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ABSTRACT

Motivation: Gene expression profiling is a powerful approach to
identify genes that may be involved in a specific biological process
on a global scale. For example, gene expression profiling of mutant
animals that lack or contain an excess of certain cell types is a common
way to identify genes that are important for the development and
maintenance of given cell types. However, it is difficult for traditional
computational methods, including unsupervised and supervised
learning methods, to detect relevant genes from a large collection of
expression profiles with high sensitivity and specificity. Unsupervised
methods group similar gene expressions together while ignoring
important prior biological knowledge. Supervised methods utilize train-
ing data from prior biological knowledge to classify gene expression.
However, for many biological problems, little prior knowledge is
available, which limits the prediction performance of most supervised
methods.

Results: We present a Bayesian semi-supervised learning method,
called BGEN, that improves upon supervised and unsupervised
methods by both capturing relevant expression profiles and using
prior biological knowledge from literature and experimental validation.
Unlike currently available semi-supervised learning methods, this new
method trains a kernel classifier based on labeled and unlabeled
gene expression examples. The semi-supervised trained classifier
can then be used to efficiently classify the remaining genes in the data-
set. Moreover, we model the confidence of microarray probes and
probabilistically combine multiple probe predictions into gene predic-
tions. We apply BGEN to identify genes involved in the development
of a specific cell lineage in the C. elegans embryo, and to further
identify the tissues in which these genes are enriched. Compared to
K-means clustering and SVM classification, BGEN achieves higher
sensitivity and specificity. We confirm certain predictions by biological
experiments.

Availability: The results are available at http://www.csail.mit.edu/
~alangi/projects/BGEN.html

Contact: hge @wi.mit.edu or gifford @ mit.edu

*To whom correspondence should be addressed.

1 INTRODUCTION

Gene expression profiling is a powerful approach to probe global
transcriptional programs underlying biological processes. However,
itis a challenge to identify candidate genes with high sensitivity and
specificity from large compendia of gene expression profiles.
For example, in order to uncover transcriptional changes relevant
to the development of certain cell types, gene expression profiles are
often compared between wild-type animals and mutants that lack or
contain an excess of the cell types (Reinke et al., 2000; Furlong
et al., 2001; Gaudet & Mango, 2002; Robertson et al., 2004; Baugh
et al., 2005). Genes that are spatially or temporally enriched can be
identified in this way and then tested to confirm their expression
patterns. In these cases, gene expression data are usually obtained
from whole animals instead of single cells, so differential expres-
sion may be partially masked.

Unsupervised clustering methods have been applied to expression
profiles to identify candidate genes (Eisen et al., 1998). Clustering
methods group together genes with similar expression profiles by
modeling the distribution of an entire dataset. However, they do not
incorporate knowledge about genes that are already known to be
differentially expressed. Consequently, genes clustered together are
coherent in terms of expression profiles, yet they may have diverse
biological functions.

Another approach to identify candidate genes is to use supervised
classification methods. These methods train a model using prior
biological knowledge of gene expression, including known regula-
tors and experimentally confirmed candidate genes, and use the
trained model for predictions on other genes. However, for many
biological processes, either only a few key regulators have been
identified, or only a few candidates are experimentally verified. Most
classification methods, including Support Vector Machines (SVMs),
use training data on known regulators and confirmed candidate
genes. Therefore, with a limited amount of training data, it is difficult
for supervised methods to achieve accurate predictions.

We propose a semi-supervised learning method that combines
the advantages of supervised classification with the benefits of
unsupervised clustering. We call this method BGEN (Bayesian
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GENeralization from examples). By using information from both
prior biological knowledge and the entire expression dataset, BGEN
allows us to perform accurate predictions even when we only
have scarce information about the known regulators. There have
been a large number of approaches proposed in recent years for
semi-supervised learning and the spectrum of these approaches
include random walks, spectral methods (Belkin & Niyogi, 2004;
Joachims, 2003; Zhou et al., 2004; Zhu et al., 2003), and
information-regularization (Szummer & Jaakkola, 2003). BGEN
differentiates itself from these previous semi-supervised learning
approaches in the following ways. First, it provides a principled
kernel classifier to classify new data points. Second, we offer
a computationally efficient way to choose parameters of the
method. Third, specific to microarray data, BGEN explicitly models
probe confidence and probabilistically combines predictions from
multiple probes corresponding to the same gene.

