
Efficient Computation of Clipped Voronoi Diagram for Mesh Generation

Dong-Ming Yana,b,c, Wenping Wanga, Bruno Lévyb, Yang Liub,d

aDepartment of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong
bProject ALICE, INRIA/LORIA, Campus scientifique 615, rue du Jardin Botanique, 54600, Villers les Nancy, France

cGeometric Modeling and Scientific Visualization Center, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
dMicrosoft Research Asia, Building 2, No. 5 Danling Street, Haidian District, Beijing, 100800, P.R. China

Abstract

The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in
computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded
and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially
outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when
computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is
called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram
for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method
to optimal mesh generation based on the centroidal Voronoi tessellation.

Keywords: clipped Voronoi diagram, Delaunay triangulation, centroidal Voronoi tessellation, mesh
generation.

1. Introduction

The Voronoi diagram is a fundamental geometric
structure which has numerous applications in var-
ious fields, such as shape modeling, motion plan-
ning, scientific visualization, geography, chemistry,
biology and so on.

Suppose that a set of sites in a compact domain in
Rd is given. Each site is associated with a Voronoi
cell containing all the points in Rd closer to the site
than to any other sites; these cells constitute the
Voronoi diagram of the set of sites. Voronoi cells of
those sites on the convex hull are infinite, and some
of Voronoi cells may be partially outside of the spec-
ified domain. However, in many applications one
usually needs only the parts of Voronoi cells inside
the specific domain. That is, the Voronoi diagram
restricted to the given domain, which is defined as
the intersection of the Voronoi diagram and the do-
main, and is therefore called the clipped Voronoi
diagram [7]. The corresponding Voronoi cells are
called the clipped Voronoi cells (see Figure 1).

Computing the clipped Voronoi diagram in a con-
vex domain is relatively easy – one just needs to
compute the intersection of each Voronoi cell and
the domain, both being convex. However, directly

computing the clipped Voronoi diagram with re-
spect to a complicated input domain is a difficult
problem and there is no efficient solution in the ex-
isting literature. There has been no previous work
on computing the exact clipped Voronoi diagram
for non-convex domains with arbitrary topology. A
brute-force implementation would be inefficient be-
cause of the complexity of the domain.

The motivation of the work is inspired by the re-
cent work [23, 38]. They showed in [23] that the
CVT energy function is C2-continuous, which can
be minimized by the Newton-like algorithm, such
as the L-BFGS method presented. In [38], an effi-
cient CVT-based surface remeshing algorithm was
presented with an exact algorithm for computing
the restricted Voronoi diagram on mesh surfaces.
In this paper, we aim at applying the fast CVT
remeshing framework to 2D/3D mesh generation.
To minimize the CVT energy function, one needs to
compute the clipped Voronoi diagram in the input
domain for function evaluation and gradient com-
putation (see Section 2).

In this paper, we shall present practical algo-
rithms for computing clipped Voronoi diagrams
based on several simple operations. The main idea

Preprint submitted to Computer-Aided Design October 20, 2011

(a) (b)

Figure 1: Examples of clipped Voronoi diagram in
a circle (a) and a cylinder (b). The clipped Voronoi
cells on the boundary are shaded.

of our approach is that instead of computing the
intersection of Voronoi diagram and the domain di-
rectly, we first detect the Voronoi cells that have in-
tersections with domain boundary and then apply
computation for those cells only. We use a simple
and efficient algorithm based on connectivity propa-
gation for detecting the cells that intersect with the
domain boundary (i.e., polygons in 2D and mesh
surfaces in 3D, respectively). We also utilize the
presented techniques for mesh generation as appli-
cations. The contributions of this paper include :

• introduce new methods for computing the
clipped Voronoi diagram in 2D regions (Sec-
tion 3) and 3D volumes (Section 4);

• present practical algorithms for 2D/3D mesh
generation based on the presented clipped
Voronoi diagram computation techniques (Sec-
tion 5).

1.1. Previous work

The properties of the Voronoi diagram have been
extensively studied in the past decades. Existing
techniques compute the Voronoi diagram for point
sites in 2D and 3D Euclidean spaces efficiently.
There are several robust implementations that are
publicly available, such as CGAL [1] and Qhull [6].
A thorough survey of the Voronoi diagram is out
of the scope of this paper, the reader is referred to
[5, 15, 26] for details of theories and applications of
the Voronoi diagram. We shall restrict our discus-
sion to the approaches of computing the Voronoi
diagram restricted to a specific 2D/3D domain and
their applications.

Voronoi diagram of surfaces/volumes. It is natu-
ral to use the geodesic metric to define the so
called Geodesic Voronoi Diagram (GVD) on sur-
faces. Kunze et al. [20] presented a divide-and-
conquer algorithm of computing GVD for paramet-
ric surfaces. Peyré and Cohen [28] used the fast
marching algorithm to compute a discrete approx-
imated GVD on a mesh surface. However, the cost
of computing the exact GVD on surfaces is high,
for instance, the fast marching method requires to
solve the nonlinear Eikonal equation.

The restricted Voronoi diagram (RVD) [14] is de-
fined as the intersection of the 3D Voronoi diagram
and the surface, which is applied for computing
constrained/restricted CVT on continuous surfaces
by Du et al. [13]. The concept of the constrained
CVT was extended to mesh surfaces in recent work
[23, 38] and applied for isotropic surface remesh-
ing. Yan et al. [38] proposed an exact algorithm to
construct the RVD on mesh surfaces which consist
of triangle soups. They processed each triangle in-
dependently where a kd-tree was used to find the
nearest sites of each triangle in order to identify its
incident Voronoi cells and compute the intersection.
In this paper, we further improve the efficiency of
the RVD computation by applying a neighbor prop-
agation approach instead of using kd-tree query, as-
suming the availability of the mesh connectivity in-
formation (Section 4.1).

