AN EXTENSION OF A THEOREM OF HAMADA ON
THE CAUCHY PROBLEM WITH SINGULAR DATA

BY LESLIE LAMPORT
Communicated by François Trèves, January 8, 1973

Introduction. Hamada [1] proved the following result about the propagation of singularities in the Cauchy problem for an analytic linear partial differential operator. Assume that the initial data are analytic at the point 0 except for singularities along a submanifold T of the initial surface containing 0. Let $K^{(1)}, \ldots, K^{(m)}$ be the characteristic surfaces of the operator emanating from T. Under the assumption that the $K^{(i)}$ have multiplicity one, he showed that the solution of the Cauchy problem is analytic at 0 except for logarithmic singularities along the $K^{(i)}$. We extend his result to the case where the $K^{(i)}$ have constant multiplicity.

1. Definitions and theorem. Let C^{n+1} denote the set of $(n + 1)$-tuples $x = (x^0, \ldots, x^n)$ of complex numbers. Let S be an n-dimensional analytic submanifold of C^{n+1}, and let T be an $(n - 1)$-dimensional analytic submanifold of S. Since our results are local, we can assume $S = \{(0, x^1, \ldots, x^n) \in C^{n+1}\}$ and $T = \{(0, 0, x^2, \ldots, x^n) \in C^{n+1}\}$.

Let $D_i = \partial / \partial x^i, \mathbf{D} = (D_0, \ldots, D_n)$, and let $\mathbf{a} : x \to \mathbf{a}(x; D)$ be an analytic partial differential operator on a neighborhood of 0 in C^{n+1}. Let $h(x; \mathbf{D})$ be the principal part of $\mathbf{a}(x; D)$. We assume that S is not a characteristic surface of \mathbf{a} at 0, so $h(0; 1, 0, \ldots, 0) \neq 0$. Let $\mathbf{p} = (p_0, \ldots, p_n)$ be an $(n + 1)$-tuple of formal variables, so $h(x; \mathbf{p})$ is a homogeneous polynomial in \mathbf{p} with analytic coefficients.

We say that the operator \mathbf{a} has constant multiplicity at 0 in the direction of T if we can factor h as

$$h(x; \mathbf{p}) = [h_1(x; \mathbf{p})]^{k_1} \cdots [h_s(x; \mathbf{p})]^{k_s}$$

for all x in a neighborhood of 0, where each $h_i(x; \mathbf{p})$ is a polynomial in \mathbf{p} of degree m_i with analytic coefficients, and the Σm_i roots of the polynomials $h_i(0; \tau, 1, 0, \ldots, 0)$ in τ are all distinct. If $s = k_1 = 1$, then a is said to be of multiplicity one at 0 in the direction of T.

Assume now that \mathbf{a} has constant multiplicity at 0 in the direction of T. It can be shown that we can find $m = \Sigma m_i$ analytic characteristic functions $\varphi^{(1)}, \ldots, \varphi^{(m)}$ of h defined in a neighborhood N of 0 satisfying:

Key words and phrases. Analytic Cauchy problem, characteristic surfaces, constant multiplicity, singularities.

The results described here are contained in the author's 1972 Ph.D. dissertation, written at Brandeis University under the supervision of Professor Richard Palais.

\[\text{Copyright © American Mathematical Society 1973}\]
1. \(h(x; D \varphi^{(i)}(x)) = 0 \) for all \(x \in N \).
2. \(\varphi^{(i)}(0, x^1, \ldots, x^n) = x^1 \) for all \((0, x^1, \ldots, x^n) \in N \cap S \).
3. For each \(y \in N \cap S \), the \(m \) numbers \(D_0 \varphi^{(i)}(y) \) are distinct.

Note that this implies that the numbers \(D_0 \varphi^{(i)}(y) \) are the distinct roots of the polynomials \(h(y; \tau, 1, 0, \ldots, 0) \) for each \(y \in N \cap S \). Let \(K^{(i)} = \{ x : \varphi^{(i)}(x) = 0 \} \), so each \(K^{(i)} \) is a characteristic surface of \(a \).

Using these notations, we now state our result.

Theorem. Let \(a, N, S, T, \varphi^{(i)} \) and \(K^{(i)} \) be as above. Let \(v \) be an analytic function on \(N \), and let \(w^j \) be an analytic function on \(N \cap (S - T) \) for \(j = 0, \ldots, r - 1 \), where \(r \) is the degree of the operator \(a \). Then there exists a neighborhood \(U \) of \(0 \) such that the Cauchy problem

\[
\begin{align*}
(1) \quad a(x; D)u(x) &= v(x), \\
(D_0^{(i)}u(y) &= w^j(y), \quad \text{for } y \in S, j = 0, \ldots, r - 1,
\end{align*}
\]

has a solution \(u \) of the form

\[
u(x) = \sum_{i=1}^{m} F^{(i)}(x) + G^{(i)}(x) \log [\varphi^{(i)}(x)],
\]

where each \(F^{(i)} \) is analytic on \(U - K^{(i)} \) and each \(G^{(i)} \) is analytic on \(U \).