We apply BGEN to analyze development and differentiation
of a specific cell lineage in the C. elegans embryo. C. elegans is
a free-living soil nematode widely used in developmental biology.
The adult nematode contains 959 somatic cells. Embryonic cell
divisions from a fertilized egg have been traced by microscopy
and the cell division patterns are invariant (Sulston et al., 1983).
The early asymmetric divisions produce six founder cells: AB, MS,
E, C, D and P4. Each of these founder cells maintain a distinct
pace of cell divisions and produce a specific subset of tissues and
cell types. In this paper, we focus on the differentiation of the C
lineage, which mainly gives rise to epidermis and muscle cells.

Using previously published expression profiles of wild-
type and mutant C. elegans embryos (Baugh et al., 2005), we identify
genes enriched in C lineage and compare the prediction results of
BGEN to those of K-means clustering and SVM classification.
BGEN outperforms them with improved sensitivity and
specificity. We further classify the candidate C-lineage genes
from the whole genome into two sub-categories: epidermis
enriched genes and muscle enriched genes. The classification is vali-
dated by the experimental results obtained by Baugh et al. (2005). To
further validate our methodology, we experimentally test one
gene predicted to be enriched in C-lineage epidermis cells
and one gene predicted to be enriched in C-lineage muscle
cells. Our experimental results are consistent with our predictions.

2 APPROACH

We begin with a gene expression compendium, X = {X,.., X,,4,,} Where
X; is the feature vector extracted from the gene expression of probe i. We
also have a few (n) labeled genes and their corresponding probes, for
which X; = {xi,....x,} are labeled as t;={7,..., #,}, and many
unlabeled probes Xy = {X,41,--., Xum}- Each label 7 is a binary
variable. For identification of C-lineage specific genes, labels 1 and
—1 correspond to C-lineage and non-C-lineage genes, respectively.
For classification among C-lineage candidate genes, labels 1 and —1
correspond to epidermis and muscle enriched genes, respectively.

Similar to traditional classification methods, we will classify a
data point x; based on a classifier w. Given w, the probability of the
label #; = 1 for x; in X is

Pt [ xi,w) = O(6w' d(x:)) (1)

where ©O(:) is a link function that maps a continuous unbounded
value into a value between 0 and 1, and ¢(-) is a basis function,

allowing nonlinear separation of data points. Equation (1) is known
as the likelihood function of the data (¢;, x;). We assume that the
data labels are conditionally independent of each other given
the input and the classifier, such that p(t |X;,, w) =
[iieqr, 2. ,,,@(t,»qu,')(X,»)). Later, we will discuss the likelihood
function in more detail.

What distinguishes BGEN from traditional classification or
clustering methods is the following: while traditional methods
uses either labeled or unlabeled information, BGEN employs
the information in both labeled and unlabeled data points. We
achieve this by both assigning a data dependent prior p(w | X),
which contains the information in unlabeled data points Xy, and
using the likelihood p(t; | X;, W), which encodes labeled infor-
mation. We fuse the information in labeled and unlabeled data
points by the Bayes rule to compute the posterior distribution
p(w|X, t).

Unlike the maximum likelihood or maximum a posteriori
approach, which are both point estimates of w for prediction, we
average our predictions for #; based on the posterior distribution
p(w | X, t;) to classify unlabeled data points. Note that when given a
new data point that is not in the training set X, we can easily classify
it based on the classifier posterior p(w | X, t;).

Moreover, in microarray datasets, a gene often corresponds to
multiple probes. Therefore, we combine probabilistic predictions
of multiple probes to classify their corresponding gene as well as to
obtain classification confidence.

In the following subsections we present the prior and the likeli-
hood distributions, describe how to compute the posterior distribu-
tions for classifier w and for label ¢, and show how to combine
multiple probe predictions for gene classification, and describe
experimental approaches to confirm our predictions.

2.1 From graph regularization to prior on classifiers

The prior plays a significant role in semi-supervised learning,
especially when there is only a small amount of labeled data. In
those cases, the prior greatly influences the posterior distribution,
since the information from the data likelihood is relatively weak.

