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Abstract

Personalized therapy is a major goal of modern oncology, as
patient responses vary greatly even within a histologically
defined cancer subtype. This is especially true in acute myeloid
leukemia (AML), which exhibits striking heterogeneity in
molecular segmentation. When calibrated to cell-specific data,
executable network models can reveal subtle differences in
signaling that help explain differences in drug response. Fur-
thermore, they can suggest drug combinations to increase
efficacy and combat acquired resistance. Here, we experimen-
tally tested dynamic proteomic changes and phenotypic
responses in diverse AML cell lines treated with pan-PIM kinase
inhibitor and fms-related tyrosine kinase 3 (FLT3) inhibitor as
single agents and in combination. We constructed cell-specific
executable models of the signaling axis, connecting genetic
aberrations in FLT3, tyrosine kinase 2 (TYK2), platelet-derived

growth factor receptor alpha (PDGFRA), and fibroblast growth
factor receptor 1 (FGFR1) to cell proliferation and apoptosis via
the PIM and PI3K kinases. The models capture key differences
in signaling that later enabled them to accurately predict the
unique proteomic changes and phenotypic responses of each
cell line. Furthermore, using cell-specific models, we tailored
combination therapies to individual cell lines and successfully
validated their efficacy experimentally. Specifically, we showed
that cells mildly responsive to PIM inhibition exhibited
increased sensitivity in combination with PIK3CA inhibition.
We also used the model to infer the origin of PIM resistance
engineered through prolonged drug treatment of MOLM16 cell
lines and successfully validated experimentally our prediction
that this resistance can be overcome with AKT1/2 inhibition.
Cancer Res; 77(4); 1–12. �2016 AACR.

Introduction
The potential of personalized medicine is dependent on our

ability to translate the molecular context of patients' tumors into
interpretable clinical outcomes. Successful steps have been taken
to accurately predict tumor progression and response to treatment
from molecular disease markers (1, 2). Using tumor cell line–
based compound screening, we can provide robust readouts of
cellular responses to multiple compounds. This information can
be used to systematically train computational models of the
molecular signaling pathways contributing to drug sensitivity
and resistance in various cancer settings, and to propose novel
drug targets and combination approaches. Cell line screens have

provided some success in explaining or predicting drug responses
by driver gene mutations (2–4); however, in many cases the true
mechanism of resistance remains elusive or more complex. Most
predictive methods routinely used today use correlative statistics
or feature-based learning techniques such as machine learning,
while network methods remain scarce despite their potential for
extracting mechanistic insights and actionable biomarkers.

The molecular heterogeneity within cancer types further com-
plicates the prediction of tumor cell behavior determining a
patient's drug response. Multiple somatic mutations, epigenetic
events or otherwise deregulated gene/protein expression may
contribute to driving the disease. This is true in acute myeloid
leukemia (AML), where patients may harbor somatic mutations
in a number of potential oncogenes, including FLT3,MLL, TYK2,
FGFR1, PDGFRA, IDH1, DNMT3A, affecting expression of down-
stream signaling for example through PIM kinases (5–7). FLT3
internal tandemduplications (FLT3-ITD) andPIMoverexpression
are associated with poor prognosis in AML patients, motivating
the development of small molecule inhibitors targeting these
proteins (8, 9). Incomplete signaling inhibition or the presence
of multiple molecular alterations that reduce a tumors depen-
dencyonanyone targetmay result in drug resistance (10, 11). This
may be overcome through rational drug combinations; however,
optimal approaches are rarely obvious and high-throughput
combination screening is complex and expensive with limited
success shown.

With an aging population, the incidence of AML is increasing,
with the number of new cases per year approaching 20,000 in the
United States alone. AML therefore presents a large unmet clinical
need, with overall 5-year survival rates remaining at around 25%.
Most patients will respond to initial cytoreductive therapy, but a
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large proportion will relapse with emergence of drug-resistant
clones. Given that bone marrow transplantation as the only
curative therapy is not an option for many patients, a better
understanding of the regulatory pathways causing leukemic trans-
formation and in particular the emergence of resistance will be
essential to improve treatment outcomes in AML.

Computational simulations of cancer cell signaling have the
potential to overcome both the limitation of cell line diversity
and in vitro screening throughput. Computational modeling
approaches can be used to capture and integrate knowledge with
molecular and phenotypic data to better understand the genetic
and signaling dependencies determining a drug's mechanism of
action. The models should be unique to the tumor cell context,
include key proteins and their interactions while accounting for
influential gene mutations, and would ideally extend to other
molecules involved in cell signaling. Execution of such models
should demonstrate the intracellular signaling activity as it is
triggered by different mutations and different therapeutic modal-
ities, resulting in different cell phenotypes.

