reduction iner-
ror. If the leave-one-out cross validation error for a singer
is e1 before singer-specific training ande2 after singer-
specific training, we define relative reduction in error to be
(e1−e2)/e2. Average relative reduction in error is this quan-
tity averaged over all users. We use a greedy feature selec-
tion strategy to maximize average relative reduction in error:
we initially start with an empty set of features. At each it-
eration we then add the feature which most increases the
objective (average relative reduction in error) evaluatedus-
ing other singers’ data. This continues until no new feature
increases the objective. The final set of features selected us-
ing this method is then used to learn the weight vectorw by
minimizing Equation 1 on the singer-specific training set.

There are other alternative methods for incorporating data
from other singers into singer-specific learning. We also ex-
perimented with using data from other singers to learn a
weight vector which is used as a prior for singer-specific
learning. However, we found the feature-selection-based
method to be more robust.

Baseline Transcription Method
Our features use as input a baseline transcription of the sung
pitch in the form of a segmented pitch track. Our baseline
uses the Praat pitch tracker (Boersma, 2001) with pitch sam-
pled at 100Hz, and our onset detector uses spectral flux and
peak-picking heuristics described by Dixon (2006). The on-
set detector computes spectral flux at 100Hz with a FFT win-
dow size of 2048 (46ms at 44kHz).

Each detected onset time is treated as a potential note start
time. The corresponding end time is chosen to be the either
the first unvoiced frame .1 seconds after the start time or the
next detected onset time (whichever comes first). We then
throw out all notes that are either shorter than .1 seconds or
contain more than 25 percent unvoiced frames (samples that
do not have a well-defined fundamental frequency).

In order to establish that our baseline transcription method
was comparable to existing approaches, we used Cele-
mony’s Melodyne software, a popular commercial system
for automatic transcription, to transcribe all of our train-
ing data with hand-optimized parameters. We found that
our baseline method’s output was comparable to Melodyne’s
output.

To form training and test data for our learning algorithm,
we need to match notes in the baseline transcription to notes
in the ground truth melodies. Because singers sang along
with a drum backing track, the recorded melodies are rela-
tively well-aligned with the ground truth, but there are some-
times extra or missing notes. For each sung note, we find the
note in the ground truth melody with the closest start time
within a search window. If theith sung note in a melody has
a start time in seconds ofsi, we set the search window for
that note to be[max(si − .4, si−1),min(si + .4, si+1)].

If there are no notes in the ground truth melody within this
search window, the sung note is considered unmatched. Un-
matched notes are included in the training and test data for
the purposes of feature computation, but are not included in
error computations or in the data finally used to learn weight
vectors. When learning weight vectors we also filter out all
notes for which|yi − median(pi)| > 1. We assume that
these errors are more often than not due to the user forgetting
the melody or the key of the melody, and are thusintention
errors rather thansingingerrors. Finally, as we found that
amateur singers are often insensitive to octave and will ad-
just to the octave most comfortable for their range, we also
shift the octave of the ground truth labels for each sequence
in order to best match the sung melody.

Experiments
We distributed our data collection application via mailing
lists within Microsoft. We received data from 51 participants
(17 female). As incentive to participate, users were given
a $5 dining coupon upon receipt of their data. The soft-
ware asked participants to sing 21 examples. Most exam-
ples were short recognizable melodies from children’s songs
(e.g. “Twinkle Twinkle Little Star”), but the set of probes
also included some scales and examples with more difficult
intervals (e.g. a series of ascending major and minor thirds).
With the 21 examples we used, the training procedure took

Figure 3: Scatter plot showing target vs sung pitch for notessung by two different singers. The singer on the left is more
accurate, resulting in less spread from thex = y line.

roughly 30 minutes. Audio was recorded uncompressed and
normalized and converted to 44kHz, 16-bit mono.

Combining the data from all 51 participants, we had 1071
individual recordings. We used data from 20 randomly se-
lected participants as a development set for designing our
features and algorithms and data from the remaining 31 as
a test set. We removed data from participants that did not
follow instructions or had very poor recording conditions–
5 participants in the development set and 5 in the test set.
The results reported here are from this final test set of 26
participants.

We did not specify any skill requirement for participation,
and participants varied widely in their singing ability. Some
participants reported professional singing experience while
others had very little singing experience. Figure 3 shows
scatter plots of notes sung by two different singers compar-
ing the sung pitch vs the pitch we asked them to sing. Here
we usedmedian(pi) as a proxy for the sung pitch of a note.
A singer with perfect pitch accuracy would produce a plot
with points only within .5 semitones of thex = y line. The
first user shown had an average per note accuracy of about
85% while the second user had an accuracy of around 70%.