It is not an easy task to design a sensible prior on w that incor-
porates the information in the data X. So instead of finding a
good prior on w directly, we first introduce a latent vector to w,
for which it is relatively easy to assign a prior that contain the data
information. Specifically, we introduce a latent vector y =

D’l’ ce ’yn+m]T:
yi =W p(xi)

where y; can be viewed as a soft label for the data point x; and can
be converted into the hard label ¢#; through the link function O(-).
Setting H= [d’(xl), ey ¢(Xn+m)] ylelds

y=H'w (2)

If we give a prior on the label y conditional on the data X, we
can then transform the prior p(y|X) to the prior p(w|X) on the
classifier w.

Intuitively, we want the prior p(y|X) to impose a smoothness
constraint on the soft labels and to encourage similar labels between
similar data points. Inspired by graph regularization (Zhou et al.,
2004) we use similarity graphs and their transformed Laplacian to
induce priors on the soft labels y.
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To construct the prior p(y|X), we first form an undirected
similarity graph over the data points. The data points are the
nodes of the graph and the edge-weights between the nodes are
based on similarity. This similarity is usually captured using a
kernel function k(x;, x;). Examples of kernels include Gaussian
and polynomials kernels. For Gaussian kernels, k(x;, Xj) =
exp(||x;—x;||*/o%) where the kernel width o controls the similarity
between x; and x;. Given the dataset X and a kernel, we can con-
struct an (n+m) X (n+m) kernel matrix K, where K;; = k(x;, x;) for
all 7, je{l,....n+m}. Note that the kernel matrix for semi-
supervised learning involves both labeled and unlabeled data points.
This is different from SVM kernels, which are defined by labeled
data points only.

Given the similarity graph, we transform the kernel matrix K
associated with the graph into the combinatorial Laplacian or the
normalized Laplacian. Let us construct a matrix K the same as the
matrix K, except that the diagonal elements of K are set to zero,
and define a diagonal matrix G where G;; = ijg,;,-. The combina-
torial Laplacian A and the normalized Laplacian A of the graph are
defined as

A=G-K (3)

A=1-GKG (4)

where I is the identity matrix. Both the Laplacians are symmetric
and positive semidefinite. For brevity, we slightly abuse the
notation by using A for both the Laplacians. The construction of
these Laplacian matrices are based on graph regularization theories.
We impose a regularizer preferring soft labeling for which the norm
yTAy is small. In a Bayesian framework, we assign a Gaussian prior
distribution on y:

p(y|X) o e 4 o N (y]0,47) (5)

where A/(-]|0, A™') denotes a Gaussian probability function
with mean 0 and variance A~'. We can adjust the Laplacian mat-
rices by changing their eigen-spectrum. Here, we use the normal-
ized Laplacian matrices and add diagonal matrices with small
values to them, avoiding the matrix inversion singularity.

Given the Gaussian prior on the labels y, we construct the prior
on the classifier w as follows:

T = (HY) A ") (©)

p(w|X) =N(w|[0,X) (7)

where (HT) ™! is the pseudo-inverse of HT. This prior p(w|X) is
consistent with the prior p(y | X) under the constraint between y and
w, i.e., y = H'w. Again, we add some small positive values to
the diagonal elements of X to enhance its stability.

2.2 Modeling probe confidence by likelihood

Assuming conditional independence of the observed labels, we have
the factorized likelihood function p(t, |y) = [[, ©(Lw d(x;)).
The likelihood function ©(r,¢p(x;)"w) for each data point models
the probabilistic relation between the observed label #; and the input
feature vector ¢(x;). Gene expression datasets often contain noise,
which may lead to labeling errors. Also, the qualities of different
probes may vary. To model the probe confidence, we adopt the

following flipping-error likelihood:

O(w ¢ (x;)) = €(1 — step(w" b (x:)))
+ (1 — ¢€)step(t;w b (x;)) (8)
=& + (1 — 2€)step(t;w' B(x;))

where step(-) is a step function such that step(t,-WT(cbx,-)) =1if
1w p(x;) >= 0 and step(;w d(x) = 0 if LwTd(x;) < 0, and ¢
models the uncertainty from the noise. This admits labeling errors
with probability {e;}. In our dataset, we have multiple probes that
correspond to the same gene. The probe that is the closest to the
most 3’ end of a gene more accurately measures the expression level
of the given gene than the other probes, because the reverse tran-
scription and amplification procedures introduce a bias against
probes that are further away from the 3’ end. To model this effect,
we set

e; if probe i is most 3’
€ =
e, if probe i is not most 3’/

where ¢; > ¢;,. By doing so, we give non-3’ probes a higher error rate
than 3’ probes. Since this likelihood (8) explicitly models the label-
ing error rate, the model should be more robust to the presence of
labeling noise in the data.