The clipped Voronoi diagram is defined as the
intersection of the 3D (resp. 2D) Voronoi diagram
and the given 3D volume (resp. a 2D region). Chan
et al. [7] introduced an output-sensitive algorithm
for constructing the 3D clipped Voronoi diagram
of a convex polytope. Kyons et al. [24] presented
an O(nlog(n)) algorithm to compute the clipped
Voronoi diagram in a 2D square and applied it
to network visualization. Yan et al. [39] utilized
the clipped Voronoi diagram to compute the peri-
odic CVT in 2D periodic space. Hudson et al. [18]
computed the 3D clipped Voronoi diagram in the
bounding box of the sites and used it to improve the
time and space complexities of computing the full
persistent homological information. However, the
handling of non-convex objects was not addressed
in these approaches. Existing algorithms used a dis-
crete approximation in specific applications. Hoff
III et al. [17] proposed a method for computing the
discrete generalized Voronoi diagram using graph-
ics hardware. The Voronoi diagram computation
was formulated as a clustering problem in the dis-
crete voxel/pixel space. Sud et al. [33] presented an

2

n-body proximity query algorithm based on com-
puting the discrete 2nd order Voronoi diagram on
the GPU. GPU-based algorithms were fast but pro-
duced only a discrete approximation of the true
Voronoi diagram. In this paper, we shall present
efficient algorithms to compute the exact clipped
Voronoi diagram for both 2D and 3D domains.

Mesh generation. Mesh generation has been ex-
tensively studied in meshing community over past
decades. The detailed reviews of mesh genera-
tion techniques are available in [27, 16]. In the
following, we will focus on the work based on
Voronoi/Delaunay concepts, which are most related
to ours. We also briefly review the main categories
of tetrahedral mesh generation techniques.

The concept of Voronoi diagram has been suc-
cessfully used for meshing and analyzing point data.
Amenta et al. [4] presented a new surface recon-
struction algorithm based on Voronoi filtering. This
algorithm has provable guarantees when the sam-
ple points of a smooth surface satisfy the lfs (local
feature size) property. Alliez et al. [2] proposed a
surface reconstruction algorithm from noisy input
data based on the Voronoi-PCA estimation. Ley-
marie and Kimia introduced the medial scaffold of
point cloud data [21], which is a hierarchical rep-
resentation of the medial axis of 3D objects. Al-
though these works deal with point data, they can
be extended further for volumetric meshing.

The medial axis, which is a subset of Voronoi
diagram, has been applied in applications such as
2D quadrilateral meshing [37] and 3D hexahedral
meshing [29]. Given a closed 2D polygon or 3D
triangulated surface as the input domain, a set of
dense points is first sampled on the domain bound-
ary and the medial axis/surface is computed di-
rectly from the Voronoi diagram of samples. The
final mesh is generated by first meshing the medial
axis(2D)/surface(3D) and extruding to the domain
boundary [30]. The medial axis based method is
suitable for models which have well defined medial
axis, such as CAD/CAM models, but the medial
axis computation is sensitive to noise or small fea-
tures of the domain boundary.

In this paper, we focus on the tetrahedral mesh-
ing as an application of the clipped Voronoi diagram
computation (see Section 5). The shape quality and
boundary preservation are two main issues of tetra-
hedral meshing algorithms, since the quality of sim-
plices is crucial to finite element applications. We
refer the reader to [31] for the theoretic study of the

relationship between element qualities and interpo-
lation error/condition number. In the following, we
briefly discuss the main categories of tetrahedral
meshing.

• The octree-based approaches (e.g. [10, 40])
subdivide the bounding box of input model
repeatedly until a pre-specified resolution is
reached, then connect those cells to form the
tetrahedra. In general, this kind of approaches
cannot prevent bad elements near the bound-
ary.

• Advancing front methods start from the do-
main boundary and stuff the interior of the do-
main progressively, guided by specified heuris-
tic to control the shape/size. Advancing front
methods are fast but a high-quality triangu-
lated boundary is required.

• Delaunay/Voronoi based approaches generate
meshes satisfying Delaunay properties, which
maximize the minimal angle of shape elements.
Given an input domain, Delaunay/Voronoi
based methods repeatedly insert Steiner points
into the mesh, until all the elements meet the
Delaunay property. This approach aims at
generating meshes which conform to the input
domain boundary, but often leads to unsatis-
fied results if the given domain boundary is
poorly triangulated. An alternative way is to
approximate the boundary instead of conform-
ing, which results the better shape/size quality.

• Variational approach is one of the most ef-
fective ways of generating isotropic tetrahe-
dral meshes. Recent work includes both CVT-
based and ODT-based techniques. The CVT-
based approach aims at optimizing the dual
Voronoi structure of Delaunay triangulation,
while ODT tends to optimize the shape of pri-
mal elements [8]. The CVT-based mesh gener-
ation has been extensively studied in the liter-
ature [13], while ODT was recently introduced
to graphics community [3, 36]. One of the
main difficulties of both CVT and ODT-based
tetrahedral meshing is the boundary conform-
ing issue. Alliez et al. [3] used dense quadra-
ture samples to approximate restricted Voronoi
cells on mesh surface. Dardenne et al. [11] used
a discrete version of the CVT to generate tetra-
hedral meshes from the discrete volume data.
The voxels are clustered into n cells via Lloyd

3

iteration, with each cell corresponding to a site.
The tetrahedral mesh is obtained from the con-
nectivity relations of cells. However, such an
approach is limited to the resolution of voxels.

2. Problem Formulation

We first provide mathematical definitions and no-
tations, then introduce the main idea of the clipped
Voronoi diagram computation.

2.1. Definitions

Definition 2.1. The Voronoi Diagram of a given
set of distinct sites X = {xi}ni=1 in Rd is defined by
a collection of Voronoi cells {Ωi}ni=1, where

Ωi = {x ∈ Rd
∣∣ ‖x− xi‖ ≤ ‖x− xj‖,∀j 6= i}.

