Integrating Paradigms for Approximate Probabilistic Planning

Andrey Kolobov

Mausam Daniel S. Weld

{akolobov, mausam, weld } @cs.washington.edu
Dept of Computer Science and Engineering
University of Washington, Seattle
WA-98195

Abstract

Humans are often able to solve extremely large
probabilistic planning problems reasonably well by
exploiting problem structure, heuristics, and vari-
ous approximations. Each of these aspects seems
indispensable for achieving high scalability and has
been studied in detail by the automated planning
community. However, most existing solvers use
only a proper subset of them.

In an initial attempt to bridge this gap we introduce
RETRASE, a novel MDP solver that derives ap-
proximate policies by extracting problem structure
and learning its parameters under heuristic guid-
ance. RETRASE uses classical planning to dis-
cover basis functions for value-function approxi-
mation and applies expected-utility analysis to this
compact space. Experiments demonstrate that RE-
TRASE outperforms winners from the past three
probabilistic-planning competitions on many hard
problems. We outline several extensions of RE-
TRASE and new directions for unifying paradigms
in probabilistic planning prompted by RETRASE’s
success.

1 INTRODUCTION

As humans, we are often able to solve probabilistic planning
problems far larger than state-of-the-art planners are capable
of. Even though we tend to miss the problems’ probabilistic
subtleties, our solutions are in many cases reasonably good.
We find them by using heuristics and various approximations
(“intuition”), and exploiting problem structure (i.e. disregard-
ing weakly relevant information). Each of these aspects has
been studied in detail by the automated planning community.

A popular framework for formulating probabilistic plan-
ning problems is Markov Decision Processes (MDPs). One
of the most popular algorithms for solving MDPs that yields
high-quality solutions is RTDP [1], a technique that explores
the state space under the guidance of a heuristic. Unfortu-
nately, being based on dynamic programming, it suffers from
a critical drawback — it represents the value function exten-
sionally, i.e., as a table, thus requiring memory (and time)
exponential in the number of domain features.

Two broad approaches have been proposed to avoid cre-
ating a state/value table. One method involves domain de-
terminization and uses a classical planner as a subroutine
in computing a policy. Such determinization planners, e.g.,
FFReplan [11], tend to disregard the probabilistic nature of
actions and often have trouble with probabilistically interest-
ing [7] domains. In other words, their approximation, while
computationally efficient, frequently results in poor solution
quality.

The other method, dimensionality reduction, maps the state
space to a parameter space of lower dimension. Typically, the
mapping is done by constructing a small set of basis func-
tions, learning weights for them, and combining the weighted
basis function values into the values of states. This can
be viewed as discovering problem structure while abstract-
ing away unimportant details. Researchers have successfully
applied dimensionality reduction to domains after manually
defining a domain-specific mapping but automatic basis func-
tion discovery in nominal (e.g., “discrete” or “logical”) do-
mains, such as those used in the IPPC, remains a challenge.

Thus, each technique has its advantages but also drawbacks
that prevents it from dominating others. In fact, all of them
seem indispensable for achieving high scalability and accept-
able solution quality simultaneously. However, most exis-
ting solvers use only a proper subset of them. This paper
bridges the gap — proposing a fusion of these ideas that re-
moves the drawbacks of each. Our algorithm RETRASE,
which stands for Regressing Trajectories for Approximate
State Evaluation, learns a compact value function approxima-
tion successful in a range of nominal domains. It discovers
problem structure by planning in a determinized version of
the domain at hand and thereby automatically obtaining a set
of basis functions, learns the weights for these basis functions
by heuristically-guided decision-theoretic means, and aggre-
gates them to compute state values. The set of basis functions
is normally much smaller than the set of reachable states, thus
giving our planner a large reduction in memory requirements
as well as in the number of parameters to be learned.

