
PermJoin: An Efficient Algorithm for Producing

Early Results in Multi join Query Plans
Justin J. Levandoski ',Mohamed E. Khalefa 2, Mohamed F. Mokbel I

Department of Computer Science and Engineering, University of Minnesota
Minneapolis, MN, USA

{Cjustin, khalefa,

Abstract- This paper introduces an efficient algorithm for
Producing Early Results in Multi-join query plans (PermJoin,
for short). While most previous research focuses only on the
case of a single join operator, PermJoin takes a radical step by
addressing query plans with multiple join operators. PermJoin
is optimized to maximize the early overall throughput and to
adapt to fluctuations in data arrival rates. PermJoin is a non-
blocking operator that is capable of producing join results even
if one or more data sources are blocked due to slow or bursty
network behavior. Furthermore, PermJoin distinguishes itself
from all previous techniques as it: (1) employs a new flushing
policy to write in-memory data to disk, once memory allotment
is exhausted, in a way that helps increase the probability of
producing early result throughput in multi-join queries, and
(2) employs a novel state manager module that adaptively switches
operators between joining in-memory data and disk-resident data
in order to maximize overall throughput.

I. INTRODUCTION

Traditional join algorithms (e.g., see [1], [2]) are designed
with the implicit assumption that all input data is available
beforehand. Furthermore, traditional join algorithms are opti-
mized to produce the entire query result. Unfortunately, such
algorithms are not suitable for emerging applications and
environments that call for a new join algorithm design that
is: (1) applicable in cases where input data is retrieved from
remote sources through slow and bursty network connections
and (2) optimized to produce early join results in a non-
blocking manner while not sacrificing performance in process-
ing the complete query result. Examples of such applications
include web-based environments, where data is gathered from
multiple remote sources and may exhibit slow and bursty be-
havior [3]. In addition, web users prefer early query feedback,
rather than waiting an extended period for the complete result.
Another vital example is scientific experimental simulation
where experiments may take up to days to produce large-
scale results. In such a setting, a join query should be able to
function while the experiment is running, and not have to wait
for the experiment to finish. Also, scientists prefer to receive
early feedback from long-running experiments in order to tell
if the experiment must halt and be restarted due to unexpected
results [4]. Other applications that call for new non-blocking
join algorithms that produce early results include streaming
applications, workflow management, data integration, parallel

This work is supported in part by the Grant-in-Aid of Research, Artistry,
and Scholarship, University of Minnesota, DTC Digital Technology Initiative
Program, University of Minnesota, and DTC Intelligent Storage Consortium
(DISC), University of Minnesota.

mokbel } cs .umn. edu

databases, sensor networks, and moving object environments.
Toward the goal of maintaining high result throughput in

emerging environments, several research efforts have been
dedicated to the development of non-blocking join operators
(e.g., see [3], [5], [6], [7], [8], [9], [10]). However, with
the exception of [6], these algorithms focus on query plans
containing a single join operator. The main focus of these
algorithms is to optimize for high throughput locally at each
operator. Optimizing for local throughput does not necessarily
contribute to the goal of maximizing overall throughput in a
multi-join query plan. Considering the complete query plan
calls for a new set of optimization techniques that maximize
early throughput in multi-join query plans.

In this paper, we propose a new efficient non-blocking join
algorithm for Producing Early Results in Multi-Join query
plans (PermJoin for short). PermJoin goes beyond the idea
of single-operator non-blocking join algorithms and explores
a holistic approach to optimization techniques for maximizing
throughput in multi-join query plans in new and emerging en-
vironments. To this end, PermJoin exploits a set of techniques
that considers all join operators in a query plan, rather than
viewing each operator as a separate entity. PermJoin employs
the symmetric hash join algorithm [10] to join incoming data
in memory. Once runtime memory is exhausted, Permjoin
intelligently selects a percentage of data to be flushed to disk
based on expected query throughput contribution. Furthermore,
PermJoin manages the state of each join operator, alternating
between memory and disk processing, in order to maximize
the throughput of the multi-join query plan. It is important to
note that PermJoin is capable of producing complete and exact
query results, making it suitable for applications that do not
tolerate approximations.