Each Voronoi cell Ωi is the intersection of a set of
half-spaces, delimited by the bisectors of the Delau-
nay edges incident to the site xi.

Definition 2.2. The Clipped Voronoi Diagram for
the sites X with respect to a connected compact do-
main Ω is the intersection of the Voronoi diagram
and the domain, denoted as {Ωi|Ω}ni=1, where

Ωi|Ω = {x ∈ Ω
∣∣ ‖x− xi‖ ≤ ‖x− xj‖,∀j 6= i}

Each clipped Voronoi cell is the intersection of the
Voronoi cell Ωi and the domain Ω, i.e., Ωi|Ω =
Ωi
⋂

Ω. We call Ωi|Ω the clipped Voronoi cell with
respect to Ω (see Figure 1 for examples).

Definition 2.3. Centroidal Voronoi Tessellation
of a set of distinct sites X with respect to a com-
pact domain Ω is the minimizer of the CVT energy
function [12] :

F (X) =

n∑
i=1

∫
Ωi|Ω

ρ(x)‖x− xi‖2 dσ. (1)

In the above definition, ρ(x) > 0 is a user-defined
density function. The partial derivative of the en-
ergy function with respect to each site is given
by [19] :

∂F

∂xi
= 2mi(xi − x∗i), (2)

here mi =
∫

Ωi|Ω ρ(x) dσ, and x∗i =

∫
Ωi|Ω

ρ(x)x dσ∫
Ωi|Ω

ρ(x) dσ

is the centroid of the clipped Voronoi cell Ωi|Ω.
We use the L-BFGS method [23] for computing the
CVT. The clipped Voronoi diagram is used to assist
the function evaluation (Eqn. 1) and the gradient
computation (Eqn. 2).

2.2. Algorithm overview

There are two types of clipped Voronoi cells of a
clipped Voronoi diagram : inner Voronoi cells and
boundary Voronoi cells, whose corresponding sites
are called inner sites and boundary sites, respec-
tively. The inner Voronoi cells are entirely con-
tained in the interior of the domain Ω, which can be
deduced from the Delaunay triangulation directly.
The boundary Voronoi cells are those cells that in-
tersect with the domain boundary ∂Ω, as shown in
Figure 1. In the following, we will focus on how to
compute the boundary Voronoi cells.

To compute a clipped Voronoi diagram with re-
spect to a given domain, we first need to classify the
sites into inner and boundary sites, and then com-
pute the clipped Voronoi cells for boundary sites.
As discussed above, the boundary cells have inter-
sections with the domain boundary ∂Ω (i.e., poly-
gons in 2D and mesh surfaces in 3D), which can
be found by intersecting the boundary with the
Voronoi diagram. We present efficient algorithms
for computing the intersection of a Voronoi diagram
and 2D polygons or 3D mesh surfaces, respectively.
Once the boundary sites are identified, we are able
to compute the clipped Voronoi cells efficiently by
clipping the domain Ω against boundary Voronoi
cells.

In the following sections, we shall present efficient
algorithms for computing clipped Voronoi diagram
in 2D (Section 3) and 3D (Section 4) spaces, respec-
tively. Furthermore, we show how to utilize the pre-
sented clipped Voronoi diagram computation tech-
niques for practical mesh generation (Section 5).

3. 2D Clipped Voronoi Diagram Computa-
tion

Suppose that the input domain Ω is a compact
2D region, whose boundary is represented by a 2D
counter-clockwise outer polygon, and several clock-
wise inner polygons without self-intersections. As-
sume that the boundary is represented by a set of
ordered edge segments {ei}. The main steps of our
method are illustrated in Figure 2. For a given set
of sites inside the given domain, we first compute
the Voronoi diagram of the sites. Then we identify
the boundary sites and finally compute the clipped
Voronoi cells of boundary sites .

3.1. Voronoi diagram construction

We first construct a Delaunay triangulation from
input sites X = {xi}ni=1. The corresponding

4

(a) (b) (c) (d)

Figure 2: Illustration of main steps for computing clipped Voronoi diagram in 2D. (a) Delaunay triangulation,
(b) 2D Voronoi diagram, (c) detect boundary sites, (d) compute clipped Voronoi diagram.

Voronoi diagram {Ωi}ni=1 is constructed as the dual
of the Delaunay triangulation, as defined in Sec-
tion 2. Each Voronoi cell is stored as a set of bi-
secting planes, which is used for clipping operations
in the following steps.

3.2. Detection of boundary cells

In this step, we shall identify the boundary
Voronoi cells by computing the intersection of
boundary edges and the Voronoi diagram {Ωi}. We
repeatedly find the incident cell-edge pairs with the
assistance of an FIFO queue. An incident Voronoi
cell of a boundary edge ei is the cell that intersects
with ei, i.e., a boundary Voronoi cell.

We assign a boolean tag to each boundary edge
ei which indicates whether ei has been processed or
not. This flag is initialized as false. Once the edge
is visited, the flag is switched to true. Starting
from an unvisited boundary edge ei, we first find
its nearest incident Voronoi cell Ωj , then use the
barycenter (or midpoint) of ei to query the nearest
site xj . Any linear search function can be used here
for the nearest point query.

The FIFO queue is initialized by the initial inci-
dent cell-edge pair (Ωj , ei). We repeatedly pop out
the cell-edge pair from the queue and compute the
intersection of the current Voronoi cell Ωc and the
boundary edge ec. The intersected segment is de-
noted as sc. The current boundary edge is marked
as visited and the current Voronoi cell is marked
as boundarycell. We detect new cell-edge pairs
by examining the current intersected segment sc.
There are two cases of sc’s endpoints :

(a) if the endpoints of sc contain a boundary ver-
tex of the current edge ec (green dots in Fig-
ure 2(c)), the adjacent boundary edge who

shares the same vertex with ec is pushed into
the queue together with the current Voronoi
cell Ωc;

(b) if the endpoints of sc contain an intersection
point, i.e., the intersection point between a
Voronoi edge of Ωc and ec (yellow dots in Fig-
ure 2(c)), the neighboring Voronoi cell who
shares the intersecting Voronoi edge with Ωc
is pushed into the queue together with ec.