Computational models based around Boolean networks, pio-
neered by Kauffman (12) as a model for genetic regulatory net-
works, have been demonstrated for interpretation of large data
sets as well as for drug discovery (13–15). In these models,
relationships are represented in a dynamic network with discrete
time steps. Signalingmolecules represented bynodes in a network
can have two states (hence a Boolean network) and edges are
directed and may be activating or inhibitory; however, this can
oversimplify biological signaling where molecules often exist in
multiple states with interactions that are rarely binary. Qualitative
Networks (QN) make an extension to Boolean networks to allow
variables to range over larger discrete domains by replacing
Boolean functions with algebraic functions (further details in
Supplementary Methods; ref. 16). Specifically, the graphical tool
Bio Model Analyzer (BMA; ref. 17; available at http://biomode-
lanalyzer.org/) has previously been used to encapsulate chronic
myeloid leukemia (CML) cell signaling information from >150
publications in a QN model (18) able to then successfully
recapitulate multiple independent experimental results. Another
extension to Boolean networks is provided by Quantitative
Modeling approaches, allowing variables to range over nondis-
crete values and so capturing more complex relationships, but
only feasible for much smaller, well-studied systems (19).

In this study, we use QNs to model the protein signaling
connecting genetic aberrations in FLT3, TYK2, PDGFRA, or FGFR1
to cell proliferation/apoptosis via the PIM and PI3K kinases for
four AML cell lines, accounting for their unique genetic and
phenotypic diversity. Construction and analysis of the biological
QN model was achieved in BMA (17). By incorporating cell-
specific–context switches in the model for four cell lines, we were
able to accurately model response and resistance to a pan-PIM
kinase inhibitor AZD1208 and the FLT3 inhibitor AC220 and
validated experimentally our predictions. The model provides a
useful tool forAML research, and the approachoffers value todrug
discovery and early development.

Materials and Methods
Reagents

AZD1208, selumetinib, and AZD5363 were synthesized by
AstraZeneca R&D and diluted in dimethyl sulfoxide (Sigma-
Aldrich). AC220 and pictilisib were purchased externally.

Cell line treatment
Cell lines (CMK, EOL1, HL60, KASUMI3, KG1A, MOLM13,

MOLM16, MONOMAC6, MV411, NOMO1, OCIAML2,
OCIM1, and OCIM2) were purchased from ATCC (http://
www.atcc.org/) cell bank and passaged in our laboratory for
fewer than 6 months after receipt or resuscitation. ATCC uses
morphology, karyotyping, and PCR-based approaches to con-
firm the identity of human cell lines and to rule out both intra-
and interspecies contamination.

All cells were cultured and assayed as previously described in
ref. 8 and in Supplementary Methods.

Growth inhibition calculation
For single agent, GI50 were calculated from the ratio of the

72-hour treatment to 72-hour DMSO control, after subtraction
of the day 0 data from each measurement. The dose–response
data were fitted using Xlfit (Microsoft Excel). For combination,
percent growth inhibition was determined using the Chalice
software with values of 0 to 100%, indicating antiproliferation
(fewer number of cells than the vehicle control but greater
than or equal to the number of cells at the start of treatment)
and values of 101% to 200%, indicating cell death (fewer
cells than at the start of treatment). Day 0 values were sub-
tracted from the day 3 treatments. The combination Indexes
(CI) and Synergy scores were determined using the software
program Chalice (Zalicus), and CI determination was made at
the ED50 value. Synergy was determined by the Loewe addi-
tivity model.

Full methods for gene expression microarray, whole-exome
DNA sequencing, and Theranositcs proteomics are in the Sup-
plementary Methods; a brief description follows.

Gene expression microarray
Cell line lysate was generated from logarithmic growing CMK,

EOL1, HL60, KASUMI3, KG1A, MOLM13, MOLM16, MONO-
MAC6, MV411, NOMO1, OCIAML2, OCIM1, and OCIM2 cell
lines. Lysate was sent to Expression Analysis (http://www.expres-
sionanalysis.com/) for gene expression analysis on Affymetrix
Human Genome U133 Plus 2.0 Array. Expression results were
fRMAnormalized, log2 transformed, and expressionwas averaged
by gene symbol across probesets.

Whole-exome DNA sequencing
Cell lines lysate was generated from logarithmic growing CMK,

EOL1, HL60, KASUMI3, KG1A, MOLM13, MOLM16, MONO-
MAC6,MV411,NOMO1,OCIAML2,OCIM1, andOCIM2. Lysate
was sent to Expression Analysis (http://www.expressionanalysis.
com/) for whole-exome DNA sequencing and processed with the
BCBio pipeline (https://bcbio-nextgen.readthedocs.org). Paired
analysis of the parental and resistant cell lines was performed to
using FreeBayes (20), MuTect (21), and VarDict (GitHub) to call
resistance–specific mutations.

Theranostics Health reverse-phased protein array
Cells were treated with AZD1208 or AC220 as single agent or in

combination for 3 or 24 hours. Lysate was prepared and shipped
to Theranostics Health for reverse-phased protein array (RPPA)
experiments.
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Protein Array data transformation for executable network
model construction

The relative linear log2 RPPA values were categorized for use in
executable network modeling (Supplementary Fig. S1) on a 5
point scale from 0 to 4 fitted to the distribution of the values
(Supplementary Table S1).