We demonstrate the practicality of our framework by com-
paring it to the top IPPC-04, 06 and 08 performers and
other state-of-the-art planners, on challenging problems from
these competitions. RETRASE demonstrates orders of mag-
nitude better scalability than the best optimal planners, and
frequently finds significantly better policies than the state-
of-the-art approximate solvers. The success of RETRASE

prompts several promising ideas for future work, outlined at
the end of the paper.

2 BACKGROUND

MDPs. In this paper, we focus on probabilistic plan-
ning problems that are modeled by factored indefinite-
horizon MDPs. They are defined as tuples of the form
(§,A,7T,C,G,s0), where S is a finite set of states, A is a
finite set of actions, 7 is a transition function S X A x S —
[0,1] giving the probability of moving from s, to s; by exe-
cuting a, C is amap S x A — RT specifying action costs,
s is the start state, and G is a set of (absorbing) goal states.
Indefinite horizon refers to the fact that the total action cost
is accumulated over a finite-length action sequence whose
length is unknown.

In factored MDPs, each state is represented as a conjunc-
tion of values of the domain variables. Solving an MDP
means finding a good (i.e. cost-minimizing) policy 7 : § —
A that specifies the actions the agent should take to eventu-
ally reach the goal. The optimal expected cost of reaching the
goal from a state s satisfies the following conditions, called
Bellman equations:

V*(s) = 0 ifse g, otherwise (1)
* — i T N * (!
V*(s) 21&12[6(3,(1) + y;s (s,a,s)V*(s")]
Given V*(s), an optimal policy may be com-

puted as follows: 7*(s) = argmin,c4[C(s,a) +
Yses T(s,a,8)V*(s')].

Solution Methods. The above equations suggest a dynamic
programming-based way of finding an optimal policy, called
value iteration (VI), that iteratively updates state values us-
ing Bellman equations in a Bellman backup and follows the
resulting policy until the values converge.

VI has given rise to many improvements. Heuristically-
guided methods, e.g. RTDP, explore the state space in a series
of trials and update the value function over the states in the
trial path using Bellman backups. A popular variant, LRTDP,
adds a termination condition to RTDP by labeling those states
whose values have converged as ‘solved’ [2].

3 ReTrASE

On a high level, RETRASE explores the state space in the
same manner as RTDP, but, instead of performing Bellman
backups on states themselves, backups are performed over
properties of the visited states. For each property, modified
RTDP learns a weight that reflects the quality of the plans
enabled by that property. A state’s value may then be com-
puted by aggregating the weights of all its properties. Con-
ceptually, there are three kinds of states at runtime: ones that
have been deemed dead ends, ones for which some properties
are known, and ones not yet assigned to the other two cat-
egories. When RETRASE encounters a state s of the third
type, it applies a classical planner (e.g., FF [5]) to a deter-
minized version of the domain starting from s. If no clas-
sical plan exists, then every probabilistic policy from s has
zero probability of reaching the goal, and s is marked as a
dead end. If FF finds a plan, however, RETRASE regresses

the goal conjunction through the plan to generate a logical
formula which is a property holding in s. Learning in the
property space supports information transfer between similar
states (e.g., all states that share a given property) even be-
fore some of these states are visited. Our approach is efficient
because fast classical planners can quickly derive these prop-
erties, and because the number of properties is typically far
smaller than the number of reachable states.