The boundary detection process terminates when
all the edges have been visited.

3.3. Computation of clipped Voronoi cells

Once the boundary sites are identified, we com-
pute the clipped Voronoi cells by clipping the do-
main against their corresponding bounding line seg-
ments. A straightforward extension of [38] should
first triangulate the boundary polygons and then do
computation on the resulting planar mesh, which
will be the same as the surface RVD computation
described in Section 4.1. Given that the average
number of bisectors of 2D Voronoi cells is six [12], it
is efficient enough to clip the 2D domain by Voronoi
cells directly. Here we simply use the Sutherland-
Hodgman clipping algorithm [34] to compute the
intersection. More examples of 2D clipped Voronoi
diagram are given in Section 6.

4. 3D Clipped Voronoi Diagram Computa-
tion

In this section we describe an efficient algorithm
for computing the clipped Voronoi diagram of 3D
objects. Suppose that the input volume Ω is given
by a tetrahedral mesh M = {V, T }, where V =

5

(a) (b)

Figure 3: Illustration of clipped Voronoi diagram
computation of 500 sites in a torus. (a) Surface
RVD of 227 boundary sites, (b) Clipped Voronoi
diagram.

{vk}nv

k=1 is the set of mesh vertices and T = {ti}mi=1

the set of tetrahedral elements. Each tetrahedron
(tet for short in the following) ti stores the informa-
tion of its four incident vertices and four adjacent
tets. The four vertices are assigned indices 0, 1, 2, 3
and so are the four adjacent tets. The index of an
adjacent tet is the same as the index of the vertex
which is opposite to the tet. The boundary ofM is
a triangle mesh, denoted as S = {fj}

nf

j=1, which is
assumed to be a 2-manifold. Each boundary trian-
gle facet fj stores the indices of three neighboring
facets and the index of its containing tet. Note that
although other types of convex primitives can also
be used for domain decomposition, we use tetrahe-
dral mesh here for simplicity.

The 3D clipped Voronoi diagram computation is
similar to the 2D counterpart. After constructing
the 3D Voronoi diagram {Ωi} of the sites X (see
Section 3.1), there are two main steps, as illustrated
in Figure 3 :

1. detect boundary sites by intersecting Voronoi
diagram with the boundary surface S, i.e.,
compute the surface RVD (Section 4.1);

2. compute the clipped Voronoi cells for all the
boundary sites (Section 4.2).

4.1. Detection of boundary sites

For the given set of sites X = {xi}ni=1 and
the boundary surface S = {fj}

nf

j=1, the restricted
Voronoi diagram (RVD) is defined as the intersec-
tion of the 3D Voronoi diagram and the surface S,
denoted as R = {Ri}ni=1, where Ri = Ωi

⋂
S [14].

Each Ri is called a restricted Voronoi cell (RVC).
The sites corresponding to non-empty RVCs are re-
garded as boundary sites.

Ω4

Ω3

Ω1

Ω0

f0

Ω2

Ω5

f3

f2

f1

(a)

Ω4

Ω3

Ω1

Ω0

f0

Ω2

Ω5
f3

f2

f1

q0

q4q3
q2

q1

q5

(b)

Figure 4: Illustration of the propagation process.
The green points are the vertices of input boundary
mesh and the white points are the sites. The yellow
points in (b) are the vertices of RVD.

We use the algorithm presented in [38] for com-
puting the surface RVD. The performance of RVD
computation is improved by using a neighbor prop-
agation approach for finding the incident cell-
triangles pairs, instead of using a kd-tree structure
to query the nearest site for each triangle, as shown
by our tests.

Now we are going to explain the propagation step
(refer to Figure 4). We assign a boolean flag (initial-
ized as false) for each boundary triangle at the ini-
tialization step. The flag is used to indicate whether
a triangle is processed or not. Starting from an
unprocessed triangle and one of its incident cells,
which is the cell corresponding to the nearest site of
the triangle by using the barycenter of the triangle
as the query point. Here we assume that a triangle
f0 on S is the unprocessed triangle and the Voronoi
cell Ω0 is the corresponding cell of the nearest site
of f0, as shown in Figure 4(a). We use an FIFO
queue Q to store all the incident cell-triangle pairs
to be processed. To start, the initial pair {f0,Ω0}
is pushed into the queue. The algorithm repeatedly
pops out the pair in the front of Q and computes
their intersection. During the intersection process,
the current triangle is marked as processed, new
valid pairs are identified and pushed back into Q.
The process terminates when Q is empty and all
the triangles are processed.

The key issue now is how to identify all the valid
cell-triangle pairs during the intersection. Assume
that {f0,Ω0} is popped out fromQ, as shown in Fig-
ure 4. In this case, we clip f0 against the bound-
ing planes of Ω0, which has five bisecting planes,
i.e.,[x0,x1], [x0,x2]..., [x0,x5]. The resulting poly-
gon is represented by q0,q1, ...,q5, as shown in Fig-
ure 4(b). Since the line segment q0q1 is the inter-
section of f0 and [x0,x1], we know that the oppo-

6

(a) (b) (c) (d)

Figure 5: 2D CVT-based meshing. (a) The clipped Voronoi diagram of initial sites; (b) the result of CVT
with ρ = 1; (c) the result of constrained optimization. Notice that boundary seeds are constrained on the
border; (d) the final uniform 2D meshing.

site cell Ω1 is also an incident cell of f0, thus the
pair {f0,Ω1} is an incident pair. Since the com-
mon edge of [f0, f1] has intersection with Ω0, the
adjacent facet f1 also has intersection with cell Ω0,
thus the pair {f1,Ω0} is also an incident pair. So
is the pair {f2,Ω0}. The other incident pairs are
found in the same manner. To keep the same pair
from being processed multiple times, we store the
incident facet indices for each cell. Before pushing
a new pair into the queue, we add the facet in-
dex to the incident facet index set of the cell. The
pair is pushed into the queue only if the facet is
not contained in the incident facet set of the cell;
otherwise the pair is discarded. At each time after
intersection computation, the resulting polygon is
associated with the surface RVC of the current site.
The surface RVD computation terminates when the
queue is empty. Those sites that have non-empty
surface RVC are marked as the boundary sites, de-
noted as Xb = {xi|Ri 6= ∅}.

