In-place Refinement for Effect Checking

Viktor Kuncak
Laboratory for Computer Science
Massachusetts Institute of Technology
200 Technology Square
Cambridge, MA 02139, USA

vkuncak@lcs.mit.edu

K. Rustan M. Leino

Microsoft Research

One Microsoft Way
Redmond, WA 98052, USA

leino@microsoft.com

Abstract

The refinement calculus is a powerful framework for reasoning about
programs, specifications, and refinement relations between programs and
specifications.

In this paper we introduce a new refinement calculus construct, in-
place refinement. We use in-place refinement to prove the correctness of
a technique for checking the refinement relation between programs and
specifications. The technique is applicable whenever the specification is
an idempotent predicate transformer, as is the case for most procedure
effects.

In-place refinement is a predicate on the current program state. A
command in-place refines a specification in a given state if the effect of
every execution of the command in the state is no worse then the effect
of some execution of the specification in the state.

We demonstrate the usefulness of the in-place refinement construct
by showing the correctness of a precise technique for checking effects of
commands in a computer program. The technique is precise because it
takes into account the set of possible states in which each command can
execute, using the information about the control-flow and expressions of
conditional commands. This precision is particularly important for han-
dling aliasing in object-oriented programs that manipulate dynamically
allocated data structures.

We have implemented the technique as a part of a side-effect checker
for the programming language C#.

*To Appear in AVIS 2003. Version of February 22, 2003, 2:19pm

1 Introduction

In this paper we consider an instance of the fundamental problem of showing
that a computer program respects a specification. This problem is difficult
because both the actual behavior of the program and the desirable program
behaviors typically correspond to an infinite state transition system (or a system
that is for all practical purposes infinite). For example, in an object-oriented
program there is practically no upper bound on the number of objects that the
program may create. A general way to address the problem of infinitely many
states is to work with the finite descriptions of programs and specifications.

The focus of this paper is a technique for checking that a program conforms
to its specification where the specification has the form of an effect. We have
applied our technique to the checking of effects called modifies-clauses [15]. A
modifies-clause is a specification that requires the program to preserve the values
in memory locations outside some given region of program state. The presence
of dynamically allocated data structures implies that the region of state that
the program may access, as well as the region of state specified in a modifies-
clause, are not bounded at compile time. Our analysis technique therefore
works directly with the description of the program in its guarded command
form 16|, and uses the concept of a data group [15] to represent sets of locations
of unknown size.

The main result of this paper is the correctness proof of our technique for
checking side effects. Our correctness proof applies whenever the specification
satisfies simple algebraic properties: idempotence and refinement by an empty
command. We therefore hope that our argument provides a general foundation
for checking program effects. To show the correctness of our technique, we give a
formal semantics to programs and specifications, using the refinement calculus.

The refinement calculus [2] is a framework based on weakest precondition
calculus [8]. It allows expressing both programs and specifications in a unified
notation with precise semantics based on higher-order logic. Sets of states are
modeled in the refinement calculus as predicates, here denoted by Pred. Pro-
grams and specifications are modeled as predicate transformers, here denoted
by Trans. A predicate transformer is a function from predicates to predicates,
whose informal meaning is the following. Consider a command C' modeled by a
predicate transformer ¢. If a predicate P denotes a set of states after the com-
mand C, then the predicate t(P) is the weakest precondition of C' with respect
to P. t(P) denotes the largest set of states S such that every execution of C'
from a state st € S leads to one of the states denoted by P.

The refinement calculus is an expressive framework that naturally models
a range of programming language constructs. When used informally, the re-
finement calculus permits a full range of mathematical techniques for reasoning
about programs. Nevertheless, it is possible to build automated tools that check
refinement relations for predicate transformers of certain forms, without requir-
ing any interactive theorem proving. In this paper we focus on specifications
that are expressed as effects. We have implemented a modifies-clause checker
based on this technique, making use of a theorem prover tailored for program

checking [7},10].

Side effects are a simple yet important class of program specifications. The
precise information about side effects enables a program checker to prove that
properties are preserved across procedure calls, which makes side effect checking
an important aspect of tools that increase software reliability. Side effects can be
specified at different levels of precision and conciseness, starting from the most
conservative approximation. This property makes side effects a good candidate
for lightweight specifications. Our initial experience with the modifies-clause
checker for C# as well as the previous experience with ESC/Modula-3 [7] suggest
that the annotation burden of specifying side effects is acceptable.