2.3 Computing the classifier posterior

Given the prior and the likelihood, the classifier posterior is

p(w|Xoty) o plw| X Xo) [[OUo)Tw)  (9)

i=1

Because of the nonlinear likelihood terms, we can not compute the
exact posterior in a closed form. Instead of using computationally
expensive Monte Carlo methods, we apply an efficient deterministic
Bayesian approximation technique, expectation propagation (EP)
(Minka, 2001; Qi, 2004), to obtain a Gaussian approximation of the
posterior p(w | X, t;). By exploiting the multiplication form (9) of
the posterior, we iteratively refine the approximation of each like-
lihood term, eventually achieving an accurate approximate poster-
ior. The algorithmic details for EP approximation of Gaussian
classifiers can be found in Minka (2001).

2.4 Computing and combining probe predictions

As mentioned before, multiple probes are used to measure the expres-
sion levels of the same gene in the dataset we analyze. BGEN can
classify each probe based on the classifier posterior p(w | X, t;). To
combine multiple probe predictions, we use a soft decision procedure.
Instead of simply averaging the binary probe classification results, we
compute the predictive posterior probability for each probe and
average these predictive posteriors for all corresponding probes to
obtain the prediction for each gene. Specifically, given the approxi-
mate classifier posterior p(w | X, t;) = N (w|m,, V), where m,, and
V,, are obtained from the EP approximation, we compute the
predictive posterior for a probe as follows:

Pt Xoty) = / Pt | W)p(w | X, t,)dw (10)

:€i+(1 —26,‘)@(2) (11)
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pie-1:pal-1 (RNAI)

mex-3:skn-1 (RNAQ)

wild type

Neural

e 0 Germline

Fig. 1. Use of wild-type and mutant embryos to identify genes enriched in C lineage (adapted from Baugh et al. (2005)). Cell lineages are illustrated for wild-type
embryos (middle), embryos of pie-1;pal-1 (RNAI) genotype (left), and embryos of mex-3;skn-1 (RNAI) genotype (right). C and EMS lineages are shown in red

and purple, respectively.

where
T
, o tig(x) my, (12)
b(x;) Vi (x;)

and ¢(-) is the cumulative distribution function of a Gaussian
with mean 0 and variance 1. Equation (12) shows that the predictive
posterior is controlled not only by the posterior mean m,, of the
classifier, but also by the uncertainty, the variance V,, for the trained
classifier. We average the predictive posteriors of the probes
corresponding to the same gene k to obtain a gene predictive
probability p(gene;|X, t;). Note that non-3’ probes contribute
less to the gene prediction, since with a larger €; their predictive
posteriors are less informative than the predictive posteriors of
3/ probes.

2.5 Automatic hyperparameter tuning

BGEN has a few hyperparameters, including kernel width ¢ and
probe confidence levels ¢; and e;,. To achieve a good test perfor-
mance, we need to tune these hyperparameters. Here we adopt
an automatic procedure to estimate them in a principled way. As
a side-product of EP for our Bayesian learning, we estimate the
approximate-leave-one-out error count or probability without car-
rying out leave-one-out cross-validation. The details can be found in
Qi ez al. (2004). We use the approximate leave-one-out error proba-
bility to estimate these hyperparameters.

2.6 Experimental validation of gene expression
patterns

We examine gene expression patterns by using a reporter assay.
We fuse selected gene promoters to yellow fluorescence protein
(YFP) and a dominant rol-6 gene by PCR (Hobert, 2002). 5’
genomic sequences up to the next upstream gene are used as pro-
moters. YFP is amplified from pPD132.112 (Fire et al., 1990). The
rol-6 gene, a co-transformation marker, is amplified from pRF4
(Mello et al., 1991). Transgenic lines are obtained by injection
of the reporter constructs. Chromosomal integration is performed
by gamma irradiation. Using fluorescence microscopes we observe
expression patterns of reporter genes in embryos from integrated
transgenic lines.