PermJoin distinguishes itself from all other non-blocking
join algorithms in two novel aspects: (1) PermJoin employs a
novel adaptive memory flushing technique that is triggered
once memory is full. Unlike previous flushing techniques
for non-blocking join algorithms, the flushing technique in
PermJoin maximizes the overall query throughput for a multi-
join query plan by predicting the throughput contribution of
in-memory data. (2) PermJoin employs a novel state manager
module, that has the ability to switch any join operator back
and forth between joining in-memory data and disk-resident
data based on the operation most beneficial to the query
throughput. Such a state manager module does not exist in
previous non-blocking join algorithms.

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 1433 ICDE 2008

Fig. 1. Overview of the PermJoin Algorithm

II. RELATED WORK

The symmetric hash join [10] is the most widely used
non-blocking join algorithm for producing early join results.
However, it was designed for cases where all input data
fits in memory. With the massive explosion of data sizes,
several research attempts have aimed to extend the symmetric
hash join to support disk-resident data [3], [5], [7], [8], [11].
These methods employ in-memory hash buckets to manage
data. A percentage of these buckets are flushed to disk
either individually [3], [8] or in groups [7], [9] when input
data exhausts memory allocated for the query. All of these
algorithms employ a symmetric hash join in order to achieve
their non-blocking behavior. The main difference between
them lies in the flushing algorithm used to free memory and
maintain a high throughput. However, these techniques focus
only on the case of a single join operator with no applicable
extension for multi-join query plans. PermJoin employs a
novel flushing algorithm that explicitly considers the expected
overall contribution of data for multiple join operators in a
query plan to maximize throughput in real-time environments.
The closest work to PermJoin is the state-spilling

method [6]; it is, to the authors' knowledge, the only work
that addresses multi-join query plans. The basic idea behind
state spilling is to score each hash partition group (i.e., pairs
of corresponding hash buckets) in the query plan based on its
past contribution to the query result. When memory is full,
the partition group with the lowest score is flushed to disk.
PermJoin distinguishes itself from this approach in two novel
respects. First, PermJoin employs a novel flushing technique
that takes into account both the input and output characteristics
at each join operator. Using this information, the flushing
algorithm predicts the contribution of data residing in the hash
buckets. Second, PermJoin employs a novel state manager
that switches each operator in the query plan between joining
in-memory and disk-resident data in order to maximize the
overall query throughput.

III. PERMJOIN: AN OVERVIEW

This section gives an overview of the PermJoin algorithm,
centered around the following two novel methods: (1) A new
memory flushing algorithm, designed with the goal of evicting
data from memory that will contribute to the result throughput

the least, and optimized for overall (rather than local) early
result throughput. (2) A state manager module designed with
the goal of placing each operator in a state that will positively
affect result throughput. Each operator can function in an in-
memory, on-disk, or blocking state.

Figure 1 gives a state diagram for PermJoin with its novel
aspects highlighted in bold. In this work, we consider left-
deep query plans with m binary join operators (m > 1), as
depicted in Figure 2.As depicted in the diagram, whenever a
new tuple Rs is received by the input buffer from source S
of operator 0, the state manager determines how the tuple
is processed. If) is currently not in memory, then Rs
will be temporarily stored in the buffer until 0 is brought
back to memory. Otherwise, Rs will be immediately used
to produce early results by joining it with in-memory data.
Initially, all joins operate in memory. Once memory becomes
full, PermJoin frees memory space by flushing a percentage
of in-memory data to disk (depicted by the bold line from in-
memory join to disk in Figure 1). The core of the PermJoin
algorithm includes the state manager module (depicted by a
bold diamond in Figure 1). The state manager is a continu-
ously running thread that aims to place each join operator in
one of three states (depicted by dotted bold lines): (1) Joining
in-memory data, (2) Joining disk-resident data, or (3) Low
Priority, i.e., producing results only if resources are available.
At any time, the state manager may opt to switch a particular
join operator from one state to another. In general, PermJoin
consists of four components, namely, memory flushing, state
manager, in-memory join, and on-disk join. The rest of this
section highlights each component of PermJoin.