Protein Western blots
Cells were treated with AZD1208, AZD5363, or AC220 as

single agent, combination, or resistance as experimentally
described. Whole-cell extracts were fractionated by SDS-PAGE
and transferred to a nitrocellulose membrane in transfer buffer
(500 mmol/L glycine, 50 mmol/L Tris–HCl, 0.01% SDS, 10%
methanol) buffer at 20 volts for 90 minutes using a semi-dry
transfer apparatus according to the manufacturer's protocols
(Invitrogen). The membranes are blocked with 10% nonfat
milk in TBS-T (10 mmol/L Tris, pH 8.0, 150 mmol/L NaCl,
0.5% Tween 20) for 1 hour and washed three times with TBS-T
and exposed to primary antibodies in 5% milk in TBS-T against
pPRAS40 (CST 2997), p4EBP1 Ser 65 (CST 9451), pBAD (CST
9296), pp70S6 (CST 9206), pS6 (CST 4858), pERK (CST 9106),
pElF4B (CST 8151), pAKT(CST 4058), a-tubulin (CST 2144),
or b-actin (CST 4970) at 4�CO/N. Membranes are washed three
times for 10 minutes and incubated with a 1:10,000 dilution of
horseradish peroxidase–conjugated anti-mouse or anti-rabbit
antibodies (CST 7074) for 1 hour at room temperature. After
washing the membranes three times for ten minutes, signals
were visualized using the ECL system (Thermo Scientific).

PhosphoScan mass spectrometry
We confirmed the robustness of our finding for MOLM16

cells treated with 2 mmol/L AZD1208 for 3 hours (Supple-
mentary Table S2) by applying a LC-MS/MS phosphorylation
proteomic approach. Additional details are provided in the
Supplementary Note.

Targeted treatment of AML cell lines
We investigated phenotypic and cell signaling responses

by RPPA. Because the PIM gene family is often overexpressed
(22–24) and FLT3-ITD's are prevalent in AML (7), we treated the
cells with the pan-PIM kinase inhibitor AZD1208 and the potent
selective FLT3 inhibitor AC220 (Qizartinib) as monotherapy and
in combination (25) and compared AML cell lines were treated
with DMSO, 1 mmol/L AZD1208, 6 nmol/L AC220, or the
respective combination, for 3 or 24 hours. Lysates were generated,
protein values were assessed by RPPA and quadrant median
normalized (QMN) protein levels calculated (Supplementary
Table S3). Statistically significant total protein and phosphoryla-
tion changes were determined by log2 QMN differences greater
than or equal to 0.5 and Wilcoxon rank-sum tests P values less
than or equal to 0.1 (Supplementary Table S4).

Results
AML cell lines show differential sensitivity to PIM inhibition

To identify potential genetic alterations associated with sensi-
tivity to the pan-PIMkinase inhibitor AZD1208,we surveyed gene
variants bywhole-exomeDNA sequencing (Supplementary Table
S5) and prioritized by AML disease relevance (7). Although cells
sensitive to AZD1208 do harbor AML relevant PDGFRA, FGFR1,
FLT3, andMLL genetic variants, only a small number of cell lines

harbor the same variant, thereby failing to reach statistical sig-
nificance in association to drug response (Fig. 1A). Basal cell line
PIM1 mRNA expression tends to be higher in sensitive lines, as
previously shown at the protein level (8), underlying the impor-
tance of compound target expression alongside the interplay with
genetic alterations for sensitivity. However, cells harboring path-
way relevant genetic alterations or overexpressing PIM exhibit
varied response to treatment, calling for a deeper examination of
the cell signaling relating genotype to phenotype to provide a
better understanding of the molecular dependencies underlying
PIM inhibitor sensitivity in AML cell lines.

Cell type-specific differences in PIM pathway signaling in
response to treatment

Given the wide variability of response to therapeutic agents
across AML cell lines, we explored the differences in phospho-
protein signalingdownstreamofPIM forAMLcell linesMOLM16,
MV411, EOL1, and KG1A. RPPA measurements taken 24 hours
post pan-PIM inhibitor treatment reproduced published findings
(8) of reducedBADphosphorylation in theMOLM16 cell line and
reduced S6 pS235/236 in EOL1 (Fig. 1B). To estimate response of
cell lines, growth inhibition was quantified according to the
number of viable cells after culturing with different concentra-
tions of pan-PIM inhibitor, AZD1208, andFLT3 inhibitor, AC220,
in combination (Fig. 1C; Supplementary Fig. S2). Directional
de-phosphorylation signaling trends seen in RPPA for BRAF
pS445, EIF4B pS406, mTOR pS2481, and global BAD phosphor-
ylation were confirmed by PhosphoScan mass spectrometry in
MOLM16 cells after 3-hour treatment with AZD1208 (Supple-
mentary Table S6).