To show the correctness of the effect checking technique in |15], we intro-
duce a new construct of the refinement calculus, in-place refinement. In-place
refinement is an operation 7 that takes two predicate transformers t; and to
and returns a predicate:

c! . Trans — Trans — Pred
(t1 Tl to) st = VP. (t; P st) = (ta P st)

Here, st denotes a state and P denotes a predicate. We define the usual refine-
ment relation between predicate transformers [2] by

t1 CEtyg = VPVst. t1 P st =ty P st
As a consequence of these definitions we have
t) Tty = Vst. (t; T to) st

The example in Section[2shows the usefulness of in-place refinement as a tool for
reasoning about effect checking. In general, we expect the refinement in-place
to be a useful addition to the refinement calculus.

2 Example

We have discovered the notion of in-place refinement in an effort to show the
correctness of a technique for checking that a program c satisfies its effect spec-
ification s. We represent each effect as an idempotent predicate transformer s
and require s to be refined by the skip command.

A simple technique to check that a program c refines an effect s is to show
that cg refines s for every command cg in program ¢, and then use the idempo-
tence of s. Unfortunately, this simple technique fails to show that the follow-
ing program ¢ does not modify elements of the array a for indices other than

0,1,2,3, 4:
c: if (abs(j) < 3) {

if (j>0){
alj]=
} else {

al[-2x*j]=1

}

Let r denote a region of store consisting of array elements a[0], a[1], a[2], a[3], a[4].
It is easy to see that an execution of program c can only modify locations in
r. Let havoc r denote the predicate transformer that may nondeterministically
modify any location in r. For s = havoc r we then have

havoc r C ¢ (1)

However, it is not the case that havoc r C ¢q for every command ¢y in program
c. For example, the subcommand

co = (alj]=1)
does not refine havoc r, i.e.
havoc r £ (alj]= 1)

The reason why the simple technique fails is that the individual commands such
as ¢g are taken out of the program context, and the information about the values
that variables such as j may take is lost.

To overcome limitations of the simple technique, we present a technique
based on context-dependent checking of refinement. Our technique can be jus-
tified using the in-place refinement operator. To check refinement , we instru-
ment program c with assert commands. If P is a predicate on program states,
then command assert P denotes a command that does nothing if the initial
state satisfies P, and “goes wrong” otherwise. A program that “goes wrong”
terminates the execution in an undesirable way. After instrumenting program c

according to our technique, we obtain program c’:

¢ if (abs(y) < 3) {
if (j>0){
assert (havoc r C! (a[j]= 1))
aljl=1
} else {
assert (havoc r C! (a[-2 * j]= 1))
al[-2xj]=1

The way we make sure that the instrumented program ¢’ does not go wrong is
by proving a verification condition. Namely, in Section [5| we show that if the
verification condition derived from the instrumented program is valid, then the
refinement relation of form holds. This is the result we intuitively expect
to hold. This intuition is reflected in the fact that it is straightforward to show
the result for predicate transformers generated by transition relations on states.
What we show in Section [b|is that the result holds for all conjunctive predicate
transformers, including the miraculous predicate transformers [1].

By introducing the in-place refinement predicate we reduce the context-
specific refinement checking to the task of checking the validity of verifica-
tion conditions. Owur technique can therefore easily be incorporated into a
general-purpose program checking tool such as [10], which is based on veri-
fication condition validity checking and can detect a variety program errors
such as null pointer dereference, array out of bounds violation, and violations of
programmer-specified invariants. Modifies-clause checking is an important com-
ponent of such a tool because it enables a sound, modular, and precise checking
of procedure calls and method invocations.