A. Memory Flushing
In PermJoin, the symmetric hash join [10] is used to produce

early results in online environments. If memory allotment
for the query plan is exhausted, data is flushed to disk to
make room for new input, thus continuing the production
of early results. We propose the AdaptiveGlobalFlush algo-
rithm that aims to produce a high early overall throughput
for multi-join query plans. The AdaptiveGlobalFlush policy
flushes partition groups simultaneously (i.e., corresponding
hash partitions from both hash tables). The main idea behind
AdaptiveGlobalFlush is to consider partition groups across
all join operators in concert, by iterating through all possible
groups, scoring them based on their expected contribution to
the overall result throughput, and finally flushing the partition
group with the lowest score, i.e., the partition group that is
expected to contribute to the overall result throughput the least.

To accomplish its goal, the AdaptiveGlobalFlush algorithm
takes into account the following three characteristics of data
in the query plan: (1) Global Contribution of the data, i.e.,
the ability to contribute to the overall throughput, (2) Data
Arrival Patterns, i.e., changes in data arrival rates to the query
plan, and (3) Data Properties, i.e., join attribute distribution
or whether the data is sorted. A main drawback of previ-
ous flushing techniques is the inability to consider all three
properties [6], [7], [8]. The AdaptiveGlobalFlush algorithm
overcomes this drawback by considering all three properties.

1434

Iii-Melilorv
4 aB DJoinl <m JoinlABCD

2

011-P ~~~~~JoinlABC 2S

Lowv-P iioi A oinlAB Il

(a) State Example (b) Memory and Disk State

Fig. 2. Multi-Join Plan Examples

B. State Manager

The main responsibility of the state manager is to place
each join operator in the most beneficial state in terms of
maximizing the overall query throughput. As a motivating
example for the state manager, consider the query pipeline
in Figure 2(a) with four interconnected join operators: a base
operator Join1 with inputs sources A and B, an operator
Join2 with inputs AB (the output of Join1) and source

C, an operator Join3 with inputs ABC and source D, and
a root operator Join4 with inputs ABCD and source E.
During query runtime, sources A and B may be transmitting
data, while sources C, D, and E are blocked. In this case,

query results can only be generated from the base operator
Joinl. The overall query results produced by Join1 rely on

the selectivity of the three operators above in the pipeline
(i.e. Join2, Join3, and Join4). If the selectivity of these
operators is low, merging disk-resident data at either Join3
or Join4 may be more beneficial in maximizing the overall
query throughput than performing an in-memory join at the
base operator Join1. Thus, the state manager may decide to
place Join4 in the in-memory (i.e., default) state, Join3 in
the on-disk merge state, while Join1 and Join2 are placed in
a low-priority state.
The state manager accomplishes its task by invoking a

daemon process that traverses the query pipeline from top
to bottom. During this traversal, it attempts to determine the
operator 0 closest to the root that will produce a higher overall
throughput in the on-disk state compared to its in-memory
state. If this operator 0 exists, it is immediately directed
to its on-disk merge state to process results. Meanwhile, all
operators below 0 in the pipeline are directed to temporary
block while all operators above 0 in the pipeline continue
processing tuples in memory.