Building a generalized model of PIM signaling in AML
In order to model the observed genotypic and phenotypic

differences between the AML cell lines, we proposed a workflow
for developing a cell-specific context network model using the
BMA tool from cell line molecular information (Fig. 2).
We generated an initial generalized model from the manual
curation of 68 publications (Supplementary Table S7) for the
AML cell line. The initial model contains a canonical set of 64
interactions among 32 interacting proteins connected to 2
cell phenotypes/behaviors of apoptosis and cell proliferation
(http://www.bioc.cam.ac.uk/fisher/aml;GeneralModel.json,Supp-
lementary Table S8). All values at nodes range from 0 to 4 to
represent the phosphorylation activity from the transformed RPPA
data, with 0 representing low to no activity and 4 representing
abnormal over activity. The cellular behavior outcome for each
disease state is reflected by the two terminal downstream nodes,
which model the outcome for cellular abnormal proliferation and
apoptosis rates. The generalized model of AML signaling was
able to capture only partial abnormal cell behavior for untreated
cells, capturing the abnormal low apoptosis levels for both
MOLM16 and MV411, and showing an increase in proliferation,
yet not capturing the magnitude of the increase. In addition,
known perturbations such as simulating inhibition of PIMs in
the model, showed the expected trend line of decreased prolifer-
ation, yet did not exhibit the expected effect on apoptosis levels.

Introducing cell-specific context in QN models
We incorporated multiple gene mutation switches to construct

cell-specific context model (http://www.bioc.cam.ac.uk/fisher/
aml; CellSpecificAML.json; Table 1). We iteratively refined the
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target function for each internal node to reflect the levels of
phosphorylation activity as measured by the transformed RPPA
data for each cell line as well as the qualitative activity reported in
the literature in accordance to gene mutations. A cell-specific
context in the model is simulated by setting the switches for the
drivermutations found in that cell to 1, while all other switches to

mutations that were assessed as non-driver are set to 0 (Sup-
plementary Table S9). As a result of different set of mutations
"turned on" the protein activity exhibited by the model will
differ between cell lines (Supplementary Table S10). Additional
details on data processing and model construction are in the
Supplementary notes.
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Figure 1.

AML cell lines sensitive to the PIM inhibitor AZD1208 have diverse genotypes. A, GI50 (mmol/L) waterfall plot and molecular oncoprint illustrating the diverse
pharmacological response of AML cells after 72 hours AZD1208 treatment as well as PIM expression and AML disease-relevant mutations. Boxed cell line
names indicate responding cell lines further investigated.B,Protein expressionmeasured byRPPA in treated and untreated cell lines showheterogeneity in signaling
responses throughvarious pathways.C,MV411,with anactiveFLT3-ITD, showsvaried responses to concentrations ofAZD1208and/or theFLT3 inhibitorAC220 for 72
hours. The number of viable cells was determined by Alamar Blue measurements, where the values represent percent growth inhibition.
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Executable QN model validated by cell type–specific signaling
behavior

The executable QNmodel (Fig. 3A) was built on the RPPA and
growth inhibition of MOLM16 and MV411 cell lines, harboring
TYK2mutation and FLT3-ITD, respectively (Fig. 1B). For each cell
line across each treatment (Fig. 3B), the mean square error (MSE)
observed between the transformed RPPA values and modeled
signaling activity ranged from 0.17 to 0.26 and median of 0.2
(0.3 to 0.57 in the generalized model, median of 0.41), with the
lowest seen for untreated MV411 andMOLM16 cell lines and the

highest for the MOLM16 cell line treated with AZD1208. Mean-
while, across each protein, the MSE observed between the trans-
formed RPPA values and each protein signaling activity ranged
from 0 to 0.55 andmedian of 0.25 (0.5 to 0.88 in the generalized
model, median of 0.58), with the lowest seen for BAD and BCR
and the highest seen for p27.

Equally as important, the cell-specific contextmodel performed
well in predicting cellular response as measured both by growth
inhibition and markers of reduced proliferation and increased
apoptosis (Fig. 1B and C). The model accurately predicted
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Figure 2.

Schematic workflow of cell-specific model construction in BMA. Motifs and interactions curated from the literature are used to build a Qualitative Network in the
BMA tool. The model was calibrated with the results of RPPA experiments for two cell lines with different AML-driving mutations. The model is designed to
represent the general AML pathways and provide a cell-specific context by "turning-on" a specific set of mutations. The mutations affect outgoing interactions,
thus activating the pathways in a mutation-specific manner, resulting in mutation-specific phosphorylation activity throughout the pathways, leading to specific
cellular behavior. The model is iteratively refined by testing and comparing with the cell behavior measured as a response to different perturbations for the two cell
lines. The model robustness was tested against perturbations from the literature performed on the explored mutations and unseen cell lines incorporated
automatically into the model. The model is then used for in silico experimentation in order to test novel drug combinations, infer the source and mechanism
for drug resistance, and predict drug response in resistant cell lines and suggest treatment for resistance.
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(Fig. 3C) the reduction in proliferation as a result of treatment
with AZD1208 single agent, AC220 single agent, and drug com-
binations in MV411 cells. Although under predicting the magni-
tude of increase in apoptosis for AC220 single agent, the model
accurately predicted the directional responses with increases in
apoptosis for AZD1208 single agent, AC220 single agent, and
combination treatments in MV411 cells.