4.2. Construction of clipped Voronoi cells

Once the boundary sites Xb are found, we com-
pute the clipped Voronoi cells for these sites. The
computation of boundary Voronoi cells is similar
to the surface RVD computation presented in Sec-
tion 4.1, with the difference that we restrict the
computation on boundary cells only. For each
boundary cell, we have recorded the indices of its in-
cident boundary triangles. We know that the neigh-
boring tet of each boundary triangle is also incident
to the cell. We also store the indices of the incident
tet for each boundary cell. The incident tet set
is initialized as the neighboring tet of the incident
boundary triangle.

We use an FIFO queue to facilitate this process.
The queue is initialized by a set of incident cell-
tet pairs (Ωi, tj), which can be obtained from the
boundary cell and its initial incident tet set.

The pair (Ωi, tj) in front of Q is popped out re-
peatedly. We compute the intersection of Ωi and
tj again by the Sutherland-Hodgman clipping al-
gorithm [34] and identify new incident pairs at the
same time. We clip the tet tj by bounding planes
of cell Ωi one by one. If the current bounding
plane has intersection with tj , we check the oppo-
site Voronoi cell Ωo that shares the current bisect-
ing plane with Ωi; if Ωo is a boundary cell and tj
is not in the incident set of Ωo, a new pair (Ωo, tj)
is found. We also check the neighboring tets who
share the facets clipped by the current bisecting
plane. Those tets that are not in the incident set of
Ωi are added to its set, and new pairs are pushed
into the queue. After clipping, the resulting poly-
hedron is associated with the clipped Voronoi cell
Ωi|M of site xi. This process terminates when Q is
empty.

5. Applications for mesh generation

We present two applications of the presented
clipped Voronoi diagram computation techniques,
including 2D triangular meshing and 3D tetrahe-
dral meshing.

5.1. 2D mesh generation

Triangle mesh generation is a well-known appli-
cation of CVT optimization. In this section we
present such an application based on our 2D clipped
Voronoi diagram computation. The input domain

7

(a) (b) (c) (d)

Figure 6: Illustration of the CVT-based tetrahedral meshing algorithm. The wireframe is the boundary of
the input mesh. (a) The clipped Voronoi diagram of the initial sites (the boundary Voronoi cells are shaded);
(b) the result of the unconstrained CVT with ρ = 1; (c) the result of the constrained optimization. Notice
that boundary seeds are constrained on the surface S; (d) the final isotropic tetrahedral meshing result.

Ω is a 2D polygon, which can be single connected or
with multiple components. We first sample a set of
initial points inside the input domain (Figure 5(a))
and then compute a CVT (Eqn. 1) from this initial
sampling (Figure 5(b)). Once we have a set of well
distributed samples, we snap the seeds correspond-
ing to boundary Voronoi cells to the boundary and
run optimization again, with the boundary seeds
constrained on the border (Figure 5(c)). Finally,
we keep the primal triangles whose circumscribing
centers are inside the domain as the meshing re-
sult (5(d)). Our 2D meshing framework also allows
the user to insert vertices of input polygon and tag
these vertices as fixed. By doing this, the geomet-
ric properties of the input domain can be better
preserved. More results are given in Section 6.

5.2. Tetrahedral mesh generation

There are three main steps of the CVT-based
meshing framework: initialization, iterative opti-
mization, and mesh extraction, which are illus-
trated by the example in Figure 6.

Initialization. In this step, we build a uniform
grid to store the sizing field for adaptive meshing.
Following the approach in [3], we first compute the
local feature size (lfs) for all boundary vertices and
then use a fast matching method to construct a
sizing field on the grid. This grid is also used for
efficient initial sampling (Figure 6(a)). The reader
is referred to [3] for details.

Optimization. There are two phases of the global
optimization: the unconstrained CVT optimization
and the constrained CVT optimization. In the first

phase, we optimize the positions of the sites inside
the input volume without any constraints, which
yields a well-spaced distribution of the sites within
the domain, with no sites lying on the boundary
surface (Figure 6(b)).

During the second phase of optimization, all the
boundary sites will be constrained on the boundary.
The partial derivative of the energy function with
respect to each boundary site is computed as:

∂F

∂xi

∣∣∣∣
S

=
∂F

∂xi
−
[
∂F

∂xi
·N(xi)

]
N(xi), (3)

where N(xi) is the unit normal vector of the bound-
ary surface at the boundary site xi [23]. The partial
derivative with respect to an inner site is still com-
puted by Eqn. 2. Both boundary and inner sites
will be optimized simultaneously, applying again
the L-BFGS method to minimize the CVT energy
function (Figure 6(c)).

Sharp features are preserved in a similar way as
how the boundary sites are treated. For example,
we project sites on sharp edges on the boundary and
allow them to vary only along these edges during
the second stage of optimization. For details, please
refer to [38] where these steps are described in the
context of surface remeshing.

Final mesh extraction. Once the optimization is
finished, we extract the tetrahedral cells from the
primal Delaunay triangulation (Figure 6(d)). As
discussed in [3], the CVT energy cannot eliminate
the slivers from the resulting tetrahedral mesh. We
perform a post-processing to perturb slivers using
the approach of [35]. The results are given in Sec-
tion 6.

8

Figure 7: Results of clipped Voronoi diagram computation.