The design rationale behind the state manager is funda-
mentally different than that of the AdaptiveGlobalFlush. With
AdaptiveGlobalFlush, the goal is to predict the least valuable
in-memory data to flush to disk in order for the query to run

effectively. Due to the changing nature of the query during
runtime, data once determined to be the least beneficial by the
flushing algorithm may turn out to be valuable later in runtime.
For example, in Figure 2(b), the data on disk at JoinABCD
may be able to produce a higher result throughput than keeping

all operators in their in-memory states. Thus, the rationale
behind the state manager is to implement an efficient algorithm
in order to find and use disk-resident data that becomes
beneficial to the overall throughput.

C. In-Memory Join
PermJoin employs the symmetric hash join algorithm to

produce early join results [10]. The main idea of the symmetric
hash join is that each input source (A and B) maintains a
hash table with hash function h and n buckets. Once a tuple r
arrives from input A, its hash value h(r) is used to probe the
hash table of B and produce join results. Then, r is stored in
the hash bucket h(rA) of source A. A similar scenario occurs
when a tuple arrives at source B. Symmetric hash join is
typical in many join algorithms optimized for early results [3],
[7], [10].

D. On-disk join
PermJoin operators in the disk merge state employ a disk-

based sort-merge join to produce results similar to the one used
in [6], [7]. The main idea is that any memory partitions that are
flushed at times ti and tj (i 7 j) are joined together on disk
while those partitions that have been flushed at the same time
instance t do not have to be joined again in disk. Flushing
partition groups and using a disk-based sort-merge has the
major advantage of not requiring timestamps for removal of
duplicate results [6], [7]. Thus, once a partition group is
flushed to disk it is not used again for in-memory joins.

REFERENCES

[1] G. Graefe, "Query Evaluation Techniques for Large Databases," ACM
Computing Surveys, vol. 25, no. 2, pp. 73-170, 1993.

[2] L. D. Shapiro, "Join Processing in Database Systems with Large Main
Memories," ACM Transactions on Database Systems , TODS, vol. 11,
no. 3, pp. 239-264, 1986.

[3] T. Urhan and M. J. Franklin, "XJoin: A Reactively-Scheduled Pipelined
Join Operator," IEEE Data Engineering Bulletin, vol. 23, no. 2, pp.
27-33, 2000.

[4] G. Abdulla, T. Critchlow, and W. Arrighi, "Simulation Data as Data
Streams," SIGMOD Record, vol. 33, no. 1, pp. 89-94, 2004.

[5] Z. G. Ives, D. Florescu, M. Friedman, A. Y Levy, and D. S. Weld,
"An Adaptive Query Execution System for Data Integration," in Pro-
ceedings of the ACM International Conference on Management of Data,
SIGMOD, 1999.

[6] B. Liu, Y Zhu, and E. A. Rundensteiner, "Run-time operator state
spilling for memory intensive long-running queries," in Proceedings of
the ACM International Conference on Management of Data, SIGMOD,
2006.

[7] M. F. Mokbel, M. Lu, and W. G. Aref, "Hash-Merge Join: A Non-
blocking Join Algorithm for Producing Fast and Early Join Results,"
in Proceedings of the International Conference on Data Engineering,
ICDE, 2004.

[8] Y Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou, and N. Mamoulis,
"RPJ: Producing Fast Join Results on Streams through Rate-based
Optimization," in Proceedings of the ACM International Conference on
Management of Data, SIGMOD, 2005.

[9] S. Viglas, J. F. Naughton, and J. Burger, "Maximizing the Output Rate
of Multi-Way Join Queries over Streaming Information Sources," in
Proceedings of the International Conference on Very Large Data Bases,
VLDB, 2003.

[10] A. N. Wilschut and P. M. G. Apers, "Dataflow Query Execution in a
Parallel Main-Memory Environment," in PDIS, 1991.

[11] G. Luo, C. Ellmann, P. J. Haas, and J. F. Naughton, "A scalable
hash ripple join algorithm," in Proceedings of the ACM International
Conference on Management of Data, SIGMOD, 2002.

1435

t