In addition to predicting differential phenotypic responses in
each cell line, the model highlights key signaling events that may
underlie the mechanism for each. We validated the robustness of
events suggested for MOLM16 using mass spectrometry. Most
importantly, the mass spectrometry corroborated the decreased
EIF4B pS406 phosphorylation after AZD1208 treatment, contrib-
uting to decrease in proliferation, as well as the decrease in BAD
pS112 and pS155 after AZD1208 treatment, which increases
apoptosis. A key differentiating feature of MOLM16 cell lines is
the lack of hyperactivity from the MAPK (Ras Raf MEK ERK) and
AKT–mTORC1 pathways post AZD1208 treatment, supported
by dephosphorylation at downstream BRAF pS445 and mTOR
pS2481 in the mass spectrometry data.

Testing the adaptability of the model to new cell-specific
contexts, we "turned on" new genetic alterations FIP1L1-PDGFRA
fusion to simulate EOL1 cell line and FGFR1 fusion to simulate
KG1A cell line. The apoptosis range was expanded to span the full
dynamic range seen in these cell lines, yet no further refinement of
the model was performed. The model reflected the cellular sig-
naling changes observed in RPPA data (Fig. 3D) where the MSE

ranged from 0.18 to 0.28 with the lowest seen for KG1A cell line
treated with single agent AZD1208 and the highest for the KG1A
cell line treated with AC220. Across each protein, the MSE
observed between each protein signaling activity and the trans-
formed RPPA values ranged from 0 to 0.49, with the lowest seen
for AKT and the highest seen for BAD. The model also performed
well in predicting cellular response (Fig. 3E). For the proliferation
and apoptosis cell behaviors, the model accurately predicted the
cellular responses seen in KG1A for AZD1208, AC220, and
combination treatments, as well as the cell behaviors for EOL1
with AZD1208 treatment (AC220 was not tested for EOL1).

The model also replicated variations in sensitivity, such as
EOL1, reacting with reduced apoptosis to PIM inhibition when
compared with MOLM16.

Novel signaling components proposed through model
refinement

A by-product of refining the QN model to capture cell type–
specific signaling is a graphical and descriptive representation of
cell-specific signaling dynamics between proteins in the network
(Fig. 3A). By simulating the QN model, we were able to test our
assumptions regarding the signaling dependencies between
proteins, as described by the target functions (Table 1). For
instance, despite FLT3-ITD being upstream of PIM1, the effect
revealed by the iterative optimization of the model was less than
other interacting proteins, also suggested by the RPPA measure-
ments (Fig. 1A), leading to BAD overactivity in MOLM16 but
not MV411. The target function of AKT shows that it is depen-
dent on the activity of the FLT3-ITD and FGFR1 fusion, reflect-
ing the accumulation of evidence for AKT/mTOR pathway role
in AML (suggested previously by ref. 8). The target function of
S6 reflects the dominant over activation of it via AKT–mTOR
pathway, additive to the activity of the MAPK pathway, and
leading to antiapoptotic cell behavior of MV411 and KG1A. At
the same time, the target function of BAD accumulates with
activity of the MAPK pathway and of PIM1 direct phosphory-
lation of all three sites of BAD (26), leading to the antiapoptotic
behavior observed in MOLM16.

In silico virtual experimentation with AML cell models can
replicate independently reported data

As a first independent test of the AML cell–specific model, we
assessed its ability to replicate in silico a sample of protein and
phenotypic cell line responses to drug treatment reported in the
literature but not used as part of model construction or refine-
ment. We replicated each in vitro experiment by turning on a
respected set of mutations and adding the new examined inhib-
itor to themodel, thenobserving thepredicted protein expression.
All eight protein changes were successfully predicted (Supple-
mentary Table S11). Themodel successfully predicted cell-specific
response to compounds including failure of a MEK inhibitor to
induce apoptosis in EOL1 (27); insensitivity of KG1A to the
combination of AKT, PDK1, and FLT3 inhibitors (28); and the
growth inhibition induced on EOL1 by combining PIM and AKT
inhibition (11). The decrease in cell proliferation of MV411 in
response to the mTORC (29) inhibitor was not recapitulated;
however, Willems and colleagues (29) attribute the decrease in
proliferation to eIF4E decreased expression, which was accurately
replicated by the model.

Table 1. Target functions for the AML cell–specific calibrated AML model

Protein/node Cell-specific model target function

PIM1 max(3/4�FLT-ITD,TYK2,3/4�PDGFRA,FGFR1)
PIM2 max(FLT-ITD,1/2�TYK2,1/2�PDGFRA)
BAD 1/2�RSKþ1/2�PIM1
EIF4B min(3,RSKþ1/2�PIM1)
EIF3 min(EIF4E,EIF4B)
4EBP1 2/3�mTORC1þ1/6�EIF3þ1/6�PIM2
EIF4E max(1/2�4EBP1,S6)
S6 1/8�RSKþ3/4�mTORC1þ1/8�EIF3
BCR max(1, 1/2�FLT-ITD)
GRB2/SOS max(BCR,1/2�FGFR1)
RAS min(Grb2/SOS,BCR)
PI3K max(BCR,GRB2/SOS,1/2�PDGFRA)
RAF AVG(RAS)
MEK AVG(RAF)
ERK max(MEK,1/2�PDGFRA)
RSK AVG(ERK)
AKT max(PI3K,mTORC2)
mTORC2 AVG(PI3K)
mTORC1 1/2�PRAS40þTSC2
TSC2 1/2�((PIM2-1)þ1/2�AKT)
PRAS40 1/4�PIM1þ5/4�AKT
CHK max(PIM1,PIM2)
H3 AVG(CHK)
cMYC max(3/4�FGFR1,max(1,1/4�(max(PIM1,PIM2) þ H3))
P27 max(1,cMYC�(cMYC-2)þ1/2�max(PIM1,PIM2))
Proliferation (EIF4B-2)þ1/2�ERKþ2/3�p27þ2/3�cMYC
Apoptosis !MAX(BAD, S6, 1/2�BAD þ cMyc þ S6 þ 2�EIF4E))