3 Preliminaries

Let A ~» B denote the set of partial functions from set A to set B and A —
B denote total functions from A to B. We assume (A — B) C (A ~ B),
moreover, every partial function f € A ~» B is a total function on its domain:
f : (domf) — B. We use the syntax of higher order logic, with function
application denoted by juxtaposition. When writing expressions we assume that
the priority of function application denoted by juxtaposition is higher than the
priority of infix operators. We assume that functions are curried. We identify
subsets of a set A with functions A — Bool. We define function override, written

Loc (set of locations)

Value (set of values)
Bool = {false,true} (truth values)
State = Loc — Value (program state)
Update = Loc~» Value (state update)
Region = Loc — Bool (set of locations)
Pred = State — Bool (predicates on states)
Trans = Pred — Pred (predicate transformers)

Figure 1: Basic Sets

® : (A~B)—»(A~B)— (A~ B)

fx, if f x is defined
(gef)z = { . .
g x, if f z is undefined

Figure [1] summarizes the definitions of some basic sets of objects. We pos-
tulate a set of locations Loc and a set of values Value. We think of a location
| € Loc as modeling an assignable memory location of a computer store, where
every location holds information representing some value v € Value. The pre-
cise structure of sets Loc and Value is not important for the purpose of this
paper. A state st € State is a total function from locations to values. A pred-
icate P € Pred is a function from states to the set of truth values Bool. We
denote predicates by capital letters P, @, possibly with subscripts. Predicates
form a lattice, moreover, the lattice of predicates is a boolean algebra. We write
Py C P, for the lattice order between predicates in the lattice. We write Py A Ps,
P,V P,, and =P, for conjunction, disjunction, and negation of predicates. Each
predicate transformer t € Trans is a total function from predicates to predicates.
Predicate transformers also form a boolean algebra.

Figure[2|defines basic predicate transformers assert @, assume @, and assign f.
We define skip = assume true.

We build new predicate transformers from the existing ones using the fol-
lowing two operators:

e sequential composition “;” (function composition of predicate transform-
ers);

e demonic choice “II” (universal quantification).

Figure [3| shows the semantics of these two operators. Demonic choice 114 is
polymorphic in the type A of the choice set; we require A # @) and omit A from

assert : Pred — Trans

assert Q P = QAP
assume : Pred — Trans
assume @ P = —-QVP
assign : Update — Trans
assign f Pst = P(st®f)

Figure 2: Basic Predicate Transformers

;¢ Trans — Trans — Trans

(tl 3 tQ) P = tl(tQ P)
Iy : (A— Trans) — Trans
HafP = Va:A faP

Figure 3: Sequential Composition and Demonic Choice
IT4 if it is clear from the context. We can define the familiar binary demonic
choice O as a special case of the unbounded choice II, by

(t1 Oty) = IIf, where

f : Bool — Trans

t1, x = true
fo =

to, x = false
From the definition it follows
(ty Oty) P=(t1 P)A (t2 P)

Of special importance for approximating predicate transformers is the havoc
command, defined as follows:

havoc : Region — Trans

havoc r = TII(Af: (r — Value). assign f)

We say that a predicate transformer ¢ is positively conjunctive iff for all functions
f:A— Pred where A # ()

t(Va. fx) =V t(f x)

In this paper, the term “conjunctive” means “positively conjunctive”. If a pred-
icate transformer is conjunctive, it is also monotonic with respect to the under-
lying lattice order [9]. We denote the set of conjunctive predicate transformers
by CTrans. All predicate transformers in Figure [2] are conjunctive. Moreover,
sequential composition and demonic choice of conjunctive transformers is a con-
junctive transformer.

We assume that programs are constructed from the basic predicate trans-
formers in Figure [2] using demonic choice and sequential composition. Demonic
choice with assume commands models conditional commands such as if . Condi-
tional commands and sequential composition can express arbitrary straight-line
code. Furthermore, if we assume that each procedure has a specification in
terms of other predicate transformers such as havoc, we can perform conserva-
tive checking of arbitrary recursive procedures.

We call a predicate transformer s such that s C ¢ an effect of the command
c. We use the term effect to denote any predicate transformer s that is meant
to be used as a specification for some command.

A predicate transformer s is idempotent iff

sC s:s
A predicate transformer is a may-transformer iff
s C skip

Note that an idempotent may-transformer satisfies s;s = s. An idempotent
effect is an effect that is an idempotent predicate transformer; a may-effect is
an effect that is a may-transformer.

4 An Effect Checking Technique

We first show how to transform the checking of refinement s C ¢ into a verifica-
tion condition. The following holds:

sCec

Vst. (s CI ¢) st
< Vst. (sCl¢)st A ctrue st

= Vst. assert (s C! ¢) (c true) st

Vst. (assert (s C! ¢);c) true st

For a given specification s, define
check, ¢ = assert (s C! ¢) ;¢

We have thus reduced checking refinement s C ¢ to checking whether the in-
strumented program
¢’ = check;, ¢

has the property
¢ true = true (2)

We write simply check ¢ instead of checky c if the specification s is clear from
the context.
We have thus obtained the following Proposition

Proposition 1 If (checks c) true = true then s C c.