In our learning experiments we used a set of 38 features
consisting of 21 of the “simple” features, 4 pitch clustering
features with different threshold values (specifically .25, .5,
.75, and 1), 12 different scale-detection-based features,and a
bias term. Scale-detection-based features make assumptions
about the data and as such are not always applicable, so we
are also interested in performance when these features are
excluded and report results for this scenario.

Table 1 compares learning results where feature selec-
tion and weight learning are performed either with singer-
specific data or data taken from other singers. We report
average relative reduction in leave-one-out cross validation
error usinground(median(pi)) as a baseline. We define rel-
ative reduction in error to be the percent of pitch errors elim-
inated by training. We used relative as opposed to absolute
reduction in error because different singers make very dif-
ferent numbers of mistakes. Both with and without scale de-
tection, the best results came fromsinger-specific learning
combined withnon-singer-specific feature selection. This
supports our hypothesis that singer-specific training can give
better transcription accuracy.

Figure 4 shows a scatter plot of per user error rates. In this
figure it is clear that learning helped and in some cases very
significantly reduced error. If we consider only singers with
baseline error rates of less than 20%, the average singer had
an error rate of 9.45% before training and 5.73% after train-
ing. These numbers are for the best method including scale
detection features. For many particular singers the effectof
learning is even more dramatic. One singer with a 5.60%
baseline error rate had an error rate of 0% after training. For
a different singer with a 52.99% baseline error rate, learning
reduced the number of errors by more than half, to 24.79%.

We also compared our learning method to directly using
the non-learning-based pitch prediction methods. With scale
detection methods, the best of these methods gave a 24.46%
average relative reduction in error on the test set. Excluding
scale detection, the best method gave a 13.45% average rel-
ative reduction in error. In both cases, our learning method
outperformed the non-learning-based method despite select-
ing the non-learning method with best relative error reduc-
tion on the entire data set (i.e. fit to the test data).

Finally, we also tried some other variations of non-singer-
specific learning to see if they could beat singer-specific
learning. We found by tuningλ to minimize leave-one-out
cross validation error on the training set, we could slightly
improve the non-singer-specific learning results to 22.29%
(from 22.08%) in the scale detection case and 17.16% (from
16.82%) in the w/o scale detection case. However, we could
not find a method that that outperformed singer-specific
training.

Real-Time Transcription
In the experiments discussed so far, we assumed when com-
puting features and predictions for a particular sung note that
we had access to the entire recording, including notes sung
after the note in question. In real-time performance appli-
cations, however, this is not the case. To simulate learn-
ing in these scenarios, we also tried computing features for
each note using a truncated version of the baseline transcrip-
tion with only limited look-ahead. Figure 5 shows these re-
sults for different look-ahead window sizes. In this figure,
the top line shows singer-specific weight learning with non-
singer-specific feature selection, and the bottom line shows
non-singer-specific weight learning. Scale detection fea-

Average Relative Error Reduction With Scale Detection
Singer-Specific Weights Non-Singer-Specific Weights

All Features 24.71 22.08
Singer-Specific Features 26.23 20.23
Non-Singer-Specific Features 27.22 21.55

Average Relative Error Reduction Without Scale Detection
Singer-Specific Weights Non-Singer-Specific Weights

All Features 13.96 15.62
Singer-Specific Features 15.84 13.73
Non-Singer-Specific Features 19.83 16.82

Table 1: Learning results with and without scale detection features. Higher values correspond to more accurate transcription.

Figure 4: Scatter plot showing error with learning vs error
without learning. Points below thex = y line represent
an improvement through learning. This figure demonstrates
that pitch classification is improved through learning for
most singers in our study (22 out of 26). These results use
non-singer-specific feature selection combined with singer-
specific weight learning. Here we include scale detec-
tion features; without scale detection, errors are slightly in-
creased but the benefit of learning remains.

tures were not used in either case, as this is likely to be im-
practical for real-time scenarios. We also tried non-singer-
specific weight learning with feature selection, but this per-
formed worse. As seen in Figure 5, singer-specific learning
again outperformed non-singer-specific learning and gave a
significant reduction in error over the baseline method. We
note these experiments are only meant to roughly approx-
imate the difficulties in real-time performance applications
since in fact our pitch tracking, onset detection, and note
segmentation algorithms still take as input the entire record-
ing. We leave a full study of real-time transcription as future
work.

Related Work
Our work is distinct from previous automatic transcription
work in that we focus on singer-specific training for tran-
scribingintended pitchas opposed tosung pitch. Ryyn̈anen
(2006) present a good general overview of the vocal melody
transcription problem, and Clarisse et al. (2002) compare a

Figure 5: Error reduction as a function of the look-ahead
data window available to the classifier. Results show that
training can improve transcription even for very short win-
dow sizes, with singer-specific training reducing error more.

number of systems for transcribing sung as opposed to in-
tended pitch. We know of only one previous paper that has
considered singer-specific training for transcription (Weihs
and Ligges, 2005). In that work, the authors show that
by tuning the parameters of their transcription system on a
singer-specific basis they can achieve better performance on
a small data set of 7 singers. These parameters control the
details of the fundamental frequency estimation method and
a pitch smoothing heuristic to account for vibrato. In our
work, we propose a method for automatically selecting and
combining multiple different pitch prediction methods, and
we evaluate singer-specific training on a data set with many
more singers.