NOTE: Target functions are associated with the nodes and aim to capture
biological relationships. MAX function corresponds to independent activa-
tion by upstream proteins, while MIN corresponds to dependent activation,
such that the effect is governed by the lower expression of the two upstream
proteins. "þ" corresponds to an additive effect and � is used to assign
magnitude of effect. Supplementary Table S1 extends this table and includes
the generalized model and experimental and literature supporting evidence
for each target function.
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Figure 3.

Generation of a predictive cell behaviormodel for AML training cell lines (MOLM16 andMV411) and unseen cell lines (EOL1 and KG1A).A, Cell-specific AML regulatory
network model incorporating knowledge from the literature and calibrated to phosphorylation activity measured by RPPA. Perturbations, driving mutations,
and internal genes are depicted in gray, green, and red, respectively. To simulate specific cell (MOLM16, MV411, EOL1, or KG1A), the node for the protein with driver
mutations (TYK2, FLT-ITD, PDGFRA, or FGFR1, respectively) is set to 1, while all other proteins with mutations are set to 0. B, Protein signaling activity
(phosphorylation) levels inferred in silico using the cell-specific contexts (laptop icon) and the generalized model (papers icon) capturing levels of phosphorylation
activity as measured in vitro (petri-dish). C, Cell apoptosis and proliferation as inferred in silico by the executable model compared with levels as observed
in vitro, with the generalized model capturing partial abnormal cell behavior and the cell-specific context model recapitulating measured levels. D, Unseen cell lines
EOL1 and KG1A are incorporated to the executable network model. E, The robustness of the model is tested via the ability of the model to capture the
phosphorylation activity unseen at the time of model construction and cell behavior as a result of different perturbations.
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AML cell-specificmodel predicts synergistic drug combinations
with the PIM inhibitor

To assess the potential to prioritize synergistic combinations
through in silico hypothesis testing with thesemodels, we assessed
the PIM inhibitor AZD1208, the AKT inhibitor AZD5363, MEK
inhibitor selumetinib (selumetinib, ARRY-142886), FLT3 inhib-
itor AC220, and PI3K inhibitor pictilisib across the 4 AML cell
lines (Fig. 4A; Supplementary Fig. S3) also summarized in Sup-
plementary Table S12. For each cell line, we simulated inhibition
of the drug targets first as single agents and then as combinations
with PIM inhibition. We validated each combination in each cell
line experimentally across a dose range for each agent (Fig. 4B).

The MOLM16 cell line was correctly predicted to be hypersen-
sitive to the PIM inhibitor, resulting in almost complete cell kill,
and no additional effect was predicted in combination with other
inhibitors.

In contrast, the MV411 context model, which harbors a FLT3-
ITD, correctly predicted a strong synergy between AZD1208 and
AC220 combination attributed to apoptotic effect, evident even at
lower dosage of combined treatments. Very weak synergy with
mild apoptosis was correctly predicted inMV411 in combination
with either MEK or PI3K inhibition.

Meanwhile, EOL1 was correctly predicted to gain apoptotic
synergic effect with the PIM and AKT inhibitor combination, as
well as the PIM and PI3K inhibitor combination. Surprisingly, and
the only synergy of the 16 combinations not predicted by the
model, EOL1 alsoexhibited a synergic effectwith theAZD1208 and
AC220 combination. AC220 efficacy has previously only been
reported inFLT3driven tumors; however, thesedata suggest efficacy
from AC220 in PDGFRA mutated tumors potentially through
inhibition of PDGFRA-driven AKT/PI3K and MAPK signaling.

Finally, in the KG1Amodel, which harbors an activating FGFR1
fusion, we did not see a co-occurrence of high apoptosis and high
growth inhibition for any of the combination treatments, vali-
dated as well by the in vitro assays. Our model suggests that the
persistent insensitivity of KG1Amay be derived by the high levels
of cMyc,which is not directly targeted by any of the combinations.

Executable QN model identify alternative susceptibilities in
AZD1208-resistant cells

Four separate populations of MOLM16 cells were made resis-
tant to PIM inhibition by growth in the presence of increasing
doses of the compound over a 4-month period until resulting cell
populations were able tomaintain growth at 1 mmol/L AZD1208.
While the parental MOLM16 cell has a 50 nmol/L GI50 in a 3-day
MTS proliferation assay, all four resistant populations had GI50s
greater than 9 mmol/L to AZD1208 over the same 3-day growth
period (Supplementary Fig. S4A). RPPA measurements were
taken for the parental and resistant cell lines.