3 RESULTS

This section describes the expression profile dataset used for
our task, presents our prediction results for genes enriched in the
C lineage, and compare the prediction accuracy of BGENs with
those of K-means and SVMs. Finally, we confirm some predictions
with biological experiments.

3.1 Summary of expression dataset

Baugh er al. (2005) profiled global gene expression for wild-type
C. elegans embryos and two types of mutant embryos at 0, 23, 41,
53, 66, 83, 101, 122, 143, and 186 minutes after 4-cell stage.
Embryos of the pie-I;pal-1 (RNAi) genotype lack C-lineage
cells, while embryos of the mex-3;skn-I (RNAi) genotype bear
excess C-lineage cells (Figure 1).

Expression patterns of selected reporter genes in C. elegans
embryos reflected whether these candidates were specific to the
C lineage, and the confirmed candidates could be further classified
as epidermis or muscle enriched (Baugh er al., 2005). Among the
40 candidates tested, 25 were confirmed to be C-lineage enriched. A
non-specific gene list comes from an RNAIi screen that identified
661 genes required for the first two cell divisions of the C. elegans
embryo (Sonnichsen et al., 2005). The first two cell divisions
occur well before the development of C lineage and these genes
are believed to encode proteins for the basic mitotic machinery.
Therefore, these genes are likely not to be specific to any lineage
development.

3.2 Semi-supervised learning and comparison with
K-means clustering and SVM classification

We use experimentally confirmed C-lineage genes reported by
Baugh et al. (2005) as labeled positive examples, and use the
non-specific genes required for early cell divisions as labeled
negative examples.

For each gene, we calculate the difference of its expression
levels in mex-3;skn-1 (RNAi) embryos and pie-I;pal-1 (RNAi)
embryos at each time point, and use the ratios of this difference
over the expression level in wild-type embryos as extracted features
for clustering and classification. The maximum value of the ratios
during development is also used as an extracted feature.
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We compare BGEN with K-means clustering and SVM classi-
fication. First, we perform K-means clustering, which does not
use the labeled information at all. The performance of K-means
depends on the number of clusters which is unknown a priori. We
use Silhouette scores to determine the optimal number of clusters
(Kaufman & Rousseeuw, 1990). The Silhouette scores measure
the tightness of a cluster and the separation of the given cluster
from other clusters. More specifically, the Silhouette scores show
how close a data point in one cluster is to data points in the
neighboring clusters. The score ranges from +1, indicating that
data points in one cluster are close to one another and are distant
from data points in neighboring clusters, to —1, indicating the
opposite. We compute the average Silhouette scores for all
genes in the dataset. K-means with 2 clusters has the highest
average score 0.8481. This score suggests that the two clusters
obtained by K-means are coherent among themselves and
well-separated from each other. To evaluate the capability of
K-means to detect C-lineage genes, we designate a cluster to
be C-lineage cluster if the ratio of labeled C-lineage genes to
all genes in that cluster exceeds a specified threshold between
0 and 1; otherwise we designate it as a non C-lineage cluster.
Genes in a C-lineage cluster are predicted to be C-lineage
genes, and vice versa. We vary the threshold value and average
the detection results over 200 runs with random initializations. The
Receiver Operating Characteristic (ROC) curve from the averaged
detection results is shown in Figure 2. K-means clustering
performs poorly in terms of detecting C-lineage genes, though
the clustering achieves a high average Silhouette score. The under-
lying reason may come from the fact that K-means clustering
ignores any prior biological knowledge and purely depends on
the expression dataset, and that C-lineage expression profiles
are diverse.

For BGEN and SVM, we use experimentally confirmed C-lineage
genes reported by Baugh et al. (2005), excluding genes used as
positive training data, to evaluate the sensitivity. We use the non-
specific genes required for early cell divisions, excluding genes used
as negative training data, to assess the specificity.