One difficulty with checking is that program c¢ may have a complicated
structure, so it may be unclear how to check whether predicate s C! ¢ holds.
We therefore transform the instrumented program ¢’ into another instrumented
program ¢’ such that:

e ¢’ Cc and

e the in-place refinement checks in ¢’ are of the form s C! ¢y where ¢ is
one of the basic transformers in Figure

To show , we attempt to prove (¢’ true = true). If ¢’ true = true holds, we
2

conclude (|2|) as follows:
true
= " true
C (true
C true

We next describe how to obtain the instrumented program ¢”. To obtain
" we need to assume that the predicate transformer c is given by some syntax
tree C.

Let [_] be an interpretation function mapping syntax trees to predicate trans-
formers. We write ;, II, assert, assume, assign for the syntax tree counterparts
of ;, I, assert, assume, assign. We thus have

LI =

[= 11
[assert] = [assert]
[assume] = [assume]
[assign] = [assign]

We extend the relation [_] to syntax trees in the natural way:

[Ci;C] = [Ci][;]1Cx]
[mf] [M(Az. [f =])

We also define the syntactic counterpart to check:
check C = assert (sC'¢); C

We next define a function instr that instruments syntax trees. Suppose that
the command ¢ is written using a syntax tree C, so that ¢ = [C]. We then let

" = [instr C7

We define the function instr by induction on the structure of a syntax tree:

instr (Cy ; C2) = (instr Cy) ;(instr Cy)
instr (IIf) = T(Az. instr(f x))
instr (assert Q) = assert @ (3)
instr (assume (J) = assume
instr (assign f) = check (assign f)

To see how the instr transformation simplifies effect checking, suppose s =
havoc r and ¢y = assign f. Then by definition of s, ¢, havoc r, and assign f, we
have:

(s Tl o) st = (havoc r C! assign f) st
= VP.((Vf' € (r — Value).assign f' P st) =
assign f P st)

< dom fCr

To ensure that refinement s T! ¢y holds, it therefore suffices to check that
locations assigned in the assignment command ¢ are included in the locations
specified by the havoc command s.

According to our definition, instr performs all the checks at the leaves of
the syntax tree. In general, we may stop the recursive application of instr and
apply check at any point in the tree. To capture this idea we define a reduction
relation — with the property

check C' % instr C

where V> is the reflexive transitive closure of +—. Define first relation p on
commands by

check (C ; C2) P (check C) ;(check Cy)
check (IIf) p T(Az. check (f z))
check (assert Q) P assert @ (4
check (assume J) P assume)

10

Next, define — as the congruent closure of relation p i.e. define — as the least
relation such that
D[Ch] — D|C5]

for all contexts D[], and all commands Cy and Cy such that Cy p Cs.

5 Correctness of Effect Checking

The central result of this paper is the following theorem.

Theorem 2 Let C; and Cs be terms denoting conjunctive predicate transform-
ers. Then

O+ Oy

implies

[Ca] C [CH]

The rest of this section is devoted to the proof of Theorem
First, since > is the reflexive transitive closure of —, and the relation C is
reflexive and transitive, it suffices to show that

Cli—>02

implies [C2] C [C1]. We next observe that the monotonicity properties in
Propositions hold.

Proposition 3 Let x and y be predicate transformers such that
Ly
Then for each predicate transformer z
xizEy;z
Proposition 4 Let x and y be predicate transformers such that
Ly
Then for each monotonic predicate transformer z
zix Cozsy

Proposition 5 Let A # () and let f : A — CTrans and g : A — CTrans be
parameterized families of predicate transformers. If for all a € A

JaCga
then
1f C g

11

From Propositions [3] [[by induction it follows that all we need to prove is
that
Ci1pCy

implies [C5] C [C4]. By Definition , we prove the following facts:

(check ¢1);(check ¢3) T check (cy;¢2) (5)
II(Az. check (f x)) £ check (ILf) (6)
assert Q L check (assert Q) (7)

assume QL check (assume Q) (8)

We proceed to show each of the properties above. Property follow from
Proposition [§] below. To show Proposition [§ we use Lemma [6] and Lemma [7]
Lemma [0 is a simple fact used in Lemma [7]

Lemma 6 Let s,c be predicate transformers and P a predicate. Then
sP A (sCle) CecP (9)
Proof. By applying @D to an arbitrary state st we obtain
s PstA(sClc)st =c P st

which is a direct consequence of the definition of C!. m
Lemma [7]is the place where we need conjunctivity of commands.