We predicted candidate genetic causes of resistance by itera-
tively perturbing all individual and pairs of nodes in the parental
MOLM16model, and choosing those leading to similar signaling
activity and phenotype as observed in the resistant populations,
quantified by lower MSE (Supplementary Fig. S4B and S4C). This
resulted in four different resistant contexts, one for each resistant
cell population (Fig. 5A). All contexts show overactivation
through RAS/PI3K as well as AKT/mTOR signaling, supported by
RPPA (Supplementary Fig. S4B). Interestingly, the different resis-
tance contexts differ in their strength of altered signaling where
resistant cell populationR1has ahigher activity for bothpathways
and resistant cell population R3 has lower activity for the AKT

pathway. The predicted and observed pathway signaling suggests
increased signaling activity through 4EBP1, EIF4B, S6, and BAD
contributing to resistance. In particular, it highlights the AKT–S6
pathway as a major cause for the decreased apoptosis compared
with MOLM16 parental when treated with AZD1208.

Whole-exome DNA-seq was performed to identify potential
protein altering genetic variants that could be driving the
AZD1208 resistance. All variant calls with significant differences
from the parental line (Supplementary Table S13) were further
parsed to highlight genes encoding proteins that have BIOGRID
interactions (Supplementary Table S14) to the RAS/PI3K and/or
the AKT/mTOR signaling pathways (Fig. 5B).

Using the four resistantMOLM16 contextmodels, we predicted
possible treatments to overcome resistance by simulating inhibi-
tion at each point through systematic addition of an inhibitor
node to the network. In line with signaling changes, introduction
of an AKT inhibitor, AZD5363, to the resistant populations was
predicted to overcome the AZD1208 resistance by blocking the
abnormal PRAS40, 4EBP1, and S6 activity (Fig. 5D). To test this
prediction, parental MOLM16- and AZD1208-resistant popula-
tions were treated with and without 1 mmol/L AZD5363 for 1
hour. The resistant populations responded to AKT inhibitionwith
AZD5363 by decreased pS235/235 S6 ribosomal protein and
pT246PRAS40 (Fig. 5D), providing strong evidence for inhibition
of AKT/MTOR signaling. The decrease in AKT/mTOR signaling
was accompanied with an increase in cleaved PARP, indicating
increased apoptosis and highlighting the dependency on this
signaling pathway during AZD1208 resistance in MOLM16 cells.

Alternative qualitative modeling techniques
Qualitative models provide coarse-grained descriptions useful

for systems whose mechanistic underpinnings remain incom-
plete. The range of qualitative modeling approaches provides
two major types of simplifications: Boolean models relax the
activity of biological entities to binary (ONor OFF), alternatively,
the relation of entities may be relaxed to simple logic operators
(AND, OR, NOT). We explored the use of alternative approaches
and robustness of findings by building a Boolean model and an
AND/OR model via the same pipeline. For single-agent PIM-
inhibitor treatment, the Boolean model was able to reasonably
predict the proliferation and apoptotic responses in MOLM16
andKG1A, partially predicted proliferation response in EOL1, but
poorly predicted responses in MV411 (Supplementary Fig. S5).
The MV411 cell line was correctly predicted to response well to
FLT3 inhibition. The model was not, however, able to predict
treatment combination synergies (Supplementary Fig. S5).
Because the Boolean model is simpler and easier to construct
than a qualitative model it offers a useful tool for investigating
single-agent treatment in larger networks.

The AND/OR gated model recaptured most of the responses
to single treatments, as well as synergistic combinations, reva-
lidating the predictions made by our model (Supplementary
Fig. S6). The synergistic response of KG1A to the combination
of AZD1208 and AC220 was the only response not recaptured.
This phenotype is likely derived by S6 additive activity from the
MAPK pathway and AKT–mTORC1, which cannot be accurately
described using AND/OR gates. AND/OR models may be
generated by automated tools (30) and can serve well as an
initial model scaffold. However, more complex relationships
such as those in our model between BAD, S6, 4EBP1, TSC2, and
EIF4B in AML need to be further refined.
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Figure 4.

Validation of predicted synergistic combinations of drugs reveals new effective treatment strategies. A, Cell-specific AML model is used to test combinations of
drugs and predict cell behavior in a cell specific manner. A drug or a combination of drugs is simulated by partially or fully nullifying the target functions
of their targets, and can be done automatically and efficiently with a large number of candidates. B, Predicted cell behavior of apoptosis and proliferations is
validated via growth inhibition of AML cell lines cultured with the indicated concentration ranges of AZD1208 and/or tested combined inhibitor after
72 hours. Predicted synergic effect, as seen for EOL1 cell line with PIM and AKT and PIM and PI3K inhibitors, is used to prioritize combinations.
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Discussion
The success of personalizing treatments for AML patients

by tailoring to respective genetic alterations that characterize
cancer subtypes has so far been limited. Moreover, drug

responses seen in genetically matched patients or representative
cell lines show considerable diversity (7, 10). By integrating
both genomic and baseline proteomic data from AML cell lines
with known tumor-driving genetic events we generated an AML
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Figure 5.