6. Experimental results

Our algorithm is implemented in C++ on both
Windows and Linux platform. We use the CGAL li-
brary [1] for 2D and 3D Delaunay triangulation and
TetGen [32] for background mesh generation when
the input 3D domain is given as a closed triangle
mesh. All the experimental results are tested on a
laptop with 2.4GHz processor and 2GB memory.

Efficiency. We first demonstrate the performance
of the proposed clipped VD computation algorithm.
The 2D version is very efficient. All the exam-
ples shown in this paper take only several millisec-
onds. To detect the boundary sites, we have im-
plemented a propagation based approach for sur-
face RVD computation. This new implementation
of RVD performs better then the previous kd-tree
based approach [38] since there is no kd-tree query
required, as shown in Figure 8. The performance
of the 3D clipped Voronoi diagram computation is
demonstrated in Figure 9. We progressively sample
the input domain with number of sites from 10 to
6 × 105. Note that the time of surface RVD com-
putation is much less than the Delaunay triangula-
tion, since only a small portion of all the sites are
boundary sites. The time cost of the clipped VD
computation algorithm is proportional to the to-
tal number of incident cell-tet pairs (Section 4.2).
Therefore, an input mesh with a small number of
tetrahedral elements would help to improve the effi-
ciency. In our experiments, all the input tetrahedral

meshes are generated by the robust meshing soft-
ware TetGen [32] with the conforming boundary.
More results of the clipped Voronoi diagram com-
putation of various 3D objects are given in Figure
7 and the timing statistics is given in Table 1.

Model |T | |S| |X| |Xb| Time
Twoprism 68 30 1k 572 0.2

Bunny 10k 3k 2k 734 1.8
Elk 34.8k 10.4k 2k 1,173 3.1

Block 77.2k 23.4 1k 659 4.7
Homer 16.2k 4,594 10k 2,797 6.3

Rockerarm 212k 60.3k 3k 1,722 12.1
Bust 68.5k 20k 30k 5k 16.2

Table 1: Statistics of clipped Voronoi diagram com-
putation on various models. |T | is the number
of the input tetrahedra. |S| is the number of the
boundary triangles. |X| is the number of the sites.
|Xb| is the number of the boundary sites. Time (in
seconds) is the total time for clipped Voronoi dia-
gram computation, including both Delaunay trian-
gulation and surface RVD computation.

Robustness. We use exact predicates to predicate
the side of a vertex against a Voronoi plane during
the clipping process. We use Meyer and Pion’s FGP
predicate generator [25] provided by CGAL in our
implementation, as also done in [38]. We did not
encounter any numerical issue for all the examples
shown in the paper. Our clipped Voronoi diagram
is robust even for extreme configurations. We show
an example of computing the clipped Voronoi dia-
gram on a sphere in Figure 10. The sites are set to
the vertices of the boundary mesh and there is no

9

Figure 8: Comparison of the propagation-based
surface RVD computation with the kd-tree-based
approach.

#seed vs time of clipped VD
#seed vs time of RVD
#seed vs time of DT

#Seed

Ti
m

e(
s)

Figure 9: The timing curve of the clipped Voronoi
diagram computation against the number of sites
on Bone model.

inner site. Furthermore, we give another example
of computing clipped Voronoi diagram in a cubic
domain. The boundary mesh of the cube is shown
in Figure 11(a). We sample the eight corners of
the cube as sites, in this case, the bounding planes
of Voronoi diagram are passing through the edges
of the boundary mesh. The surface RVD and the
volume clipped Voronoi diagram are shown in Fig-
ure 11(b) and (c), respectively.

2D meshing. We show some 2D mesh generation
results based on our fast clipped Voronoi diagram
computation. Figure 12 demonstrates that our al-
gorithm works well for multiple connected domains.
Figure 13 shows that we insert original vertices of
input polygon for the better preservation of the ge-
ometric properties.

Figure 10: Clipped Voronoi diagram of a sphere.
The sites are the vertices of the sphere. (a) The
surface RVD, (b) the clipped Voronoi diagram.

(a) (b) (c)

Figure 11: Clipped Voronoi diagram of a cube. Red
points represent the sites. (a) The input domain,
(b) the surface RVD, (c) the clipped Voronoi dia-
gram.

Figure 12: CVT-based 2D mesh generation of a
ring.

Figure 13: CVT-based 2D mesh generation. The
boundary vertices of the input domain are used as
constraints.

10

Tetrahedral meshing. The complete process of
the proposed tetrahedral meshing framework is il-
lustrated in Figure 6. Figure 14 (a)&(b) show two
adaptive tetrahedral meshing examples, using lfs
as the density function [3]. Figure 14 (c)&(d) give
two examples with sharp features preserved. Our
framework can generate high quality meshes effi-
ciently and robustly. The running time for obtain-
ing final results ranges from seconds to minutes, de-
pending on the size of the input tetrahedral mesh
and the desired number of sites.

Figure 14: Tetrahedral mesh generation results.
The histograms show the angle distribution of the
results.

Comparison. We compare our meshing results
with the Delaunay refinement approach provided
by CGAL [1], as well as a recent work that used
a discrete version of clipped Voronoi diagram for
tetrahedral mesh generation [11]. Four shape qual-
ity measurements are used as in [11], i.e.,

• Q1 = θmin, the minimal dihedral angle θmin of
each tetrahedron;

• Q2 = θmax, the maximal dihedral angle θmax
of each tetrahedron;

• Q3 = 3 rin
rcirc

, the radius-ratio of each tetra-
hedral, where rin and rcirc are the in-
scribed/circumscribed radius, respectively;

• Q4 = 12
3√

9V 2∑
l2i,j

, meshing quality of [22], where

V is the volume of the tetrahedron, and li,j
the length of the edge which connects vertices
vi and vj .

Q3 and Q4 are between 0 and 1, where 0 denotes a
silver and 1 denotes a regular tetrahedron.