Lemma 7 Let so, ¢1, co be predicate transformers such that ¢i is conjunctive.
Then
ci(s2Cf ea) € (1382 £ crien) (10)

Proof. Because c; is conjunctive, ¢; is monotonic. From Lemma [6] we therefore
conclude that for all predicates P

c1(sa PA(s2 T ¢3)) C ci(co P) (11)
To show let st be any state satisfying
c1(s9 ! co) st (12)
We need to show that for all predicates P,
c1(s2 P) st = ci(cg P) st
So let P be an arbitrary predicate and assume

c1(s2 P) st (13)

12

Because ¢ is conjunctive, from and we conclude
ci(sa P A (so Cf ¢p)) st

Now from we have
c1(co P) st

Proposition 8 Let s1,s2,c1,c2 be predicate transformers such that ¢y is con-
junctive. Then

assert (s; Cfcy) 5 ¢ ; assert (s Cfep) 5 co T
assert (s1;80 Clcrse) 5 e1 5 o

Proof. By definition we need to show that for every predicate P and every

state st
(s1 Cley) st A ei((s2 Ef ea) Aea P)) st =

(s1;80 Tl er5e9) st A ci(co P) st (14)
Assume
(51 EI Cl) st (15)
and
c1((s2 Tf e2) A (2 P)) st (16)

Because ¢; is conjunctive, ¢; is monotonic, so from (16) we conclude
c1(cg P) st

which is the second conjunct in the conclusion of . It remains to show the
first conjunct i.e. that for every predicate P,

s1(s2 Pp) st = ci1(ca Pyp) st (17)
Let P; be an arbitrary predicate. From and monotonicity of ¢; we conclude
c1(s2 ! co) st
Applying Lemma [7] we conclude
(c1380 Tl er5¢e0) st

which implies

61(82 P]) st = 61(62 Pl) st (18)
On the other hand, from the assumption we conclude
81(82 Pl) st = 01(82 Pl) st (19)

From and we conclude (|17). m

The following Corollary [J] follows from Proposition [§ by taking s; = s = s
where s is idempotent.

13

Corollary 9 Let s,cy1,co be predicate transformers such that ¢y is conjunctive
and
s;sC s

Then
assert (s Cfcy) 5 ¢ ; assert (sClcy) 5 0 E

assert (s Clcisea) 5 ¢1 5 e

This completes the proof of Property (f).
Property @ follows from the following proposition.

Proposition 10 Let s be a predicate transformer and f : A — Trans an indexed
family of predicate transformers. Then

O(\z. assert (s CI f z) 5 (f z))
= assert (s CT IIf) ; IIf

Proof. Let P be an arbitrary predicate and st an arbitrary state. By definition
it suffices to show

Vo. (sCl fx)st A fao P st
= (sCIIIf) st A (IIf) P st
We have
V. (sC! fx)st A fa P st

= Vo. (VP'.s P st = fax P st) N foPst
= (VP.sP st =Va. fax P st) A\ V. fz P st
= (VP.s P st = (IIf) P’ st) A (IIf) P st

= (sClTIIf) st A (ILf) P st

To show Theorem [2] it remains to show that we may simply drop the in-
strumentation check in front of assert and assume commands. Here we use the
assumption that s is a may-effect.

Proposition 11 Let s be a predicate transformer such that
s C skip
and let Q be a predicate. Then
assume @ = assert (s C! (assume Q)) ; (assume Q)

Proof. Because
s C skip C assume @

14

we have
(s CT assume Q) = true

S0
assert (s C! assume Q) = skip

Proposition 12 Let s be a predicate transformer such that
s C skip
and let Q be a predicate. Then

assert Q =

assert (s C! assert Q) ; assert Q
Proof. Let P be an arbitrary predicate. We need to show
QAP =(sClassert QQAQAP
which is equivalent to
(QAP) C (sC! assert Q)

Let st be an arbitrary state. Assume (Q st) and (P st). We show that for all
predicates P’
sP'st = Qst NP st (20)