Hamada proved this result when \(a \) has multiplicity one. In this case, if each \(w^j \) has at most a polar singularity along \(T \), then each \(F^{(i)} \) has at most a polar singularity along \(K^{(i)} \). This is false in the general case, as is shown by the solution

\[
u(t, y) = \sum_{k=0}^{\infty} \frac{(-1)^k k!}{(2k + 1)!} \frac{t^{2k+1}}{y^{k+1}}
\]

of the two-dimensional Cauchy problem

\[
\frac{\partial^2 u}{\partial t^2}(t, y) - \frac{\partial u}{\partial y}(t, y) = 0, \quad u(0, y) = 0, \quad \frac{\partial u}{\partial t}(0, y) = \frac{1}{y}.
\]

2. Method of proof. The problem is easily reduced to solving the Cauchy problem (1) with each \(w^j \equiv 0 \) and \(v \) analytic on \(N - K^{(1)} \). It can be shown that we may also assume that \(h(x; p) = h_1(x; p) \cdots h_s(x; p) \), where each \(h_i \) has multiplicity one in the direction of \(T \) and has \(\varphi^{(1)}, \ldots, \varphi^{(m)} \) as characteristic functions (so \(r = ms \)).

Let the functions \(f_k \) be the ones defined by Hamada satisfying \(df_k/\partial t = f_{k-1} \), for all integers \(k \), and \(f_0(t) = \log t \). The first step is to show that there exists a neighborhood \(V \) of \(0 \) such that if \(v \) is of the form

\[
v(x) = \sum_{i=1}^{m} \sum_{k=0}^{\infty} v^{(i)}_k(x) f_{k-1} [\varphi^{(i)}(x)],
\]

with each \(v^{(i)}_k \) analytic on \(V \), then the Cauchy problem
\(h(x;D)u(x) = v(x), \quad (D_0)^ju(y) = 0, \quad \text{for } y \in S, j = 0, \ldots, m - 1, \)

has a formal series solution of the form

\[
u(x) = \sum_{i=1}^{m} \sum_{k=0}^{\infty} u_k^{(i)}(x)f_{k-l}^{m-1} \varphi^{(i)}(x),\]

with each \(u_k^{(i)} \) analytic on \(V \). Moreover, bounds are obtained for the partial derivatives of the \(u_k^{(i)} \) in terms of those of the \(v_k^{(i)} \). This procedure is similar to the one used by Hamada.

Employing this result \(s \) times shows that with \(v \) given by (2), the Cauchy problem

\[h_1(x;D) \cdots h_r(x;D)u(x) = v(x), \quad (D_0)^ju(y) = 0, \quad \text{for } y \in S, j = 0, \ldots, r - 1, \]

has a formal solution

\[
u(x) = \sum_{i=1}^{m} \sum_{k=0}^{\infty} u_k^{(i)}(x)f_{k-l+r-s}[\varphi^{(i)}(x)]\]

with the \(u_k^{(i)} \) analytic on \(V \). Again, bounds are obtained on the \(u_k^{(i)} \).

Now we write \(a(x;D) = h_1(x;D) \cdots h_r(x;D) + b(x;D) \), where the degree of \(b \) is less than \(r \). Using the above results, we solve the sequence of Cauchy problems

\[h_1(x;D) \cdots h_r(x;D)u(x) = \begin{cases} v(x) & \text{if } q = 0, \\ -b(x;D)u_{q-1}(x) & \text{if } q > 0. \end{cases} \]

\[(D_0)^ju(y) = 0, \quad \text{for } y \in S, j = 0, \ldots, r - 1, \]

to get

\[qu(x) = \sum_{i=1}^{m} \sum_{k=0}^{\infty} qu_k^{(i)}(x)f_{k-l-q(s-1)}[\varphi^{(i)}(x)] \]

with each \(qu_k^{(i)} \) analytic on \(V \). Then

\[\sum_{q=0}^{\infty} qu(x) \]

is easily seen to be a formal solution of (1) (with \(w^j = 0 \)).

Now assume \(v(x) = v_1(x)f_{-1}[\varphi^{(1)}(x)] \), with \(v_1 \) analytic on \(V \), and let the corresponding solution (4) be \(u(x) = \sum_{i=1}^{m} u^{(i)}(x) \). Using the bounds on the \(qu_k^{(i)} \), we can find a neighborhood \(W \) of \(0 \) and demonstrate the absolute convergence of the sums (3) and (4) to prove that \(u^{(i)} \) is analytic on \(W - K^{(i)} \). Furthermore, we obtain a bound on \(u_k^{(i)} \) in terms of a bound on \(v_1 \).

Finally, we can write \(v(x) = \sum_{i=1}^{\infty} v_i(x)f_{-i}[\varphi^{(i)}(x)] \) (plus an analytic term which is handled by the Cauchy-Kowalewski theorem). It can be shown that there is a neighborhood \(U \) of \(0 \) such that the sums \(u_k^{(i)}(x) = \sum_{i=1}^{\infty} u_i^{(i)}(x) \)
are absolutely convergent on $U - K^{(i)}$. It is then easily seen that the solution $u(x) = \sum_{i=1}^{m} w^{(i)}(x)$ has the desired form.

3. **Further generalizations.** It is evident from the proof that the theorem remains valid if v has a singularity along any of the hypersurfaces $K^{(i)}$. The theorem is also true if v has a singularity on any hypersurface K containing T which is not tangent to S or to any $K^{(i)}$ at 0.

By using different choices for the functions f_k, the result can be extended to the case where the w^j are p-valued analytic functions on $N \cap (S - T)$—i.e., multiple-valued functions finitely ramified about T—and v is a p-valued analytic function on $N - K^{(i)}$ or $N - K$. In this case, the $F^{(i)}$ become p-valued analytic functions on $U - K^{(i)}$. This result was also obtained by Wagschal [2] when a has multiplicity one.

REFERENCES

Massachusetts Computer Associates, Lakeside Office Park, Wakefield, Massachusetts 01880