We choose the sphere generated from an iso-
surface as input domain. The Hausdorff distance
(measured by Metro [9]) between the boundary of
generated mesh and the input surface (normalized
by dividing by the diagonal of bounding box) is
0.049%, which is 3 times smaller than 0.17% re-
ported by [11]. The quality of the tetrahedral mesh
is shown in Figure.15 and the comparison of each
measurement is given in Table 2. Our approach
produces better meshing quality, as well as smaller
surface approximation error, attributed to the ex-
act clipped Voronoi diagram computation.

method Q1 Q4 min(Q1) min(Q4) HDist

[1] 48.11◦ 0.847 12.05◦ 0.339 0.054%
[11] 56.32◦ 0.911 16.31◦ 0.376 0.170%
ours 56.37◦ 0.932 24.23◦ 0.560 0.049%

Table 2: Comparison of meshing qualities. HDist

is the Hausdorff distance between the boundary of
generated mesh and the input discretized isosur-
face.

We also compare our result with an octree-based
approach [10]. As shown in Figure 16, the CVT
based approach exhibits much better element qual-
ity than a standard approach. Our approach out-
performs previous work in boundary approximation
error (as shown in Figure 17), attributed to the ex-
act clipped Voronoi diagram computation and si-
multaneous surface remeshing [38].

11

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

(a) Q1

60 80 100 120 140 160 180
0

1000

2000

3000

4000

(b) Q2

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

10000

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

10000

(c) Q3

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

10000

12000

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

10000

12000 OursCGAL

(d) Q4

Figure 15: Comparison of the meshing qualities of
the sphere with the Delaunay refinement approach
implemented in CGAL [1].

7. Conclusion

We have presented efficient algorithms for com-
puting the clipped Voronoi diagram for closed 2D
and 3D objects, which has been a difficult problem
without an efficient solution. As an application, we
present a new CVT-based mesh generation algo-
rithm which combines the clipped VD computation
and fast CVT optimization.

In the future, we plan to look for more interdis-
ciplinary applications of the clipped Voronoi dia-
gram, such as biology and architecture. Applying
our meshing technique to physical simulation appli-
cations, and extending the clipped Voronoi diagram
to a higher dimension are also interesting directions.

Acknowledgements

We would like to thank anonymous review-
ers for their detailed comments and suggestions
which greatly improve the manuscript. We also
thank one reviewer who pointed out the ref-
erence [7]. This work is partially supported
by the Research Grant Council of Hong Kong
(project no.: 718209 and 718010), the State Key
Program of NSFC project (60933008), European
Research Council (GOODSHAPE FP7-ERC-StG-
205693), and ANR/NSFC (60625202, 60911130368)
Program (SHAN Project).

0 10 20 30 40 50 60 70 80
0

2000

4000

6000

8000

10000

12000

(a) Q1

60 80 100 120 140 160 180
0

2000

4000

6000

8000

(b) Q2

0.0 0.2 0.4 0.6 0.8 1.0
0

5000

10000

15000

20000

(c) Q3

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

10000

12000

14000

16000 OursCulter

(d) Q4

Figure 16: Comparison with the octree based ap-
proach [10]. The resulting tetrahedral mesh has
200k tetrahedra.

Figure 17: Approximation error of gargoyle model:
50K vertices, 256K tetrahedra, mean/max Haus-
dorff distance: 0.045%/0.37%. Our approach pro-
duces smaller approximation error compared with
[3] (mean error: 0.053%) using the same number of
vertices.

References

[1] CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org.

[2] Pierre Alliez, David Cohen-Steiner, Yiying Tong, and
Mathieu Desbrun. Voronoi-based variational recon-
struction of unoriented point sets. In Proceedings
of Symposium on Geometry Processing (SGP 2007),
pages 39–48, 2007.

[3] Pierre Alliez, David Cohen-Steiner, Mariette Yvinec,
and Mathieu Desbrun. Variational tetrahedral meshing.
ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2005), 24(3):617–625, 2005.

[4] Nina Amenta, Marsahll Bern, and Manolis Kamvys-
selis. A new Voronoi-based surface reconstruction al-
gorithm. In Proceedings of ACM SIGGRAPH 1998,
pages 415–421, 1998.

[5] Franz Aurenhammer. Voronoi diagrams: a survey of a
fundamental geometric data structure. ACM Comput-
ing Surveys, 23(3):345–405, 1991.

[6] C. Bradford Barber, David P. Dobkin, and Hannu Huh-

12

danpaa. The quickhull algorithm for convex hulls. ACM
Trans. Math. Software, 22:469–483, 1996.

[7] Timothy M. Y. Chan, Jack Snoeyink, and Chee-Keng
Yap. Output-sensitive construction of polytopes in four
dimensions and clipped Voronoi diagrams in three. In
Proceedings of the sixth annual ACM-SIAM symposium
on Discrete algorithms (SODA), pages 282–291, 1995.

[8] L. Chen and J. Xu. Optimal Delaunay triangulations.
Journal of Computational Mathematics, 22(2):299–308,
2004.

[9] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Mea-
suring error on simplified surfaces. Computer Graphics
Forum, 17(2):167–174, 1998.

[10] Barbara Cutler, Julie Dorsey, , and Leonard McMillan.
Simplification and improvement of tetrahedral models
for simulation. In Proceedings of the Eurographics Sym-
posium on Geometry Processing, pages 93–102, 2004.

[11] J. Dardenne, S. Valette, N. Siauve, N. Burais, and
R. Prost. Variational tetraedral mesh generation from
discrete volume data. The Visual Computer (Proceed-
ings of CGI 2009), 25(5):401–410, 2009.

[12] Qiang Du, Vance Faber, and Max Gunzburger. Cen-
troidal Voronoi tessellations: applications and algo-
rithms. SIAM Review, 41(4):637–676, 1999.

[13] Qiang Du, Max. D. Gunzburger, and Lili Ju. Con-
strained centroidal Voronoi tesselations for surfaces.
SIAM J. Sci. Comput., 24(5):1488–1506, 2003.