Let P’ be a predicate such that (s P’ st). Because (s C skip), we conclude
(P’ st). We have previously assumed (Q st), so

Q st N P st
Hence, holds. =

We have thus completed the proof of Theorem 2
We can summarize the correctness of our technique as follows. Let C' be
a syntax tree, let ¢ = [C], and let s be an idempotent may effect. Let C; =

check C, let Cy + Cso, and let ¢ = [Cs]. If ¢ true = true, then [check C] true =
(check ¢) true = true by Theorem [2| so s C ¢ by Proposition

6 Some Consequences

An important example of an idempotent may-effect s is s = havoc 7.

15

Proposition 13 Let r be an arbitrary set of locations. Then
havoc r C skip

and
havoc r C havoc r ; havoc r

We next exhibit a slightly more general form of an idempotent may-effect. First
we show Lemma [14| that allows canceling of assume and assert statements.

Lemma 14 Let Qg and Q1 be predicates. Then
skip T assume Q7 ; assert Qg (21)
iff
Q1 € Qo
Proof. By definition, holds iff

VP. P C (=Q1V (Qo A P)) (22)

which can be easily shown equivalent to @1 C Q. =

Proposition 15 Let
s = assert)y ; havoc r ; assume

where 1 is a set of locations and Qg and Q1 are predicates such that Q1 C Q.
Then
s C s3s

Proof. By Lemma [14] and Proposition L]

Proposition 16 Let
s = assert)y ; havoc r ; assume

where 1 is a set of locations and Qo and Q1 are predicates such that Qyp C Q1.
Then
s C skip

Proof. By shunting rules |2, Page 223], s C skip is equivalent to
havoc r L assume Qg ; skip ; assert (01

The result then follows by Lemma [T4] and Proposition .

From Proposition and Proposition we obtain the following Corol-
lary [I7}

16

Corollary 17 Let Q be a predicate and r a set of locations. Then
s = assert (Q ; havoc r ; assume)

s an idempotent may-effect.

Corollary and Theorem [2] imply that our technique for effect checking is
applicable to the effects of the form

s = assert @ ; havoc r ; assume ()

Such effects capture the following idea: if all commands preserve the invariant)
and change only locations in r, then the entire program preserves the invariant
@ and changes only locations in r.

We next give some simple rules for constructing effects.

Proposition 18 Let s1 and sy be idempotent effects such that:
s1;582 & 82581
Then
S = 8182

is an idempotent effect as well. Moreover, if s; T skip and sy T skip then
s C skip as well.

Define Kleene iteration s* of a predicate transformer s as a demonic choice
of all finite sequential compositions of s. More precisely, given an effect s, define
f : Nat — Trans where Nat is the set of nonnegative integers by

f0 = skip
fk+1) = si(fk)

and let

Proposition 19 Let s be positively conjunctive transformer. Then s* is an
idempotent may-effect.

*

Proof. Clearly, s
idempotence, show

is a may-effect because it is a demonic choice with skip. For
s*Cs;s"

and then use induction and lattice properties. m

17

7 Related Work

[1] and [18] contain a systematic introduction to the refinement calculus. [5}
19] present applications of the refinement calculus to program derivation. To
the best of our knowledge, we are the first to introduce the notion of in-place
refinement into the refinement calculus.

In this paper we have shown that specification commands [17] of a special
form can be used as effects and checked against a program on a per-command
basis.

[12] uses a type system containing effects as elements of a commutative
idempotent algebra, which is similar to our requirement on idempotent may-
effects. Type systems supporting effect checking in object-oriented programs
include [11}3}/4./6].

In contrast to most type system approaches for effect checking, our effect
checking approach is flow-sensitive. Flow-sensitivity is essential for dealing with
aliasing in an object-oriented programming language. [15] uses an instance of
the technique described in this paper to check modifies clauses. Another flow-
sensitive approach is role analysis [13], which uses effects to enable compositional
analysis of properties of objects that move between data structures.