For SVM training, we construct a pool of representative positive
labels: pal-1, vab-7, cwn-1, elt-1, elt-3, mab-21, hnd-1 and hlh-1.
Each time 4 genes are randomly selected from this pool and serve as
positive training examples. We randomly select 20 genes as nega-
tive training examples from the non-specific genes. We test the
SVM prediction performance on the rest of the labeled data points.
For BGEN, we use the same labeled examples, as well as about
900 unlabeled examples for training. We repeat this training and
prediction procedure 10 times. We use Gaussian kernels for both
SVM and BGEN. The regularization and kernel widths of SVM are
tuned by leave-one-out cross-validations. For BGEN, both the
kernel width and probe confidence levels are tuned based on the
approximate leave -one-out error probability without actually car-
rying out leave-one-out cross -validations, as described in section
2.5. Based on the averaged prediction results, we plot ROC curves
for BGEN and SVM (Figure 2). Overall BGEN performs sig-
nificantly better than SVM. For example, with the same 80%
specificity (i.e.,20% false positive rate), BGEN achieves 99%
sensitivity (i.e., true positive rate), while SVM achieves only
82% sensitivity. Moreover, BGEN clearly outperforms K-means
clustering in terms of detecting C-lineage genes as shown in
Figure 2.

Receiver operating characteristic (ROC)

True positive rate

e K-means
= -- 8VM
- — BGEN
00 0.1 0.2 0.3 0.4 0.5 0.6

False positive rate

Fig. 2. Receiver Operating Characteristic (ROC) curves of BGEN, SVM, and
K-means. Our semi-supervised learning method BGEN outperforms both
SVM and K-means.

3.3 Whole genome prediction of C-lineage genes
Having tested the efficacy of BGEN, we predict C-lineage genes

in the whole genome. We use 20 negative examples and all positive
examples except for pal-1, because pal-1 is a maternally-supplied
regulator while we are interested in identifying genes which are
active in zygotic transcription during development. With 97%
specificity evaluted by the non-specific gene set, we predicted
317 genes as enriched in C lineage, in addition to the previously
confirmed C-lineage genes.

Our whole genome prediction is highly efficient in the sense that
we use a kernel classifier pre-trained in a semi-supervised fashion
to classify whole genome. This is different from many previous
semi-supervised learning methods (Joachims, 2003; Zhou et al.,
2004; Zhu et al., 2003), where either a re-training or a simple
nearest-neighbor classifier is needed to classify new data points
in addition to the training set.

BGEN may reduce potential false-positives from the original
analysis. For example, F45E4.9(hmg-5), a HMG-box containing
protein, which was previously predicted to be enriched in C lineage
while our method classifies it as a non-C- lineage gene with a
probabilistic confidence of 0.10. The experimental result showed
that the expression pattern of F45E4.9 is not specific to the C
lineage. This is also consistent with other reports in the literature
that FA5SE4.9 is ubiquitously expressed in C. elegans embryos (Im &
Lee, 2003). Another example is Y71F9AL.17, an uncharacterized
gene that may be involved in intracellular trafficking and vesicular
transport. Y71F9AL.17 was previously identified as a C-lineage
candidate gene. In our analysis this gene receives a probabilistic
confidence of 0.46 and is classified as non-C-lineage (Figure 3). The
result of biological experiment was consistent with our prediction.

To visualize our predictions, we plot representative expression
profiles for C-lineage genes and non-C-ineage genes with high pre-
diction confidence (Figure 3). D1005.2 and F54D7.4 (the first
column), two high-confidence C-lineage genes, are up- regulated
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Fig. 3. Expression profiles of prediction examples. Red lines represent expression profiles in mex-3;skn-1 (RNAi) embryos. Green lines represent expression
profiles in pie-I;pal-1 (RNAi)embryos. Blue dotted lines represent expression profiles in wild-type embryos. D1005.2 and F54D7.4 are high-confidence
predictions of C-lineage genes. They receive confidence scores of 0.99 and 0.98, respectively. F52E4.7 and F36A2.6 are high-confidence predictions of non-C-
lineage genes. They both receive confidence scores of 0.01. FASE4.9 and Y71F9AL.17 are less obvious examples. They receive confidence scores of 0.10 and
0.46, respectively, and are classified as non-C-lineage specific genes. Baugh et al. (2005) identified F45E4.9 and Y71F9AL.17 as C -lineage genes in their data
analysis, but subsequent experimental results showed that these two genes were not specific to the C lineage.

in mex-3; skn-1 (RNAi) embryos during development. F52F4.7 and
F36A2.6 (the second column), two high-confidence non-C-lineage
genes, do not exhibit such up-regulation of expression. The two
examples of false-positives (F45E4.9 and Y71F9AL.17) by the pre-
vious analysis are also plotted. These two genes are prone to mis-
prediction since they are up-regulated in mex-3; skn-1 (RNAi)
embryos. These examples illustrate the capability of BGEN to
distinguish C-lineage genes from non-C-lineage genes even in
some subtle cases.