Definitions. We define a frajectory to be a sequence ¢t =
s,a1(04,),...,an(0;5,) where s is the trajectory’s starting
state, and each action ay(0;,) represents the jj,-th outcome
of the probabilistic action a;. We say that ¢ is a goal tra-
Jjectory if s modified by t’s action sequence is a goal state.
Further, we define a state property to be a conjunction of lit-
erals!. We say that a state s possesses property p if p holds in
s. With each property p, we associate a unique basis function
that has value 1 in s iff s possesses p.We say that a property
p (and the corresponding basis function b,) enables a set of
trajectories 7' to the goal if the goal can be reached from any
state possessing p by following any of the trajectories in T'. 2
A dead-end is a state with no trajectory to the goal.
Algorithm Intuition. Consider a trajectory t, =
s,a1(04,),...,a,(0;j,) that ends in a goal state. This
is an indication that the sequence of probabilistic actions
ai,...,ay, is potentially causally important, since their out-
comes 0;,, ..., 0;, have positive probability. To discover the
causal properties pq, . .., p, that allow the successful execu-
tion of ay,...,a,, we simply regress sequence ¢ from the
goal conjunction. We can now claim that action sequence
ag, - - -, Gy executed starting from any state possessing prop-
erty pr will lead us to the goal with positive probability,
though the magnitude of the probability is yet unknown. Note
that ¢ essentially chooses specific outcomes per action and
thus the execution of aq,...,a, may not always reach the
goal. Nevertheless, all properties that enable any positive-
probability trajectory to the goal may be important for our
purposes because they act as a basis for further planning. In
essence, this step can be thought of as unearthing the relevant
causal structure necessary for the planning task at hand.

To obtain goal trajectories all we need is to find plans that
reach the goal in the deterministic version of the domain (by
using a classical planner). Every such plan corresponds to a
positive-probability trajectory in the original domain.

We can now define a new probabilistic planning problem
over a state space consisting of these properties. In practice,
the space of properties is much smaller than the original state
space, since only the relevant causal structure is retained?,
giving us large reductions in space requirements. Solving this
new problem amounts to learning the weights for the proper-
ties. The weights will be a quantitative measure of each prop-
erty’s importance. There are many imaginable ways to learn
them; in this paper, we try one of such methods — a modified
version of RTDP. The use of RTDP enables us to leverage the
power of heuristic guidance in exploring the state space.

'Our algorithm can easily extend to properties specified using
general logical formulas.

Zassuming that the desired outcome is obtained for each action
on the trajectory.

3We may approximate this further by putting a bound on the

Algorithm 1 ReTrASE

1: Input: probabilistic domain D, problem P =
(init. state sq, goal G), trial length L

2: declare global map M from basis functions to weights

3: declare global set D FE of dead ends

4: compute global determinization D, of D

5: // Do modified RTDP over the basis functions

6: foralli =1:o0cc0do

7 declare state s < s

8: declare numSteps «— 0

9: while numSteps < L do

10 declare action a’ «— arg min,{ ExpActCost(a,s)}
11: ModifiedBellmanBackup(a’, s)

12: s «<—execute action a’ in s

13: numSteps «— numSteps + 1

14: end while

15: end for

16:

17: function ExpActCost(action a, state s)

18: declare array S, < successors of s under a

19: declare array P, < probs of successors of s under a
20: return cost(a) + >, P,[i]Value(S,]i])

22: function Value(state s)

23: if s € DE then

24: return a large penalty // e.g., 1000000

25: else if some member f’ of M holds in s then

26: return MiNyggig functions f that hold in SAMIf1}
27: else

28: GetBasisFuncsForS(s)

29: return Value(s)

30: end if

32: function GetBasisFuncsForS(state s)

33: declare problem p’ « (init. state s, goal G

34: declare plan pl « DeterministicPlanner(Dg4, p’)
35: if pl == none then

36: insert s into DE

37: else

38: declare basis function f «— goal G

39: declare cost < 0

40: for all i = length(pl) through 1 do

41: declare action a < pl[i

42 cost «— cost + cost(a)

43: f < (f Uprecond(a)) — ef fect(a)

44: insert (f, cost) into M if f isn’tin M yet
45: end for

46: end if

47:

48: function ModifiedBellmanBackup(action a, state s)
49: for all basis functions f in s that enable ¢ do

50: M][f] «— ExpActCost(a,s)

51: end for

The weights reflect the fact that the properties differ in the
total expected cost of trajectories they enable, as well as in
the total probability of these trajectories. This happens partly
because each trajectory considers only one outcome for each
of its actions. The sequence of outcomes the given trajectory
considers may be quite unlikely. In fact, getting some action
outcomes that the trajectory does not consider may prevent
the agent from ever getting to the goal. Thus, it may be much
“easier” to reach the goal in the presence of some properties
than others. Now, given that each state generally has several
properties, what is the connection between the state’s value
and their weights? In general, the relationship is quite com-
plex: under the optimal policy, trajectories enabled by several
properties may be possible. Therefore, the exact value of a
state is a summation of weights over a subset of the state’s
properties. However, determining this subset is at least as
hard as solving the MDP exactly. Instead, we approximate
the state value by the minimum weight of all properties that
the state possesses. This amounts to saying that the “better”
a state’s “best” property is, the “better” is the state itself.