Origin of resistance to AZD1208 in MOLM16 is computationally inferred and validated via whole-exome DNA-seq, revealing signaling mechanism validated via
Western blots and offers combination to combat resistance, which successfully induces apoptosis. A, Network model of MOLM16-resistant cell populations (R1-4).
Perturbations (lightning bolts) were automatically predicted at specific nodes to simulate possible resistance mechanisms that would attenuate signaling
down a specific pathway (shaded red and blue). B, Whole-exome DNA-seq was performed on the 1 mmol/L AZD1208-resistant pool population to identify
protein altering variants from variant calling as significantly different from the parental MOLM16 cell line. C, Inferred signaling activity from the parental MOLM16
executable model is compared with activity from Western blots for parental and resistant cell populations. D, Predictions of signaling activity and cell apoptosis
for AZD1208 treated alone and in combination with AKT inhibitor AZD5363 are compared with activity from Western blots. Prediction of induced apoptosis is
supported by the increase in PARP cleaved with AZD5363.
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network model capturing cell-context–specific signaling in the
PIM kinase pathway. We developed a workflow methodology
for constructing a network model with cell-specific context
switches, which focuses on iterative refinement of the target
function to reflect literature and experimental evidences. Users
may also consider applying automated tools to decipher the
target functions, such as CellNOpt-cFL tool developed by
Morris and colleagues (30), and follow by manual refinement
of the target functions.

The resulting cell-specific model captures cell-specific signaling
and response to cancer therapeutics and provides virtual cell line
models in which to test hypotheses for tailored therapy in silico.
The cell-specific model significantly reduced the prediction error
for both the baseline training data and on-treatment changes in
protein expression compared with the generalized model. This is
unsurprising because a generalized AML model insufficiently
explains the heterogeneity in the mutational landscape and
protein-signaling dynamics reported across different cell lines,
for example, a lack of signaling through AKT unique to cells with
mutations in TYK2.

The cell-specific model accurately and directly recapitulated
published experimental results for reported changes in expression
in all 8 cases, and 9 out of 10 responses in cell behavior. These
results are particularly remarkable when considering the potential
variability in signaling and phenotypic output over time, and the
focus of these models on the cells steady state reflected by model
stability.

We progressed to experimentally validate predictions made
with the cell-specific model. The MV411 context model captured
the signaling impact of the FLT3-ITD to correctly predict induction
of apoptosis after treatment with PIM and PI3K inhibitors, and no
effect with PI3K inhibitor alone (11). For the cell line KG1A, we
identified contribution of high cMyc activity to cell proliferation
and correctly predicted insensitivity to inhibition of targets
thought to be elevated by the FGFR fusion (28) including AKT,
PDK1, and FLT3. The EOL1 context model identified previously
unreported combination synergy between PIM and PI3KCA inhi-
bitors, validated through increased tumor growth inhibition. This
could lead to patients treated with lower doses of the inhibitors if
the same efficacy is achieved by combinations and thereby reduc-
ing the risk of toxicity.

Model discrepancies highlight potential gaps in the captured
network knowledge and hypotheses that warrant further investi-
gation. For example, our model fails to capture BCR and ERK
overexpression following treatment in EOL1 and KG1A cell lines.
This cannot be resolved through simple optimization of the
current network, suggesting a potential gap in our knowledge of
how the MAPK pathway influences these mechanisms (Fig. 3D).
We found that Siendones and colleagues (31) had also previously
hypothesized the coexistence of transduction signal event, trig-
gering theMAPK pathway independent of the FLT-ITD event, and
coupled with poor response to FLT3 inhibitor. Investigating this
discrepancy may shed new light on the resistance mechanism of
these patients to FLT inhibitors.

Furthermore, using the MOLM16 context model, we were able
to systematically explore genetic changes that may render the cell
resistant to PIM inhibition. Exome sequencing and subsequent
drug combination treatment of MOLM16 cell populations with
acquired resistance to AZD1208 confirmed our predicted mech-
anistic dependency on AKT signaling and AKT inhibition as a
second-line therapy to overcome resistance.

By accurately predicting drug responses and combination syn-
ergies, and providing the mechanistic insight on the proteins
driving the response, we highlight the ability of simulatedmodels
and virtual experimentation to prioritize effective therapies
accompanied with associated predictive and dynamic biomar-
kers. Successful drug combinations could significantly augment
therapy options for AML patients by overcoming innate and
acquired resistance to drugs. Simulated qualitativemodels poten-
tially offer a virtual platform to screen, discover andprioritize drug
combinations in silico, focusing experimental approaches to val-
idation. Comprehensive genetic diagnosis using targeted exome
sequencing is already entering the clinic in major teaching hospi-
tals. When coupled with emerging mass cytometry analysis
(PMID: 26095251), all the biological information to build
patient specific qualitative networks models may soon be avail-
able from frontline diagnostics data.

Taken together, the complexity of signaling pathways and the
large number of resistance mechanisms mean that executable
cellular models that are easily and quickly interpretable, like the
ones we have presented here, are key for pinpointing potential
combination therapies for different cancer types and subtypes.
Furthermore, scaling these executablemodels to simulate patient-
specific cancers paves the way for improved personalized treat-
ments and enhanced precision medicine choices.
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