Little, Raffensperger, and Pardo (2008) use singer-
specific training for a query-by-humming task. In this ap-
plication, the goal is to match the sung melody to a database
of melodies. In contrast, in our application the goal is to
transcribe the intended melody. We do not assume the avail-
ability of a database of melodies, and in fact we assume that
the intended melody may be completely novel. The train-
ing method used by Little, Raffensperger, and Pardo (2008)
tunes the parameters of their note segmentation algorithm
and also learns a similarity measure for musical intervals
which is used to align pairs of melodies. Meek and Birm-

ingham (2004) also consider a trainable model of singing er-
rors for query-by-humming but do not specifically consider
singer-specific training.

Several authors have used non-singer-specific learning to
improve transcription systems. Ryynänen (2004) learn a
model of the pitch contour of a note to improve vocal melody
transcription transcription and also use scale detection with
probabilistic models of note transition probabilities. Ellis
and Poliner (2006) use a classifier to extract the predomi-
nant melody in a polyphonic audio recording. The classifier
is trained on low-level audio features and the challenge is
separating the melody from other instruments.

Several authors have also proposed different methods for
accounting for constant and drifting tuning errors made by
singers (Haus and Pollastri, 2001; Wang, Lyu, and Chiang,
2003; McNab, Smith, and Witten, 1996; Ryynänen, 2004).
These methods are in some cases similar to the features we
use and could potentially be incorporated in our method. Fi-
nally, we note there are many commercially available sys-
tems for automatic transcription from audio. We found Cele-
mony’s Melodyne software to be, subjectively, the most re-
liable system of those we evaluated. We in fact found that
many available programs do not give reliable transcriptions
on real-world voice recordings.

Discussion
We feel that some of techniques we developed for singer-
specific pitch tracking will be applicable to other domains
as well. Many situations requiring learning and tight cou-
pling between the user and machine would be amenable to
our procedure, particularly when a user is controlling a com-
puter via a noisy input, e.g. controlling a video game char-
acter through electrophysiological sensors. We expect that
any such scenario will require the careful design of an inter-
active data collection procedure in order to capture the true
variations in human performance, as well as a flexible learn-
ing mechanism to integrate existing heuristics and features
along with newly proposed features. Finally, given the small
amount of data that will likely be available for each individ-
ual, it will be important to consider the best ways in which
to integrate information from the individual and the ensem-
ble when training the learner. We hope that the solution we
have developed and presented here will help in such related
scenarios.

Supplementary Material
A portion of our data set, including all of our ground truth
recordings and a more complete description of our exper-
imental procedure, is available athttp://research.
microsoft.com/cue/pitchtracking.

References
Boersma, P. 2001. Praat, a system for doing phonetics by

computer.Glot International5(9).

Clarisse, L. P.; Martens, J. P.; Lesaffre, M.; Baets, B. D.;
Meyer, H. D.; Demeyer, H.; and Leman, M. 2002. An
auditory model based transcriber of singing sequences. In
ISMIR-02.

Dixon, S. 2006. Onset detection revisited. InDAFx-06.

Ellis, D. P., and Poliner, G. E. 2006. Classification-based
melody transcription. Machine Learning65(2-3):439–
456.

Haus, G., and Pollastri, E. 2001. An audio front end for
query-by-humming systems. InISMIR-01.

Little, D.; Raffensperger, D.; and Pardo, B. 2008. User
Specific Training of a Music Search Engine. InMachine
Learning for Multimodal Interaction.

McNab, R. J.; Smith, L. A.; and Witten, I. H. 1996. Signal
processing for melody transcription. In19th Australasian
Computer Science Conference.

Meek, C., and Birmingham, W. 2004. A comprehensive
trainable error model for sung music queries.Journal of
Artificial Intelligence Research22(1):57–91.

Ryynänen, M. 2004. Probabilistic modelling of note events
in the transcription of monophonic melodies. Master’s
thesis, Tampere University of Technology.

Ryynänen, M. 2006. Singing transcription. In Klapuri, A.,
and Davy, M., eds.,Signal Processing Methods for Music
Transcription. Springer Science. 361–390.

Wang, C.-K.; Lyu, R.-Y.; and Chiang, Y.-C. 2003. A robust
singing melody tracker using adaptive round semitones
(ars). InISPA-03.

Weihs, C., and Ligges, U. 2005. Parameter optimization
in automatic transcription of music. InConference of the
Gesellschaft f̈ur Klassifikation.