Thus, deriving useful state properties and their weights
gives us an approximation to the optimal value function. The
algorithm’s pseudocode is presented in Listing 1.
Theoretical Properties. A natural question about RE-
TRASE is that of convergence. As it turns out, there exist
problems on which RETRASE does not converge. We
stress, however, that the lack of theoretical guarantees is not
indicative of a planner’s practical success or failure. Indeed,
the experimental results show that RETRASE performs
quite outstandingly on many of the planning community’s
benchmark problems.

4 EXPERIMENTAL RESULTS

Our experiments explore two important aspects of RETRASE
— (1) quality of solutions in complex domains and (2) scala-
bility. We ran RETRASE on six probabilistically interesting
hard problem sets — Triangle Tire World (TTW) from IPPC-
06 and -08, Drive from IPPC-06, Exploding Blocks World
(EBW) from IPPC-06 and -08, and Elevators from IPPC-06.
The experiments were conducted under the restrictions re-
sembling those of IPPC: for each problem, RETRASE had
a maximum of 40 minutes for training and then had 30 at-
tempts to solve each problem. The parameter we measured
was success rate (the percentage of 30 trials in which RE-
TRASE managed to solve the given problem) — the factor
that decides the winner in IPPC. The runs were performed on
a 2.8 GHz Intel Xeon processor with 2GB of RAM.

While analyzing the results, it is important to be aware
that our RETRASE implementation is not optimized. Con-
sequently, RETRASE’s efficiency is likely even better than
indicated by the experiments.

On TTW-06 and -08, RETRASE achieved the perfect
100% success rate across all the problems. For TTW-06, this
result is unmatched by the IPPC participants, while on TTW-
08 one other planner, HMDPP, achieved the same result. On
Elevators, RETRASE’s performance was rather average, as it
could not solve many of the problems. This is probably due

number of properties we are willing to handle in this step.

=o= ReTrASE E 3
50| * = FFReplan B B A2
10| 4 FPG 3 E

% SUCCESSFUL TRIALS
a
o

e oo ety
7 8 9 10 11 12 13 14 15
LOCKS WORLD-06 PROBLEM #

-
1 2 3 4 5 6
EXPLODING B

Figure 1: RETRASE dominates on Exploding Blocks World-06.

to the poor set of basis functions it managed to extract for this
domain. On Drive, RETRASE’s average success rate was at
par with the best of IPPC participants (FFReplan and FPG).
RETRASE distinguished itself particularly on EBW-08 and
EBW-06. On both domains its performance was better than
that of all the IPPC competitors. The advantage is especially
impressive on EBW-06 because it grows with the complexity
of the problem (Figure 1). Space constraints prevent us from
presenting the results from other domains in graphical form.

We note also that RETRASE’s scalability is far better than
that of heuristically guided optimal or suboptimal planners.
For instance, LRTDP with FF heuristic ran out of memory
on problems 8, 9, and 10 of TTW-08, whereas RETRASE
solved them easily.

5 DISCUSSION

RETRASE’s potential is clearly indicated by the experimen-
tal results, so we would like to extend RETRASE’s ideas to
other areas of automated planning. One field that would ben-
efit from RETRASE’s scalability is POMDP solvers. To be
capable of handling POMDPs, RETRASE will need to use a
conformant deterministic planner to come up with basis func-
tions. The state of the art in conformant planning will largely
determine RETRASE’s success as a POMDP solver.