3.4 Predictions of C epidermis and C muscle genes

During embryonic development, C-lineage cells differentiate
into epidermis and muscle cells. Epidermis and muscle enriched
genes are likely to exhibit slightly different expression profiles in
wild-type and mutant embryos. Given our whole genome predic-
tions of C-lineage genes, we apply BGEN to further distinguish the
C- lineage genes as epidermis or muscle enriched. Baugh et al.
(2005) showed by reporter assay that among the confirmed
C-lineage genes, 15 were specifically expressed in epidermis
cells and 4 were specifically expressed in muscle cells. We use
this information to train and evaluate K-means, SVM, and
BGEN. In addition to the normalized features used in 3.3,
2-level Daubechies wavelet decomposition of the difference
features that explicitly represents the temporal and frequency
information in the data is also computed as features.

Similar to what we have done before, we use the Silhouette
scores to determine the number of clusters for K-means. For
SVM and BGEN, we randomly select 6 epidermis and 2 muscle-
genes and use them as training data. We use the rest of

experimentally confirmed genes as the test set, which includes
9 epidermis genes and 2 muscle genes for each run. We repeat
this procedure 5 times.

We evaluate the average area under the ROC curves for these three
methods. For K-means, we compute the ROC curve using the same
method as in the previous section. The average area under the ROC
curve of BGEN is 0.80, indicating its prediction potential. The aver-
age areas achieved by K-means and SVM are only 0.56 and 0.50
respectively, indicating the failure of the K-means and SVM predic-
tions. This further demonstrates the advantage of our semi- super-
vised learning method. For the run in which BGEN achieves the
largest area under the ROC curve, we correctly predict all 9 epidermis
genes and 2 muscle genes in the test set. The prediction accuracy
achieved by BGEN suggests the epidermis genes and muscle genes
may be separable from each other in terms of expression profiles.
However, this prediction accuracy should not be over- interpreted,
because both the training and testing datasets are small. In the future,
more labeled data and additional microarray datasets may be
integrated to improve the predictions. The lists of predicted C
epidermis and C muscle genes can be downloaded at http://www.
csail.mit.edu/~alanqi/~projects/BGEN.html.

3.5 Experimental verification of predictions

We predict KO1A2.5 and R11A5.4, two uncharacterized genes,
as enriched in C lineage. These two genes were also identified
in previous analysis as C-lineage candidates but were not tested
(Baugh et al., 2005). We further identify KO1A2.5 as epidermis
enriched and R11A5.4 as muscle enriched. We examine their
expression patterns by reporter assay. The expression patterns
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Fig. 4. Experimental validation of redictions. We predict KO1A2.5 and
R11AS5.4, as enriched in C epidermis cells and enriched in C muscle cells,
respectively. We examine expression patterns of KO1A2.5 (A, B) and
R11A5.4 (C, D) in developing C. elegans embryos. The experimental results
are consistent with our predictions for both genes.

of reporter genes in C. elegans embryos are consistent with our
predictions (Figure 4). The reporter gene that contains KO1A2.5
promoter is expressed in C epidermis cells, and the reporter gene
that contains R11AS5.4 promoter is expressed in C muscle cells. The
experimental results support that our methodology yields relevant
biological insights to elucidate developmental processes.

4 CONCLUSIONS

We have developed BGEN, a novel semi-supervised learning
method, which utilizes both large-scale expression datasets and
prior biological knowledge to identify target genes. Using
BGEN, we have predicted genes enriched in C lineage during
C. elegans embryonic development, and have further classified
C-lineage candidate genes according to tissues where they are
enriched. In comparison with unsupervised K-means clustering
and supervised SVM classification, our semi-supervised learning
method achieves higher sensitivity and specificity. We experi-
mentally confirm two examples from our predictions, which further
supports our methodology. As a powerful computational tool,
BGEN can be used to refine target selection from large-scale
expression datasets for many other biological problems in the
future.
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