[14] Herbert Edelsbrunner and Nimish R. Shah. Triangu-
lating topological spaces. Int. J. Comput. Geometry
Appl., 7(4):365–378, 1997.

[15] Steven Fortune. Voronoi diagrams and Delaunay trian-
gulations. In Computing in Euclidean Geometry, pages
193–233, 1992.

[16] Pascal Jean FREY and Paul-Louis GEORGE. Mesh
Generation: Application to Finite Elements. Hermés
Science, 2000.

[17] Kenneth E. Hoff III, John Keyser, Ming C. Lin, and
Dinesh Manocha. Fast computation of generalized
Voronoi diagrams using graphics hardware. In Proceed-
ings of ACM SIGGRAPH 1999, pages 277–286, 1999.

[18] Benoit Hudson, Gary L. Miller, Steve Y. Oudot, and
Donald R. Sheehy. Topological inference via meshing.
In Proceedings of the 2010 annual symposium on Com-
putational geometry (SOCG), pages 277–286, 2010.

[19] Masao Iri, Kazuo Murota, and Takao Ohya. A fast
Voronoi diagram algorithm with applications to geo-
graphical optimization problems. In Proceedings of the
11th IFIP Conference on System Modelling and Opti-
mization, pages 273–288, 1984.

[20] R. Kunze, F.-E. Wolter, and T. Rausch. Geodesic
Voronoi diagrams on parametric surfaces. In Proceed-
ings of Computer Graphics International 1997, pages
230–237, 1997.

[21] F. Leymarie and B. Kimia. The medial scaffold of 3D
unorganized point clouds. IEEE Trans. Pattern Anal.
Mach. Intell., 29(2):313–330, 2007.

[22] Anwei Liu and Barry Joe. On the shape of tetra-
hedra from bisection. mathematics of computation,
63(207):141–154, 1994.

[23] Yang Liu, Wenping Wang, Bruno Lévy, Feng Sun,
Dong-Ming Yan, Lin Lu, and Chenglei Yang. On cen-
troidal Voronoi tessellation: Energy smoothness and
fast computation. ACM Trans. on Graphics, 28(4):Ar-
ticle No. 101, 2009.

[24] Kelly A. Lyons, Henk Meijer, and David Rappaport.

Algorithms for cluster busting in anchored graph draw-
ing. J. Graph Algorithms Appl., 2(1):1–24, 1998.

[25] Andreas Meyer and Sylvain Pion. FPG: A code gen-
erator for fast and certified geometric predicates. Real
Numbers and Computers (RNC), pages 47–60, 2008.

[26] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and
Sung Nok Chiu. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. Wiley, 2nd edition,
2000.

[27] S. Owen. A survey of unstructured mesh generation
technology. In Proceedings of 7th International Meshing
Roundtable, pages 26–28, 1998.

[28] Gabriel Peyré and Laurent D. Cohen. Geodesic remesh-
ing using front propagation. Int. J. of Computer Vision,
69:145–156, 2006.

[29] W. R. Quadros and K. Shimada. Hex-layer: Layered all-
hex mesh generation on thin section solids via chordal
surface transformation. In Proc. of 11th International
Meshing Roundtable, pages 169–180, 2002.

[30] Peter Sampl. Semi-structured mesh generation based
on medial axis. In Proceedings of the 9th International
Meshing Roundtable, pages 21–32, 2000.

[31] J. R. Shewchuk. What is a good linear element? inter-
polation, conditioning, and quality measures. In Pro-
ceedings of the 11th International Meshing Roundtable,
pages 115–126, 2002.

[32] Hang Si. TetGen: A quality tetrahedral mesh gen-
erator and three-dimensional Delaunay triangulator.
http://tetgen.berlios.de.

[33] Avneesh Sud, Naga K. Govindaraju, Russell Gayle,
Ilknur Kabul, and Dinesh Manocha. Fast proximity
computation among deformable models using discrete
Voronoi diagrams. ACM Trans. on Graphics (Proc.
SIGGRAPH), 25(3):1144–1153, 2006.

[34] Ivan E. Sutherland and Gary W. Hodgman. Reen-
trant polygon clipping. Communications of the ACM,
17(1):32–42, 1974.

[35] Jane Tournois, Rahul Srinivasan, and Pierre Alliez. Per-
turbing slivers in 3D Delaunay meshes. In Proceedings
of the 18th International Meshing Roundtable, pages
157–173, 2009.

[36] Jane Tournois, Camille Wormser, Pierre Alliez, and
Mathieu Desbrun. Interleaving Delaunay refinement
and optimization for practical isotropic tetrahedron
mesh generation. ACM Trans. on Graphics (Proc. SIG-
GRAPH), 28(3):Article No. 75, 2009.

[37] S. Yamakawa and K. Shimada. Quad-layer: Layered
quadrilateral meshing of narrow two-dimensional do-
main by bubble packing and chordal axis transforma-
tion. Journal of Mechanical Design, 124:564–573, 2002.

[38] Dong-Ming Yan, Bruno Lévy, Yang Liu, Feng Sun,
and Wenping Wang. Isotropic remeshing with fast
and exact computation of restricted Voronoi diagram.
Computer Graphics Forum (Proceedings of SGP 2009),
28(5):1445–1454, 2009.

[39] Dong-Ming Yan, Kai Wang, Bruno Lévy, and Laurent
Alonso. Computing 2D periodic centroidal Voronoi tes-
sellation. In Proc. of 8th International Symposium on
Voronoi Diagrams in Science and Engineering (ISVD),
pages 177 – 184, 2011.

[40] Yi-Jun Yang, Jun-Hai Yong, and Jia-Guang Sun. An
algorithm for tetrahedral mesh generation based on con-
forming constrained Delaunay tetrahedralization. Com-
puters & Graphics, 29(4):606–615, 2005.

13