The lack of theoretical guarantees of RETRASE can
be perceived by some to be its weakness. To address this
concern, we can modify RETRASE’s learning mechanism.
Space constraints prevent us from specifying the details, but
the main idea involves reducing a given MDP to a maximum
independent set problem over a “conflict graph” whose
vertices are basis functions with associated weights. The
independent set problem can then be solved using one of the
many theoretically strong approximators for it.

6 RELATED WORK

Besides basis function approximation (discussed in Section 1)
other flavors of dimensionality reduction include PCA and al-
gebraic and binary decision diagram (ADD/BDD). In practice
algorithms that use ADD/BDD do not scale to large problems.
APRICODD [10] is an exception, but it is not clear whether it
is competitive with today’s top methods. In continuous state
spaces, some researchers have applied non-linear techniques
like exponential-PCA and NCA for dimensionality reduction
[8].

Most basis function based techniques are not applied in
nominal domains. A notable exception is FPG [3] but RE-
TRASE outperforms it consistently on several domains.

RETRASE is described in more detail [6]. It is also related
in spirit to the probabilistic planners that use determinized
domains for probabilistic planning, e.g. FFReplan [11] and
FFHop [12].

The idea of using determinization followed by regression
has parallels to some research on relational MDPs, e.g., [4;
9].

7 CONCLUSION

Exploiting problem structure, heuristics, and various approx-
imations all seem to be essential components of highly scal-
able successful probabilistic planners. However, most exis-
ting solvers use only a proper subset of them. Our work
bridges this gap by introducing RETRASE, an algorithm that
combines the power of these approaches. It extracts problem
structure in a domain-independent way and learns the param-
eters in the reduced parameter space under the guidance of a
heuristic. We empirically demonstrate that RETRASE out-
matches state-of-the-art planners on hard problems from sev-
eral IPPC competitions and scales drastically better than exis-
ting heuristically guided planners. Developing RETRASE’s
underlying ideas further, we are planning to extend them to
POMDPs and add theoretical guarantees on the solution qual-
ity by modifying the parameter learning mechanism.

References

[1] A.Barto, S. Bradtke, and S. Singh. Learning to act using real-
time dynamic programming. Artificial Intelligence, 72:81—
138, 1995.

[2] B. Bonet and H. Geffner. Labeled RTDP: Improving the con-
vergence of real-time dynamic programming. In ICAPS’03,
pages 12-21, 2003.

[3] O.Buffet and D. Aberdeen. The factored policy gradient plan-
ner (ipc-06 version). In Fifth International Planning Competi-
tion at ICAPS’06, 2006.

[4] C. Gretton and S. Thiebaux. Exploiting first-order regression
in inductive policy selection. In UAI’04, 2004.

[5] J. Hoffman and B. Nebel. The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial Intel-
ligence Research, 14:253-302, 2001.

[6] A. Kolobov, Mausam, and D. Weld. ReTrASE: Integrat-
ing paradigms for approximate probabilistic planning. In 1J-
CAI’09, 2009.

[7] 1. Little and S. Thiebaux. Probabilistic planning vs. replanning.
In ICAPS Workshop on IPC: Past, Present and Future, 2007.

[8] N. Roy and G. Gordon. Exponential family PCA for belief
compression in POMDPs. In NIPS 02, pages 1043—-1049. MIT
Press, 2003.

[9] S. Sanner and C. Boutilier. Practical linear value-
approximation techniques for first-order MDPs. In UAI’06,
2006.

[10] R. St-Aubin, J. Hoey, and C. Boutilier. APRICODD: Approxi-
mate policy construction using decision diagrams. In NIPS’00,
2000.

[11] S. Yoon, A. Fern, and R. Givan. FF-Replan: A baseline for
probabilistic planning. In ICAPS 07, pages 352-359, 2007.

[12] S. Yoon, A. Fern, S. Kambhampati, and Robert Givan. Proba-
bilistic planning via determinization in hindsight. In AAAI’08,
2008.