An alternative to the technique in this paper is to use a specialized program
analysis and express the analysis result as an instrumentation of the program
with assumption assume (). Each instrumentation commands assume () de-
scribes an approximation of the set of reachable states at a program point.
A program analysis can be cast into this framework using refinement in con-
text, [1, Page 463]. Suppose that s is an idempotent may-effect. Even if it is not
the case that s C ¢g for every command ¢y of the program, if the bound on reach-
able states @ is precise enough, it may be possible to show s C (assume Q); co.
If this relationship holds for all program points, and s is an idempotent may-
effect, then monotonicity of nondeterministic choice and sequential composition
allow us to conclude that the entire program refines the effect s. This reasoning
can be used to explain correctness of program analyses such as [13] that use
specialized techniques to check procedure effects.

8 Conclusion

Checking refinement is a difficult problem in general. However, if the speci-
fication is of a special form, we can automate such checks. In this paper we
presented a technique for showing refinement in the case when the specification
is an idempotent may-effect. We have implemented a modifies clause checker
based on this technique, making use of a theorem prover tailored for program
checking [7)/10]. Our initial experience with the modifies clause checker suggests
that the annotation burden of specifying side effects is acceptable.

We have found the refinement calculus to be a useful framework for rea-
soning about program checking. To show correctness of our approach to effect
checking we introduced a new refinement calculus construct, in-place refine-

18

ment. In-place refinement allows refinement checking to be incorporated into
the checking of verification conditions, resulting in a technique that takes into
account program control-flow as well as the conditions of conditional commands.
We have shown the correctness of our technique when programs are conjunc-
tive predicate transformer and specifications are idempotent may-effects. This
general characterization permits various representations for the effect checking,
allowing the abstraction of program store locations to be tailored for the desired
application.

Acknowledgements We would like to thank Ralph Back for useful discus-
sions. We thank Chandrasekhar Boyapati and Patrick Lam for useful comments
on a draft of this paper.

References

[1] Ralph-Johan Back and Joakim von Wright. Combining angels, demons
and miracles in program specifications. Theoretical Computer Science,
100(2):365-383, 1992. m

[2] Ralph-Johan Back and Joakim von Wright. Refinement Calculus. Springer-
Verlag, 1998. [6]

[3] Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. A type sys-
tem for preventing data races and deadlocks. In Proc. 17th Annual Con-
ference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, 2002. [7]

[4] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership
types for object encapsulation. In Proc. 30th ACM POPL, 2003. [7]

[5] Michael Butler, Jim Grundy, Thomas Langbacka, Rimvydas Ruksenas, and
Joakim von Wright. The refinement calculator: Proof support for program
refinement. In Proc. Formal Methods Pacific 97, 1997. [7]

[6] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the
disjointness of type and effect. In Proceedings of the 17th ACM confer-
ence on Object-oriented programming, systems, languages, and applica-
tions, pages 292-310. ACM Press, 2002. [7]

[7] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
Extended static checking. Technical Report 159, COMPAQ Systems Re-
search Center, 1998.

[8] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc.,
1976. [

[9] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program
Semantics. Springer-Verlag, 1990. [3]

19

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Cormac Flanagan, K. Rustan M. Leino, Mark Lilibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended Static Checking for Java. In
Proc. ACM PLDI, 2002. [1 2}

Aaron Greenhouse and John Boyland. An object-oriented effects system. In
Proc. 15th European Conference on Object-Oriented Programming, number
1628 in Lecture Notes in Computer Science, pages 205-229, Berlin, Heidel-
berg, New York, 1999. Springer.

Pierre Jouvelot and David K. Gifford. Algebraic reconstruction of types
and effects. In Proc. 18th ACM POPL, 1991.

Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis. In Proc.
29th ACM POPL, 2002. [7]

K. Rustan M. Leino and Rajit Manohar. Joining specification statements.
Theoretical Computer Science, 216:375-394, 1999.

K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yunhong Zhou. Using
data groups to specify and check side effects. In Proc. ACM PLDI, 2002.

I

K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java
programs via guarded commands. Technical Report 1999-002, COMPAQ
Systems Research Center, 1999.

Carroll Morgan. The specification statement. Transactions on Program-
ming Languages and Systems, 10(3), 1988.

Carroll Morgan. Programming from Specifications (2nd ed.). Prentice-Hall,
Inc., 1994. [7]

Joakim von Wright. Program refinement by theorem prover. In Proc. 6th
BCS-FACS Refinement Workshop, 1994. [7]

20

	Introduction
	Example
	Preliminaries
	An Effect Checking Technique
	Correctness of Effect Checking
	Some Consequences
	Related Work
	Conclusion

